Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2013, Vol. 8 Issue (6) : 611-617    https://doi.org/10.1007/s11515-013-0282-2
RESEARCH ARTICLE
Optimization of fermentation medium for xylanase-producing strain Xw2
Bingying YE1,2,3, Ting XUE1,2, Shichao YE1,2, Shengyan XU1,2, Weiyan LI1,2, Jihua LU1,2, Fang WEI4, Wenjin HE1,2, Youqiang CHEN1,2,3()
1. College of Life Sciences, Fujian Normal University, Fuzhou 350108, China; 2. Key Laboratory of Developmental and Neural, Fuzhou 350108, China; 3. Key Laboratory of Sugarcane Biology and Genetic Breeding of Ministry of Agriculture, Fuzhou 350108, China; 4. Environmental Protection Agency, Fuzhou, Sanming 350400, China
 Download: PDF(189 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

To improve the fermentation yield of xylanase by optimizing the fermentation conditions for strain Xw2, a Plackett-Burman design was used to evaluate the effects of eight variables on xylanase production by strain Xw2. The steepest ascent (descent) method was used to approach the optimal response surface experimental area. The optimal fermentation conditions were obtained by central composite design and response surface analysis. The results showed that the composition of the optimal fermentation medium was corn cob+ 1.5% wheat bran (1:1), 0.04% MnSO4, 0.04% K2HPO4·3H2O, and an inoculum size of 6% in 50 mL liquid volume (pH= 6.0). The optimal culture conditions were 28°C at 150 r/min for 54.23 h. The results of this study can serve as the basis for the industrial production and application of xylanase.

Keywords enzyme activity      fermentation      Plackett-Burman test      xylan     
Corresponding Author(s): CHEN Youqiang,Email:ygchen@fjnu.edu.cn   
Issue Date: 01 December 2013
 Cite this article:   
Shichao YE,Shengyan XU,Weiyan LI, et al. Optimization of fermentation medium for xylanase-producing strain Xw2[J]. Front Biol, 2013, 8(6): 611-617.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-013-0282-2
https://academic.hep.com.cn/fib/EN/Y2013/V8/I6/611
VariableParametersLevel
-1+ 1
X1corn cob - wheat bran (% w/v,1:1)11.5
X2yeast extract+ (NH4)2SO4 (% w/v,1:1)0.30.6
X4MnSO4 (%,w/v)0.020.04
X5K2HPO4 (%,w/v)0.040.08
X7initial pH 6.06.07.0
X8inoculums (%,v/v)46
X10liquid volume (mL/250mL)4050
X11fermentation time (h)4872
Tab.1  Factors and levels of the Plackett-Burman experiment design
RunX1X2X3X4X5X6X7X8X9X10X11Yield (Y)Xylanase activity (IU/mL)
11-11-1-1-1111-1174.54
211-11-1-1-1111-1327.28
3-111-11-1-1-111143.33
41-111-11-1-1-11170.57
511-111-11-1-1-1130.02
6111-111-11-1-1-1287.49
7-1111-111-11-1-1234.65
8-1-1111-111-11-1179.73
9-1-1-1111-111-11105.74
101-1-1-1111-111-169.58
11-11-1-1-1111-11176.68
12-1-1-1-1-1-1-1-1-1-1-180.53
Pr>F42.777.0212.8840.0319.834.1178.251.43 (*10-2)
Significance73465281
R2 = 0.9480
Tab.2  The Plackett-Burman experimental design matrix and corresponding response values
Fig.1  (A, B) Effect of different values of composite nitrogen and inoculum on xylanase production from strain Xw2. Each value represents the means±SE. One-way analysis of variance (ANOVA) was used to analyze the data. Superscripts represents error bar by Tukey’s mutiple-range test. = 3 batches.
Fig.2  Effect of different fermentation times on xylanase production from strain Xw2.(Wenjin He) Each value represents the means±SE. One-way analysis of variance (ANOVA) was used to analyze the data. Superscripts represents error bar by Tukey’s mutiple-range test. = 3 batches.
FactorCoding level
-101
Compound nitrogen source (X1)0.55%0.60%0.65%
Inoculation amount (X2)4%5%6%
Fermentation time (X3)51 h54 h57 h
Tab.3  Coded values of variables used in the Box-Behnken design
Trial numberX1X2X3Xylanase activity (IU/mL)
1-1-10314.70
2-110299.97
31-10326.85
4110297.27
50-1-1300.46
60-11316.19
701-1303.07
8011292.36
9-10-1299.76
1010-1326.24
11-101286.20
12101292.36
13000362.83
14000358.83
15000351.15
Tab.4  Design and results of the Box-Benhnken experiment
SourceSum of squaresDegree of freedomMean squareF valuePr>F
Model8515.659912.858.32380.0156
Lack-of-fit items477.873159.294.52090.1864
Error70.47235.23
Residuals548.345109.67
Sum8763.9914
Tab.5  ANOVA of quadratic polynomial model
Model termRegression coefficientsStandarderrortPr>|t|
X15.26133. 70251.42100.2146
X2-8.19133. 7025-2.21240.0779
X3-5.30253. 7025-1.43210.2115
X1*X1-24.89295.4499-4.56760.0060
X1*X2-3.71255.2361-0.70900.5100
X1*X3-5.085.2361-0.97020.3765
X2*X2-23.01295.4499-4.22260.0083
X2*X3-6.615.2361-1.26240.2625
X3*X3-31.57045.4499-5.79280.0022
Tab.6  Significance test for regression coefficients of the quadratic model
Fig.3  Response surface methodology of xylanase production using bran hydrolysate and methanol.
A Fixed levers: X3= 0
B Fixed levers:X2= 0
C Fixed levers: X1= 0
1 Bastawde K B (1992). Xylan structure, microbial xylanases, and their mode of action. WORLD J MICROB BIOT , 8(4): 353-368
doi: 10.1007/BF01198746
2 Coughlan M P, Hazlewood G P (1993). beta-1,4-D-xylan-degrading enzyme systems: biochemistry, molecular biology and applications. Biotechnol Appl Biochem , 17(Pt 3): 259-289
pmid:8338637
3 Ding C H, Jiang Z Q, Li X T, Li L T, Kusakabe I (2004). High activity xylanase production by Streptomyces olivaceoviridis E-86. WORLD J MICROB BIOT , 20(1): 7-10
doi: 10.1023/B:WIBI.0000013278.24679.ed
4 Francis F, Sabu A, Nampoothiri K M, Ramachandran S, Ghosh S, Szakacs G, Pandey A (2003). Use of response surface methodology for optimizing process parameters for the production of [alpha]-amylase by Aspergillus oryzae. Biochem Eng J , 15(2): 107-115
doi: 10.1016/S1369-703X(02)00192-4
5 Li Y, Cui F, Liu Z, Xu Y, Zhao H (2007). Improvement of xylanase production by Penicillium oxalicum ZH-30 using response surface methodology. ENZYME MICROB TECH , 40(5): 1381-1388
doi: 10.1016/j.enzmictec.2006.10.015
6 Li Y, Liu Z, Cui F, Liu Z, Zhao H (2007). Application of Plackett-Burman experimental design and Doehlert design to evaluate nutritional requirements for xylanase production by Alternaria mali ND-16. Appl Microbiol Biotechnol , 77(2): 285-291
doi: 10.1007/s00253-007-1167-6 pmid:17846761
7 Panbangred W, Shinmyo A, Kinoshita S, Okada H (1983). Purification and properties of endoxylanase produced by Bacillus pumilus. Agric Biol Chem , 47(5): 957-963
doi: 10.1271/bbb1961.47.957
8 Polizeli M L T M, Rizzatti A C S, Monti R, Terenzi H F, Jorge J A, Amorim D S (2005). Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol , 67(5): 577-591
doi: 10.1007/s00253-005-1904-7 pmid:15944805
9 Rezende M I, Barbosa A M, Vasconcelos A F D, Endo A S (2002). Xylanase production by Trichoderma harzianum rifai by solid state fermentation on sugarcane bagasse. Braz J Microbiol , 33(1): 67-72
doi: 10.1590/S1517-83822002000100014
10 Selinheimo E, Kruus K, Buchert J, Hopia A, Autio K (2006). Effects of laccase, xylanase and their combination on the rheological properties of wheat doughs. Cereal Sci , 43(2): 152-159
doi: 10.1016/j.jcs.2005.08.007
11 Silversides F G, Scott T A, Korver D R, Afsharmanesh M, Hruby M (2006). A study on the interaction of xylanase and phytase enzymes in wheat-based diets fed to commercial white and brown egg laying hens. Poult Sci , 85(2): 297-305
pmid:16523630
12 Subramaniyan S, Prema P (2002). Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit Rev Biotechnol , 22(1): 33-64
doi: 10.1080/07388550290789450 pmid:11958335
13 Tanyildizi M S, Ozer D, Elibol M (2005). Optimization of amylase production by Bacillus sp. using response surface methodology. Process Biochem , 40(7): 2291-2296
doi: 10.1016/j.procbio.2004.06.018
14 Uysal H, Bilgicli N, Elgun A, Lbanoglu S, Herken E N, Demir M K (2007). Effect of dietary fibre and xylanase enzyme addition on the selected properties of wire-cut cookies. J Food Engin , 78(3): 1074-1078
15 Wong K K, Tan L U, Saddler J N (1988). Multiplicity of beta-1,4-xylanase in microorganisms: functions and applications. Microbiol Rev , 52(3): 305-317
pmid:3141761
16 Yue Q, Qian Z, Zhiyuan H, (2011). Xylanase producing strains, identification and zymography. Qingdao University (Natural Science Edition) , 29(2): 54-57
[1] Dhamodharan Duraikannu, Subathra Devi Chandrasekaran. Optimization and modeling studies on the production of a new fibrinolytic protease using Streptomyces radiopugnans_VITSD8[J]. Front. Biol., 2018, 13(1): 70-77.
[2] Sampriya SHARMA,Jitender SHARMA,Rishi Pal MANDHAN. Lucrative pectinase production by novel strain Pseudozyma sp. SPJ with statistical optimization techniques using agro-industrial residues[J]. Front. Biol., 2014, 9(4): 317-323.
[3] Yu Naigong, Ruan Xiaogang. A cellular automata model for simulating fed-batch penicillin fermentation process[J]. Front. Biol., 2006, 1(2): 195-202.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed