|
|
The Sac domain-containing phosphoinositide phosphatases: structure, function, and disease |
FoSheng HSU, Yuxin MAO( ) |
Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA |
|
|
Abstract Phosphoinositides (PIs) have long been known to have an essential role in cell physiology. Their intracellular localization and concentration must be tightly regulated for their proper function. This spatial and temporal regulation is achieved by a large number of PI kinases and phosphatases that are present throughout eukaryotic species. One family of these enzymes contains a conserved PI phosphatase domain termed Sac. Although the Sac domain is homologous among different Sac domain-containing proteins, all appear to exhibit varied substrate specificity and subcellular localization. Dysfunctions in several members of this family are implicated in a range of human diseases such as cardiac hypertrophy, bipolar disorder, Down’s syndrome, Charcot-Marie-Tooth disease (CMT) and Amyotrophic Lateral Sclerosis (ALS). In plant, several Sac domain-containing proteins have been implicated in the stress response, chloroplast function and polarized secretion. In this review, we focus on recent findings in the family of Sac domain-containing PI phosphatases in yeast, mammal and plant, including the structural analysis into the mechanism of enzymatic activity, cellular functions, and their roles in disease pathophysiology.
|
Keywords
lipid metabolism
membrane trafficking
|
Corresponding Author(s):
MAO Yuxin,Email:ym253@cornell.edu
|
Issue Date: 01 August 2013
|
|
1 |
Arai Y, Ijuin T, Takenawa T, Becker L E, Takashima S (2002). Excessive expression of synaptojanin in brains with Down syndrome. Brain Dev , 24(2): 67–72 doi: 10.1016/S0387-7604(01)00405-3 pmid:11891094
|
2 |
Bankaitis V A, Aitken J R, Cleves A E, Dowhan W (1990). An essential role for a phospholipid transfer protein in yeast Golgi function. Nature , 347(6293): 561–562 doi: 10.1038/347561a0 pmid:2215682
|
3 |
Barford D, Das A K, Egloff M P (1998). The structure and mechanism of protein phosphatases: insights into catalysis and regulation. Annu Rev Biophys Biomol Struct , 27(1): 133–164 doi: 10.1146/annurev.biophys.27.1.133 pmid:9646865
|
4 |
Begley M J, Taylor G S, Kim S A, Veine D M, Dixon J E, Stuckey J A (2003). Crystal structure of a phosphoinositide phosphatase, MTMR2: insights into myotubular myopathy and Charcot-Marie-Tooth syndrome. Mol Cell , 12(6): 1391–1402 doi: 10.1016/S1097-2765(03)00486-6 pmid:14690594
|
5 |
Blagoveshchenskaya A, Cheong F Y, Rohde H M, Glover G, Kn?dler A, Nicolson T, Boehmelt G, Mayinger P (2008). Integration of Golgi trafficking and growth factor signaling by the lipid phosphatase SAC1. J Cell Biol , 180(4): 803–812 doi: 10.1083/jcb.200708109 pmid:18299350
|
6 |
Blagoveshchenskaya A, Mayinger P (2009). SAC1 lipid phosphatase and growth control of the secretory pathway. Mol Biosyst , 5(1): 36–42 doi: 10.1039/b810979f pmid:19081929
|
7 |
Brice S E, Alford C W, Cowart L A (2009). Modulation of sphingolipid metabolism by the phosphatidylinositol-4-phosphate phosphatase Sac1p through regulation of phosphatidylinositol in Saccharomyces cerevisiae. J Biol Chem , 284(12): 7588–7596 doi: 10.1074/jbc.M808325200 pmid:19139096
|
8 |
Chang K T, Min K T (2009). Upregulation of three Drosophila homologs of human chromosome 21 genes alters synaptic function: implications for Down syndrome. Proc Natl Acad Sci USA , 106(40): 17117–17122 doi: 10.1073/pnas.0904397106 pmid:19805187
|
9 |
Chang-Ileto B, Frere S G, Chan R B, Voronov S V, Roux A, Di Paolo G (2011). Synaptojanin 1-mediated PI(4,5)P2 hydrolysis is modulated by membrane curvature and facilitates membrane fission. Dev Cell , 20(2): 206–218 doi: 10.1016/j.devcel.2010.12.008 pmid:21316588
|
10 |
Cheong F Y, Sharma V, Blagoveshchenskaya A, Oorschot V M, Brankatschk B, Klumperman J, Freeze H H, Mayinger P (2010). Spatial regulation of Golgi phosphatidylinositol-4-phosphate is required for enzyme localization and glycosylation fidelity. Traffic , 11(9): 1180–1190 doi: 10.1111/j.1600-0854.2010.01092.x pmid:20573065
|
11 |
Chow C Y, Landers J E, Bergren S K, Sapp P C, Grant A E, Jones J M, Everett L, Lenk G M, McKenna-Yasek D M, Weisman L S, Figlewicz D, Brown R H, Meisler M H (2009). Deleterious variants of FIG4, a phosphoinositide phosphatase, in patients with ALS. Am J Hum Genet , 84(1): 85–88 doi: 10.1016/j.ajhg.2008.12.010 pmid:19118816
|
12 |
Chow C Y, Zhang Y, Dowling J J, Jin N, Adamska M, Shiga K, Szigeti K, Shy M E, Li J, Zhang X, Lupski J R, Weisman L S, Meisler M H (2007). Mutation of FIG4 causes neurodegeneration in the pale tremor mouse and patients with CMT4J. Nature , 448(7149): 68–72 doi: 10.1038/nature05876 pmid:17572665
|
13 |
Chuang Y Y, Tran N L, Rusk N, Nakada M, Berens M E, Symons M (2004). Role of synaptojanin 2 in glioma cell migration and invasion. Cancer Res , 64(22): 8271–8275 doi: 10.1158/0008-5472.CAN-04-2097 pmid:15548694
|
14 |
Cossec J C, Lavaur J, Berman D E, Rivals I, Hoischen A, Stora S, Ripoll C, Mircher C, Grattau Y, Olivomarin J C, de Chaumont F, Lecourtois M, Antonarakis S E, Veltman J A, Delabar J M, Duyckaerts C, Di Paolo G, Potier M C (2012). Trisomy for synaptojanin1 in Down syndrome is functionally linked to the enlargement of early endosomes. Hum Mol Genet , 21(14): 3156–3172 doi: 10.1093/hmg/dds142 pmid:22511594
|
15 |
Cremona O, Di Paolo G, Wenk M R, Lüthi A, Kim W T, Takei K, Daniell L, Nemoto Y, Shears S B, Flavell R A, McCormick D A, De Camilli P (1999). Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell , 99(2): 179–188 doi: 10.1016/S0092-8674(00)81649-9 pmid:10535736
|
16 |
Cullen P J, Cozier G E, Banting G, Mellor H (2001). Modular phosphoinositide-binding domains-their role in signalling and membrane trafficking. Current Biol , CB 11: R882–893
|
17 |
De Matteis M A, Godi A (2004). PI-loting membrane traffic. Nat Cell Biol , 6(6): 487–492 doi: 10.1038/ncb0604-487 pmid:15170460
|
18 |
DeWald D B, Torabinejad J, Jones C A, Shope J C, Cangelosi A R, Thompson J E, Prestwich G D, Hama H (2001). Rapid accumulation of phosphatidylinositol 4,5-bisphosphate and inositol 1,4,5-trisphosphate correlates with calcium mobilization in salt-stressed Arabidopsis. Plant Physiol , 126(2): 759–769 doi: 10.1104/pp.126.2.759 pmid:11402204
|
19 |
Di Paolo G, De Camilli P (2006). Phosphoinositides in cell regulation and membrane dynamics. Nature , 443(7112): 651–657 doi: 10.1038/nature05185 pmid:17035995
|
20 |
Dieck C B, Boss W F, Perera I Y (2012). A role for phosphoinositides in regulating plant nuclear functions. Front Plant Sci , 3: 50
|
21 |
Duex J E, Nau J J, Kauffman E J, Weisman L S (2006a). Phosphoinositide 5-phosphatase Fig 4p is required for both acute rise and subsequent fall in stress-induced phosphatidylinositol 3,5-bisphosphate levels. Eukaryot Cell , 5(4): 723–731 doi: 10.1128/EC.5.4.723-731.2006 pmid:16607019
|
22 |
Duex J E, Tang F, Weisman L S (2006b). The Vac14p-Fig4p complex acts independently of Vac7p and couples PI3,5P2 synthesis and turnover. J Cell Biol , 172(5): 693–704 doi: 10.1083/jcb.200512105 pmid:16492811
|
23 |
Erdman S, Lin L, Malczynski M, Snyder M (1998). Pheromone-regulated genes required for yeast mating differentiation. J Cell Biol , 140(3): 461–483 doi: 10.1083/jcb.140.3.461 pmid:9456310
|
24 |
Faulhammer F, Konrad G, Brankatschk B, Tahirovic S, Kn?dler A, Mayinger P (2005). Cell growth-dependent coordination of lipid signaling and glycosylation is mediated by interactions between Sac1p and Dpm1p. J Cell Biol , 168(2): 185–191 doi: 10.1083/jcb.200407118 pmid:15657391
|
25 |
Ferguson C J, Lenk G M, Jones J M, Grant A E, Winters J J, Dowling J J, Giger R J, Meisler M H (2012). Neuronal expression of Fig4 is both necessary and sufficient to prevent spongiform neurodegeneration. Hum Mol Genet , 21(16): 3525–3534 doi: 10.1093/hmg/dds179 pmid:22581779
|
26 |
Ferguson C J, Lenk G M, Meisler M H (2009). Defective autophagy in neurons and astrocytes from mice deficient in PI(3,5)P2. Hum Mol Genet , 18(24): 4868–4878 doi: 10.1093/hmg/ddp460 pmid:19793721
|
27 |
Foti M, Audhya A, Emr S D (2001). Sac1 lipid phosphatase and Stt4 phosphatidylinositol 4-kinase regulate a pool of phosphatidylinositol 4-phosphate that functions in the control of the actin cytoskeleton and vacuole morphology. Mol Biol Cell , 12(8): 2396–2411 pmid:11514624
|
28 |
Gary J D, Sato T K, Stefan C J, Bonangelino C J, Weisman L S, Emr S D (2002). Regulation of Fab1 phosphatidylinositol 3-phosphate 5-kinase pathway by Vac7 protein and Fig4, a polyphosphoinositide phosphatase family member. Mol Biol Cell , 13(4): 1238–1251 doi: 10.1091/mbc.01-10-0498 pmid:11950935
|
29 |
Gong L W, De Camilli P (2008). Regulation of postsynaptic AMPA responses by synaptojanin 1. Proc Natl Acad Sci USA , 105(45): 17561–17566 doi: 10.1073/pnas.0809221105 pmid:18987319
|
30 |
Guo J, Ma Y H, Yan Q, Wang L, Zeng Y S, Wu J L, Li J (2012). Fig4 expression in the rodent nervous system and its potential role in preventing abnormal lysosomal accumulation. J Neuropathol Exp Neurol , 71(1): 28–39 doi: 10.1097/NEN.0b013e31823deda8 pmid:22157617
|
31 |
Guo S, Stolz L E, Lemrow S M, York J D (1999). SAC1-like domains of yeast SAC1, INP52, and INP53 and of human synaptojanin encode polyphosphoinositide phosphatases. J Biol Chem , 274(19): 12990–12995 doi: 10.1074/jbc.274.19.12990 pmid:10224048
|
32 |
Ha S A, Torabinejad J, DeWald D B, Wenk M R, Lucast L, De Camilli P, Newitt R A, Aebersold R, Nothwehr S F (2003). The synaptojanin-like protein Inp53/Sjl3 functions with clathrin in a yeast TGN-to-endosome pathway distinct from the GGA protein-dependent pathway. Mol Biol Cell , 14(4): 1319–1333 doi: 10.1091/mbc.E02-10-0686 pmid:12686590
|
33 |
Haffner C, Di Paolo G, Rosenthal J A, de Camilli P (2000). Direct interaction of the 170 kDa isoform of synaptojanin 1 with clathrin and with the clathrin adaptor AP-2. Current Biol , CB 10: 471–474
|
34 |
Ham H, Sreelatha A, Orth K (2011). Manipulation of host membranes by bacterial effectors. Nat Rev Microbiol , 9(9): 635–646 doi: 10.1038/nrmicro2602 pmid:21765451
|
35 |
Hammond G R, Fischer M J, Anderson K E, Holdich J, Koteci A, Balla T, Irvine R F (2012). PI4P and PI(4,5)P2 are essential but independent lipid determinants of membrane identity. Science , 337(6095): 727–730 doi: 10.1126/science.1222483 pmid:22722250
|
36 |
Harris T W, Hartwieg E, Horvitz H R, Jorgensen E M (2000). Mutations in synaptojanin disrupt synaptic vesicle recycling. J Cell Biol , 150(3): 589–600 doi: 10.1083/jcb.150.3.589 pmid:10931870
|
37 |
Haucke V (2005). Phosphoinositide regulation of clathrin-mediated endocytosis. Biochem Soc Trans , 33(Pt 6): 1285–1289 doi: 10.1042/BST20051285 pmid:16246100
|
38 |
Hokin L E, Hokin M R (1958). Phosphoinositides and protein secretion in pancreas slices. J Biol Chem , 233(4): 805–810 pmid:13587496
|
39 |
Hokin M R, Hokin L E (1953). Enzyme secretion and the incorporation of P32 into phospholipides of pancreas slices. J Biol Chem , 203(2): 967–977 pmid:13084667
|
40 |
Holzhausen L C, Lewis A A, Cheong K K, Brockerhoff S E (2009). Differential role for synaptojanin 1 in rod and cone photoreceptors. J Comp Neurol , 517(5): 633–644 doi: 10.1002/cne.22176 pmid:19827152
|
41 |
Hughes W E, Pocklington M J, Orr E, Paddon C J (1999). Mutations in the Saccharomyces cerevisiae gene SAC1 cause multiple drug sensitivity. Yeast , 15(11): 1111–1124 doi: 10.1002/(SICI)1097-0061(199908)15:11<1111::AID-YEA440>3.0.CO;2-H pmid:10455234
|
42 |
Ikonomov O C, Sbrissa D, Fligger J, Delvecchio K, Shisheva A (2010). ArPIKfyve regulates Sac3 protein abundance and turnover: disruption of the mechanism by Sac3I41T mutation causing Charcot-Marie-Tooth 4J disorder. J Biol Chem , 285(35): 26760–26764 doi: 10.1074/jbc.C110.154658 pmid:20630877
|
43 |
Irie F, Okuno M, Pasquale E B, Yamaguchi Y (2005). EphrinB-EphB signalling regulates clathrin-mediated endocytosis through tyrosine phosphorylation of synaptojanin 1. Nat Cell Biol , 7(5): 501–509 doi: 10.1038/ncb1252 pmid:15821731
|
44 |
Jean S, Kiger A A (2012). Coordination between RAB GTPase and phosphoinositide regulation and functions. Nat Rev Mol Cell Biol , 13(7): 463–470 doi: 10.1038/nrm3379 pmid:22722608
|
45 |
Jin N, Chow C Y, Liu L, Zolov S N, Bronson R, Davisson M, Petersen J L, Zhang Y, Park S, Duex J E, Goldowitz D, Meisler M H, Weisman L S (2008). VAC14 nucleates a protein complex essential for the acute interconversion of PI3P and PI(3,5)P(2) in yeast and mouse. EMBO J , 27(24): 3221–3234 doi: 10.1038/emboj.2008.248 pmid:19037259
|
46 |
Jung J Y, Kim Y W, Kwak J M, Hwang J U, Young J, Schroeder J I, Hwang I, Lee Y (2002). Phosphatidylinositol 3- and 4-phosphate are required for normal stomatal movements. Plant Cell , 14(10): 2399–2412 doi: 10.1105/tpc.004143 pmid:12368494
|
47 |
Khvotchev M, Südhof T C (1998). Developmentally regulated alternative splicing in a novel synaptojanin. J Biol Chem , 273(4): 2306–2311 doi: 10.1074/jbc.273.4.2306 pmid:9442075
|
48 |
Kim D H, Eu Y J, Yoo C M, Kim Y W, Pih K T, Jin J B, Kim S J, Stenmark H, Hwang I (2001). Trafficking of phosphatidylinositol 3-phosphate from the trans-Golgi network to the lumen of the central vacuole in plant cells. Plant Cell , 13(2): 287–301 pmid:11226186
|
49 |
Kim W T, Chang S, Daniell L, Cremona O, Di Paolo G, De Camilli P (2002). Delayed reentry of recycling vesicles into the fusion-competent synaptic vesicle pool in synaptojanin 1 knockout mice. Proc Natl Acad Sci USA , 99(26): 17143–17148 doi: 10.1073/pnas.222657399 pmid:12481038
|
50 |
Kochend?rfer K U, Then A R, Kearns B G, Bankaitis V A, Mayinger P (1999). Sac1p plays a crucial role in microsomal ATP transport, which is distinct from its function in Golgi phospholipid metabolism. EMBO J , 18(6): 1506–1515 doi: 10.1093/emboj/18.6.1506 pmid:10075922
|
51 |
Koh T W, Verstreken P, Bellen H J (2004). Dap160/intersectin acts as a stabilizing scaffold required for synaptic development and vesicle endocytosis. Neuron , 43(2): 193–205 doi: 10.1016/j.neuron.2004.06.029 pmid:15260956
|
52 |
Kost B, Lemichez E, Spielhofer P, Hong Y, Tolias K, Carpenter C, Chua N H (1999). Rac homologues and compartmentalized phosphatidylinositol 4, 5-bisphosphate act in a common pathway to regulate polar pollen tube growth. J Cell Biol , 145(2): 317–330 doi: 10.1083/jcb.145.2.317 pmid:10209027
|
53 |
Krauss M, Haucke V (2007). Phosphoinositides: regulators of membrane traffic and protein function. FEBS Lett , 581(11): 2105–2111 doi: 10.1016/j.febslet.2007.01.089 pmid:17316616
|
54 |
Kremer T, Kempf C, Wittenmayer N, Nawrotzki R, Kuner T, Kirsch J, Dresbach T (2007). Mover is a novel vertebrate-specific presynaptic protein with differential distribution at subsets of CNS synapses. FEBS Lett , 581(24): 4727–4733 doi: 10.1016/j.febslet.2007.08.070 pmid:17869247
|
55 |
Krendel M, Osterweil E K, Mooseker M S (2007). Myosin 1E interacts with synaptojanin-1 and dynamin and is involved in endocytosis. FEBS Lett , 581(4): 644–650 doi: 10.1016/j.febslet.2007.01.021 pmid:17257598
|
56 |
Lee J O, Yang H, Georgescu M M, Di Cristofano A, Maehama T, Shi Y, Dixon J E, Pandolfi P, Pavletich N P (1999). Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell , 99(3): 323–334 doi: 10.1016/S0092-8674(00)81663-3 pmid:10555148
|
57 |
Lee S, Kim S, Nahm M, Kim E, Kim T I, Yoon J H, Lee S (2011). The phosphoinositide phosphatase Sac1 is required for midline axon guidance. Mol Cells , 32(5): 477–482 doi: 10.1007/s10059-011-0168-6 pmid:22042447
|
58 |
Lemmon M A (2003). Phosphoinositide recognition domains. Traffic , 4(4): 201–213 doi: 10.1034/j.1600-0854.2004.00071.x pmid:12694559
|
59 |
Lenk G M, Ferguson C J, Chow C Y, Jin N, Jones J M, Grant A E, Zolov S N, Winters J J, Giger R J, Dowling J J, Weisman L S, Meisler M H (2011). Pathogenic mechanism of the FIG4 mutation responsible for Charcot-Marie-Tooth disease CMT4J. PLoS Genet , 7(6): e1002104 doi: 10.1371/journal.pgen.1002104 pmid:21655088
|
60 |
Lichtarge O, Bourne H R, Cohen F E (1996). An evolutionary trace method defines binding surfaces common to protein families. J Mol Biol , 257(2): 342–358 doi: 10.1006/jmbi.1996.0167 pmid:8609628
|
61 |
Liu Y, Boukhelifa M, Tribble E, Morin-Kensicki E, Uetrecht A, Bear J E, Bankaitis V A (2008). The Sac1 phosphoinositide phosphatase regulates Golgi membrane morphology and mitotic spindle organization in mammals. Mol Biol Cell , 19(7): 3080–3096 doi: 10.1091/mbc.E07-12-1290 pmid:18480408
|
62 |
Malecz N, McCabe P C, Spaargaren C, Qiu R, Chuang Y, Symons M (2000). Synaptojanin 2, a novel Rac1 effector that regulates clathrin-mediated endocytosis. Current Biol , CB 10: 1383–1386
|
63 |
Manford A, Xia T, Saxena A K, Stefan C, Hu F, Emr S D, Mao Y (2010). Crystal structure of the yeast Sac1: implications for its phosphoinositide phosphatase function. EMBO J , 29(9): 1489–1498 doi: 10.1038/emboj.2010.57 pmid:20389282
|
64 |
Mani M, Lee S Y, Lucast L, Cremona O, Di Paolo G, De Camilli P, Ryan T A (2007). The dual phosphatase activity of synaptojanin1 is required for both efficient synaptic vesicle endocytosis and reavailability at nerve terminals. Neuron , 56(6): 1004–1018 doi: 10.1016/j.neuron.2007.10.032 pmid:18093523
|
65 |
Manji S S, Williams L H, Miller K A, Ooms L M, Bahlo M, Mitchell C A, Dahl H H (2011). A mutation in synaptojanin 2 causes progressive hearing loss in the ENU-mutagenised mouse strain Mozart. PLoS ONE , 6(3): e17607 doi: 10.1371/journal.pone.0017607 pmid:21423608
|
66 |
Martí-Renom M A, Stuart A C, Fiser A, Sánchez R, Melo F, Sali A (2000). Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct , 29(1): 291–325 doi: 10.1146/annurev.biophys.29.1.291 pmid:10940251
|
67 |
McPherson P S, Garcia E P, Slepnev V I, David C, Zhang X, Grabs D, Sossin W S, Bauerfeind R, Nemoto Y, De Camilli P (1996). A presynaptic inositol-5-phosphatase. Nature , 379(6563): 353–357 doi: 10.1038/379353a0 pmid:8552192
|
68 |
Minagawa T, Ijuin T, Mochizuki Y, Takenawa T (2001). Identification and characterization of a sac domain-containing phosphoinositide 5-phosphatase. J Biol Chem , 276(25): 22011–22015 doi: 10.1074/jbc.M101579200 pmid:11274189
|
69 |
Murphy E R, Boxberger J, Colvin R, Lee S J, Zahn G, Loor F, Kim K (2011). Pil1, an eisosome organizer, plays an important role in the recruitment of synaptojanins and amphiphysins to facilitate receptor-mediated endocytosis in yeast. Eur J Cell Biol , 90(10): 825–833 doi: 10.1016/j.ejcb.2011.06.006 pmid:21872358
|
70 |
Nemoto Y, De Camilli P (1999). Recruitment of an alternatively spliced form of synaptojanin 2 to mitochondria by the interaction with the PDZ domain of a mitochondrial outer membrane protein. EMBO J , 18(11): 2991–3006 doi: 10.1093/emboj/18.11.2991 pmid:10357812
|
71 |
Nemoto Y, Kearns B G, Wenk M R, Chen H, Mori K, Alb J G Jr, De Camilli P, Bankaitis V A (2000). Functional characterization of a mammalian Sac1 and mutants exhibiting substrate-specific defects in phosphoinositide phosphatase activity. J Biol Chem , 275(44): 34293–34305 doi: 10.1074/jbc.M003923200 pmid:10887188
|
72 |
Nemoto Y, Wenk M R, Watanabe M, Daniell L, Murakami T, Ringstad N, Yamada H, Takei K, De Camilli P (2001). Identification and characterization of a synaptojanin 2 splice isoform predominantly expressed in nerve terminals. J Biol Chem , 276(44): 41133–41142 doi: 10.1074/jbc.M106404200 pmid:11498538
|
73 |
Nicholson G, Lenk G M, Reddel S W, Grant A E, Towne C F, Ferguson C J, Simpson E, Scheuerle A, Yasick M, Hoffman S, Blouin R, Brandt C, Coppola G, Biesecker L G, Batish S D, Meisler M H (2011). Distinctive genetic and clinical features of CMT4J: a severe neuropathy caused by mutations in the PI(3,5)P(2) phosphatase FIG4. Brain , 134: 1959–1971
|
74 |
Novick P, Osmond B C, Botstein D (1989). Suppressors of yeast actin mutations. Genetics , 121(4): 659–674 pmid:2656401
|
75 |
Odorizzi G, Babst M, Emr S D (2000). Phosphoinositide signaling and the regulation of membrane trafficking in yeast. Trends Biochem Sci , 25(5): 229–235 doi: 10.1016/S0968-0004(00)01543-7 pmid:10782093
|
76 |
Osborne S L, Thomas C L, Gschmeissner S, Schiavo G (2001). Nuclear PtdIns(4,5)P2 assembles in a mitotically regulated particle involved in pre-mRNA splicing. J Cell Sci , 114(Pt 13): 2501–2511 pmid:11559758
|
77 |
Parker J A, Metzler M, Georgiou J, Mage M, Roder J C, Rose A M, Hayden M R, Neri C(2007). Huntingtin-interacting protein 1 influences worm and mouse presynaptic function and protects Caenorhabditis elegans neurons against mutant polyglutamine toxicity. J Neurosci , 27: 11056–11064
|
78 |
Parrish W R, Stefan C J, Emr S D (2004). Essential role for the myotubularin-related phosphatase Ymr1p and the synaptojanin-like phosphatases Sjl2p and Sjl3p in regulation of phosphatidylinositol 3-phosphate in yeast. Mol Biol Cell , 15(8): 3567–3579 doi: 10.1091/mbc.E04-03-0209 pmid:15169871
|
79 |
Perera R M, Zoncu R, Lucast L, De Camilli P, Toomre D (2006). Two synaptojanin 1 isoforms are recruited to clathrin-coated pits at different stages. Proc Natl Acad Sci USA , 103(51): 19332–19337 doi: 10.1073/pnas.0609795104 pmid:17158794
|
80 |
Piao H, Mayinger P (2012). Growth and metabolic control of lipid signalling at the Golgi. Biochem Soc Trans , 40(1): 205–209 doi: 10.1042/BST20110637 pmid:22260691
|
81 |
Pical C, Westergren T, Dove S K, Larsson C, Sommarin M (1999). Salinity and hyperosmotic stress induce rapid increases in phosphatidylinositol 4,5-bisphosphate, diacylglycerol pyrophosphate, and phosphatidylcholine in Arabidopsis thaliana cells. J Biol Chem , 274(53): 38232–38240 doi: 10.1074/jbc.274.53.38232 pmid:10608898
|
82 |
Pizarro-Cerdá J, Cossart P (2004). Subversion of phosphoinositide metabolism by intracellular bacterial pathogens. Nat Cell Biol , 6(11): 1026–1033 doi: 10.1038/ncb1104-1026 pmid:15516995
|
83 |
Ramjaun A R, McPherson P S (1996). Tissue-specific alternative splicing generates two synaptojanin isoforms with differential membrane binding properties. J Biol Chem , 271(40): 24856–24861 doi: 10.1074/jbc.271.40.24856 pmid:8798761
|
84 |
Ramjaun A R, McPherson P S (1998). Multiple amphiphysin II splice variants display differential clathrin binding: identification of two distinct clathrin-binding sites. J Neurochem , 70(6): 2369–2376 doi: 10.1046/j.1471-4159.1998.70062369.x pmid:9603201
|
85 |
Ringstad N, Nemoto Y, De Camilli P (1997). The SH3p4/Sh3p8/SH3p13 protein family: binding partners for synaptojanin and dynamin via a Grb2-like Src homology 3 domain. Proc Natl Acad Sci USA , 94(16): 8569–8574 doi: 10.1073/pnas.94.16.8569 pmid:9238017
|
86 |
Rivas M P, Kearns B G, Xie Z, Guo S, Sekar M C, Hosaka K, Kagiwada S, York J D, Bankaitis V A (1999). Pleiotropic alterations in lipid metabolism in yeast sac1 mutants: relationship to “bypass Sec14p” and inositol auxotrophy. Mol Biol Cell , 10(7): 2235–2250 pmid:10397762
|
87 |
Rohde H M, Cheong F Y, Konrad G, Paiha K, Mayinger P, Boehmelt G (2003). The human phosphatidylinositol phosphatase SAC1 interacts with the coatomer I complex. J Biol Chem , 278(52): 52689–52699 doi: 10.1074/jbc.M307983200 pmid:14527956
|
88 |
Rudge S A, Anderson D M, Emr S D (2004). Vacuole size control: regulation of PtdIns(3,5)P2 levels by the vacuole-associated Vac14-Fig4 complex, a PtdIns(3,5)P2-specific phosphatase. Mol Biol Cell , 15(1): 24–36 doi: 10.1091/mbc.E03-05-0297 pmid:14528018
|
89 |
Saito T, Guan F, Papolos D F, Lau S, Klein M, Fann C S, Lachman H M (2001). Mutation analysis of SYNJ1: a possible candidate gene for chromosome 21q22-linked bipolar disorder. Mol Psychiatry , 6(4): 387–395 doi: 10.1038/sj.mp.4000871 pmid:11443522
|
90 |
Sbrissa D, Ikonomov O C, Fenner H, Shisheva A (2008). ArPIKfyve homomeric and heteromeric interactions scaffold PIKfyve and Sac3 in a complex to promote PIKfyve activity and functionality. J Mol Biol , 384(4): 766–779 doi: 10.1016/j.jmb.2008.10.009 pmid:18950639
|
91 |
Sbrissa D, Ikonomov O C, Fu Z, Ijuin T, Gruenberg J, Takenawa T, Shisheva A (2007). Core protein machinery for mammalian phosphatidylinositol 3,5-bisphosphate synthesis and turnover that regulates the progression of endosomal transport. Novel Sac phosphatase joins the ArPIKfyve-PIKfyve complex. J Biol Chem , 282(33): 23878–23891 doi: 10.1074/jbc.M611678200 pmid:17556371
|
92 |
Schor M, Then A, Tahirovic S, Hug N, Mayinger P (2001). The phosphoinositide phosphatase Sac1p controls trafficking of the yeast Chs3p chitin synthase. Current Biol , CB 11: 1421–1426
|
93 |
Singer-Krüger B, Nemoto Y, Daniell L, Ferro-Novick S, De Camilli P (1998). Synaptojanin family members are implicated in endocytic membrane traffic in yeast. J Cell Sci , 111(Pt 22): 3347–3356 pmid:9788876
|
94 |
Slepnev V I, De Camilli P (2000). Accessory factors in clathrin-dependent synaptic vesicle endocytosis. Nat Rev Neurosci , 1(3): 161–172 doi: 10.1038/35044540 pmid:11257904
|
95 |
Srinivasan S, Seaman M, Nemoto Y, Daniell L, Suchy S F, Emr S, De Camilli P, Nussbaum R (1997). Disruption of three phosphatidylinositol-polyphosphate 5-phosphatase genes from Saccharomyces cerevisiae results in pleiotropic abnormalities of vacuole morphology, cell shape, and osmohomeostasis. Eur J Cell Biol , 74(4): 350–360 pmid:9438131
|
96 |
Stefan C J, Audhya A, Emr S D (2002). The yeast synaptojanin-like proteins control the cellular distribution of phosphatidylinositol (4,5)-bisphosphate. Mol Biol Cell , 13(2): 542–557 doi: 10.1091/mbc.01-10-0476 pmid:11854411
|
97 |
Stefan C J, Manford A G, Baird D, Yamada-Hanff J, Mao Y, Emr S D (2011). Osh proteins regulate phosphoinositide metabolism at ER-plasma membrane contact sites. Cell , 144(3): 389–401 doi: 10.1016/j.cell.2010.12.034 pmid:21295699
|
98 |
Stefan C J, Padilla S M, Audhya A, Emr S D (2005). The phosphoinositide phosphatase Sjl2 is recruited to cortical actin patches in the control of vesicle formation and fission during endocytosis. Mol Cell Biol , 25(8): 2910–2923 doi: 10.1128/MCB.25.8.2910-2923.2005 pmid:15798181
|
99 |
Stolz L E, Huynh C V, Thorner J, York J D (1998). Identification and characterization of an essential family of inositol polyphosphate 5-phosphatases (INP51, INP52 and INP53 gene products) in the yeast Saccharomyces cerevisiae. Genetics , 148(4): 1715–1729 pmid:9560389
|
100 |
Stopkova P, Vevera J, Paclt I, Zukov I, Lachman H M (2004). Analysis of SYNJ1, a candidate gene for 21q22 linked bipolar disorder: a replication study. Psychiatry Res , 127(1-2): 157–161 doi: 10.1016/j.psychres.2004.03.003 pmid:15261714
|
101 |
Strahl T, Thorner J (2007). Synthesis and function of membrane phosphoinositides in budding yeast, Saccharomyces cerevisiae. Biochim Biophys Acta , 1771(3): 353–404 doi: 10.1016/j.bbalip.2007.01.015 pmid:17382260
|
102 |
Tahirovic S, Schorr M, Mayinger P (2005). Regulation of intracellular phosphatidylinositol-4-phosphate by the Sac1 lipid phosphatase. Traffic , 6(2): 116–130 doi: 10.1111/j.1600-0854.2004.00255.x pmid:15634212
|
103 |
Takenawa T, Itoh T (2006). Membrane targeting and remodeling through phosphoinositide-binding domains. IUBMB Life , 58(5-6): 296–303 doi: 10.1080/15216540600732039 pmid:16754321
|
104 |
Thole J M, Nielsen E (2008). Phosphoinositides in plants: novel functions in membrane trafficking. Curr Opin Plant Biol , 11(6): 620–631 doi: 10.1016/j.pbi.2008.10.010 pmid:19028349
|
105 |
Thole J M, Vermeer J E, Zhang Y, Gadella T W Jr, Nielsen E (2008). Root hair defective4 encodes a phosphatidylinositol-4-phosphate phosphatase required for proper root hair development in Arabidopsis thaliana. Plant Cell , 20(2): 381–395 doi: 10.1105/tpc.107.054304 pmid:18281508
|
106 |
Trapani J G, Obholzer N, Mo W, Brockerhoff S E, Nicolson T (2009). Synaptojanin1 is required for temporal fidelity of synaptic transmission in hair cells. PLoS Genet , 5(5): e1000480 doi: 10.1371/journal.pgen.1000480 pmid:19424431
|
107 |
Trivedi C M, Luo Y, Yin Z, Zhang M, Zhu W, Wang T, Floss T, Goettlicher M, Noppinger P R, Wurst W, Ferrari V A, Abrams C S, Gruber P J, Epstein J A (2007). Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3 beta activity. Nat Med , 13(3): 324–331 doi: 10.1038/nm1552 pmid:17322895
|
108 |
Verstreken P, Koh T W, Schulze K L, Zhai R G, Hiesinger P R, Zhou Y, Mehta S Q, Cao Y, Roos J, Bellen H J (2003). Synaptojanin is recruited by endophilin to promote synaptic vesicle uncoating. Neuron , 40(4): 733–748 doi: 10.1016/S0896-6273(03)00644-5 pmid:14622578
|
109 |
Viiri K, M?ki M, Lohi O (2012). Phosphoinositides as regulators of protein-chromatin interactions. Sci Signal , 5(222): pe19 doi: 10.1126/scisignal.2002917 pmid:22550339
|
110 |
Voronov S V, Frere S G, Giovedi S, Pollina E A, Borel C, Zhang H, Schmidt C, Akeson E C, Wenk M R, Cimasoni L, Arancio O, Davisson M T, Antonarakis S E, Gardiner K, De Camilli P, Di Paolo G (2008). Synaptojanin 1-linked phosphoinositide dyshomeostasis and cognitive deficits in mouse models of Down’s syndrome. Proc Natl Acad Sci USA , 105(27): 9415–9420 doi: 10.1073/pnas.0803756105 pmid:18591654
|
111 |
Wang X, Zhang X, Dong X P, Samie M, Li X, Cheng X, Goschka A, Shen D, Zhou Y, Harlow J, Zhu M X, Clapham D E, Ren D, Xu H (2012). TPC proteins are phosphoinositide-activated sodium-selective ion channels in endosomes and lysosomes. Cell , 151(2): 372–383 doi: 10.1016/j.cell.2012.08.036 pmid:23063126
|
112 |
Wei H C, Sanny J, Shu H, Baillie D L, Brill J A, Price J V, Harden N (2003). The Sac1 lipid phosphatase regulates cell shape change and the JNK cascade during dorsal closure in Drosophila. Current Biol , CB 13: 1882–1887
|
113 |
Whitters E A, Cleves A E, McGee T P, Skinner H B, Bankaitis V A (1993). SAC1p is an integral membrane protein that influences the cellular requirement for phospholipid transfer protein function and inositol in yeast. J Cell Biol , 122(1): 79–94 doi: 10.1083/jcb.122.1.79 pmid:8314848
|
114 |
Williams M E, Torabinejad J, Cohick E, Parker K, Drake E J, Thompson J E, Hortter M, Dewald D B (2005). Mutations in the Arabidopsis phosphoinositide phosphatase gene SAC9 lead to overaccumulation of PtdIns(4,5)P2 and constitutive expression of the stress-response pathway. Plant Physiol , 138(2): 686–700 doi: 10.1104/pp.105.061317 pmid:15923324
|
115 |
Winters J J, Ferguson C J, Lenk G M, Giger-Mateeva V I, Shrager P, Meisler M H, Giger R J (2011). Congenital CNS hypomyelination in the Fig4 null mouse is rescued by neuronal expression of the PI(3,5)P(2) phosphatase Fig4. J Neurosci , 31: 17736–17751
|
116 |
Wood C S, Hung C S, Huoh Y S, Mousley C J, Stefan C J, Bankaitis V, Ferguson K M, Burd C G (2012). Local control of phosphatidylinositol 4-phosphate signaling in the Golgi apparatus by Vps74 and Sac1 phosphoinositide phosphatase. Mol Biol Cell , 23(13): 2527–2536 doi: 10.1091/mbc.E12-01-0077 pmid:22553352
|
117 |
Yavari A, Nagaraj R, Owusu-Ansah E, Folick A, Ngo K, Hillman T, Call G, Rohatgi R, Scott M P, Banerjee U (2010). Role of lipid metabolism in smoothened derepression in hedgehog signaling. Dev Cell , 19(1): 54–65 doi: 10.1016/j.devcel.2010.06.007 pmid:20643350
|
118 |
Yeow-Fong L, Lim L, Manser E (2005). SNX9 as an adaptor for linking synaptojanin-1 to the Cdc42 effector ACK1. FEBS Lett , 579(22): 5040–5048 doi: 10.1016/j.febslet.2005.07.093 pmid:16137687
|
119 |
Zhang X, Chow C Y, Sahenk Z, Shy M E, Meisler M H, Li J (2008). Mutation of FIG4 causes a rapidly progressive, asymmetric neuronal degeneration. Brain , 131: 1990–2001
|
120 |
Zhong R, Burk D H, Nairn C J, Wood-Jones A, Morrison W H 3rd, Ye Z H (2005). Mutation of SAC1, an Arabidopsis SAC domain phosphoinositide phosphatase, causes alterations in cell morphogenesis, cell wall synthesis, and actin organization. Plant Cell , 17(5): 1449–1466 doi: 10.1105/tpc.105.031377 pmid:15805481
|
121 |
Zhong R, Ye Z H (2003). The SAC domain-containing protein gene family in Arabidopsis. Plant Physiol , 132(2): 544–555 doi: 10.1104/pp.103.021444 pmid:12805586
|
122 |
Zhong S, Hsu F, Stefan C J, Wu X, Patel A, Cosgrove M S, Mao Y (2012). Allosteric activation of the phosphoinositide phosphatase Sac1 by anionic phospholipids. Biochemistry , 51(15): 3170–3177 doi: 10.1021/bi300086c pmid:22452743
|
123 |
Zhu W, Trivedi C M, Zhou D, Yuan L, Lu M M, Epstein J A (2009). Inpp5f is a polyphosphoinositide phosphatase that regulates cardiac hypertrophic responsiveness. Circ Res , 105(12): 1240–1247 doi: 10.1161/CIRCRESAHA.109.208785 pmid:19875726
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|