Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2013, Vol. 8 Issue (4) : 395-407    https://doi.org/10.1007/s11515-013-1258-y
REVIEW
The Sac domain-containing phosphoinositide phosphatases: structure, function, and disease
FoSheng HSU, Yuxin MAO()
Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
 Download: PDF(604 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Phosphoinositides (PIs) have long been known to have an essential role in cell physiology. Their intracellular localization and concentration must be tightly regulated for their proper function. This spatial and temporal regulation is achieved by a large number of PI kinases and phosphatases that are present throughout eukaryotic species. One family of these enzymes contains a conserved PI phosphatase domain termed Sac. Although the Sac domain is homologous among different Sac domain-containing proteins, all appear to exhibit varied substrate specificity and subcellular localization. Dysfunctions in several members of this family are implicated in a range of human diseases such as cardiac hypertrophy, bipolar disorder, Down’s syndrome, Charcot-Marie-Tooth disease (CMT) and Amyotrophic Lateral Sclerosis (ALS). In plant, several Sac domain-containing proteins have been implicated in the stress response, chloroplast function and polarized secretion. In this review, we focus on recent findings in the family of Sac domain-containing PI phosphatases in yeast, mammal and plant, including the structural analysis into the mechanism of enzymatic activity, cellular functions, and their roles in disease pathophysiology.

Keywords lipid metabolism      membrane trafficking     
Corresponding Author(s): MAO Yuxin,Email:ym253@cornell.edu   
Issue Date: 01 August 2013
 Cite this article:   
FoSheng HSU,Yuxin MAO. The Sac domain-containing phosphoinositide phosphatases: structure, function, and disease[J]. Front Biol, 2013, 8(4): 395-407.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-013-1258-y
https://academic.hep.com.cn/fib/EN/Y2013/V8/I4/395
Fig.1  Sac domain structure of yeast Sac1. (A) The Sac phosphatase domain is comprised of two sub-domains: a novel N-terminal domain (blue) and the catalytic domain (yellow). The loop colored red represents the CXR motif. (B) Space filling model of the Sac domain with residues colored based on evolutionary conservation, which is calculated by an evolution trace method (). The least and highest conserved residues are colored from white to yellow respectively.
Fig.2  Sac domain structure of yeast Sac1. (A) The Sac phosphatase domain is comprised of two sub-domains: a novel N-terminal domain (blue) and the catalytic domain (yellow). The loop colored red represents the CXR motif. (B) Space filling model of the Sac domain with residues colored based on evolutionary conservation, which is calculated by an evolution trace method (). The least and highest conserved residues are colored from white to yellow respectively.
Protein namein vitro substrateMajor in vivo substratePhenotype
Yeast Sac1PI(3)P, PI(4)P, PI(5)P, PI(3,5)P2PI(4)PCold-sensitive growth, actin reorganization, inositol auxotrophy, etc.
Mammalian Sac1PI(3)P, PI(4)P, PI(5)P, PI(3,5)P2PI(4)PPreimplantation lethality in mouse
N/A
Aspergillus spp.N/AN/AN/A
Mammalian Sac2PI(4,5)P2, PI(3,4,5)P3PI(3,4,5)P3? Stress-induced cardiac hypertrophy
Yeast Fig4PI(3,5)P2PI(3,5)P2Vacuole morphology defects
Mammalian Sac3PI(3)P, PI(4)P, PI(3,5)P2PI(3,5)P2CMT4J, ALS, neurodegeneration in the pale tremor mouse and juvenile lethality
Synaptojanin 1PI(4)P, PI(4,5)P2, PI(3,4,5)P3PI(4,5)P2,PI(3,4,5)P3Bipolar disorder, Down’s syndrome, early postnatal lethality in mouse
Synaptojanin 2PI(4)P, PI(4,5)P2, PI(3,4,5)P3PI(4,5)P2Hearing loss associated with cochlea hair loss
Sjl1PI(4,5)P2PI(4,5)P2Endocytic defects, increase sensitivity to temperature and neomyocin
Sjl2PI(3)P, PI(4)P, PI(3,5)P2, PI(4,5)P2PI(4,5)P2Endocytic defects, increase sensitivity to temperature and neomyocin
Sjl3PI(3)P, PI(4)P, PI(3,5)P2, PI(4,5)P2PI(4,5)P2Endocytic defects
AtSac1PI(3,5)P2PI(3,5)P2Cell morphology defects
AtSac2N/AN/AN/A
AtSac3N/AN/AN/A
AtSac4N/AN/AN/A
AtSac5N/AN/AN/A
AtSac6N/AN/AN/A
AtSac7PI(4)P, PI(3,5)P2PI(4)PDefective root hair and polarized growth
AtSac8N/AN/AN/A
AtSac9N/API(4,5)P2?Hypersensitive to stress
Tab.1  Sac domain enzymatic activities and associated phenotypes.
Fig.3  Disease mutations mapping on themodeled structure of the Sac domain of human Sac3/Fig4. The Sac domain of human Sac3 is modeled based on the crystal structure of yeast Sac1 with the MODELER program ().The local structural environment of six known CMT4J and ALS associated mutations are shown in zoomed-in panels.
1 Arai Y, Ijuin T, Takenawa T, Becker L E, Takashima S (2002). Excessive expression of synaptojanin in brains with Down syndrome. Brain Dev , 24(2): 67–72
doi: 10.1016/S0387-7604(01)00405-3 pmid:11891094
2 Bankaitis V A, Aitken J R, Cleves A E, Dowhan W (1990). An essential role for a phospholipid transfer protein in yeast Golgi function. Nature , 347(6293): 561–562
doi: 10.1038/347561a0 pmid:2215682
3 Barford D, Das A K, Egloff M P (1998). The structure and mechanism of protein phosphatases: insights into catalysis and regulation. Annu Rev Biophys Biomol Struct , 27(1): 133–164
doi: 10.1146/annurev.biophys.27.1.133 pmid:9646865
4 Begley M J, Taylor G S, Kim S A, Veine D M, Dixon J E, Stuckey J A (2003). Crystal structure of a phosphoinositide phosphatase, MTMR2: insights into myotubular myopathy and Charcot-Marie-Tooth syndrome. Mol Cell , 12(6): 1391–1402
doi: 10.1016/S1097-2765(03)00486-6 pmid:14690594
5 Blagoveshchenskaya A, Cheong F Y, Rohde H M, Glover G, Kn?dler A, Nicolson T, Boehmelt G, Mayinger P (2008). Integration of Golgi trafficking and growth factor signaling by the lipid phosphatase SAC1. J Cell Biol , 180(4): 803–812
doi: 10.1083/jcb.200708109 pmid:18299350
6 Blagoveshchenskaya A, Mayinger P (2009). SAC1 lipid phosphatase and growth control of the secretory pathway. Mol Biosyst , 5(1): 36–42
doi: 10.1039/b810979f pmid:19081929
7 Brice S E, Alford C W, Cowart L A (2009). Modulation of sphingolipid metabolism by the phosphatidylinositol-4-phosphate phosphatase Sac1p through regulation of phosphatidylinositol in Saccharomyces cerevisiae. J Biol Chem , 284(12): 7588–7596
doi: 10.1074/jbc.M808325200 pmid:19139096
8 Chang K T, Min K T (2009). Upregulation of three Drosophila homologs of human chromosome 21 genes alters synaptic function: implications for Down syndrome. Proc Natl Acad Sci USA , 106(40): 17117–17122
doi: 10.1073/pnas.0904397106 pmid:19805187
9 Chang-Ileto B, Frere S G, Chan R B, Voronov S V, Roux A, Di Paolo G (2011). Synaptojanin 1-mediated PI(4,5)P2 hydrolysis is modulated by membrane curvature and facilitates membrane fission. Dev Cell , 20(2): 206–218
doi: 10.1016/j.devcel.2010.12.008 pmid:21316588
10 Cheong F Y, Sharma V, Blagoveshchenskaya A, Oorschot V M, Brankatschk B, Klumperman J, Freeze H H, Mayinger P (2010). Spatial regulation of Golgi phosphatidylinositol-4-phosphate is required for enzyme localization and glycosylation fidelity. Traffic , 11(9): 1180–1190
doi: 10.1111/j.1600-0854.2010.01092.x pmid:20573065
11 Chow C Y, Landers J E, Bergren S K, Sapp P C, Grant A E, Jones J M, Everett L, Lenk G M, McKenna-Yasek D M, Weisman L S, Figlewicz D, Brown R H, Meisler M H (2009). Deleterious variants of FIG4, a phosphoinositide phosphatase, in patients with ALS. Am J Hum Genet , 84(1): 85–88
doi: 10.1016/j.ajhg.2008.12.010 pmid:19118816
12 Chow C Y, Zhang Y, Dowling J J, Jin N, Adamska M, Shiga K, Szigeti K, Shy M E, Li J, Zhang X, Lupski J R, Weisman L S, Meisler M H (2007). Mutation of FIG4 causes neurodegeneration in the pale tremor mouse and patients with CMT4J. Nature , 448(7149): 68–72
doi: 10.1038/nature05876 pmid:17572665
13 Chuang Y Y, Tran N L, Rusk N, Nakada M, Berens M E, Symons M (2004). Role of synaptojanin 2 in glioma cell migration and invasion. Cancer Res , 64(22): 8271–8275
doi: 10.1158/0008-5472.CAN-04-2097 pmid:15548694
14 Cossec J C, Lavaur J, Berman D E, Rivals I, Hoischen A, Stora S, Ripoll C, Mircher C, Grattau Y, Olivomarin J C, de Chaumont F, Lecourtois M, Antonarakis S E, Veltman J A, Delabar J M, Duyckaerts C, Di Paolo G, Potier M C (2012). Trisomy for synaptojanin1 in Down syndrome is functionally linked to the enlargement of early endosomes. Hum Mol Genet , 21(14): 3156–3172
doi: 10.1093/hmg/dds142 pmid:22511594
15 Cremona O, Di Paolo G, Wenk M R, Lüthi A, Kim W T, Takei K, Daniell L, Nemoto Y, Shears S B, Flavell R A, McCormick D A, De Camilli P (1999). Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell , 99(2): 179–188
doi: 10.1016/S0092-8674(00)81649-9 pmid:10535736
16 Cullen P J, Cozier G E, Banting G, Mellor H (2001). Modular phosphoinositide-binding domains-their role in signalling and membrane trafficking. Current Biol , CB 11: R882–893
17 De Matteis M A, Godi A (2004). PI-loting membrane traffic. Nat Cell Biol , 6(6): 487–492
doi: 10.1038/ncb0604-487 pmid:15170460
18 DeWald D B, Torabinejad J, Jones C A, Shope J C, Cangelosi A R, Thompson J E, Prestwich G D, Hama H (2001). Rapid accumulation of phosphatidylinositol 4,5-bisphosphate and inositol 1,4,5-trisphosphate correlates with calcium mobilization in salt-stressed Arabidopsis. Plant Physiol , 126(2): 759–769
doi: 10.1104/pp.126.2.759 pmid:11402204
19 Di Paolo G, De Camilli P (2006). Phosphoinositides in cell regulation and membrane dynamics. Nature , 443(7112): 651–657
doi: 10.1038/nature05185 pmid:17035995
20 Dieck C B, Boss W F, Perera I Y (2012). A role for phosphoinositides in regulating plant nuclear functions. Front Plant Sci , 3: 50
21 Duex J E, Nau J J, Kauffman E J, Weisman L S (2006a). Phosphoinositide 5-phosphatase Fig 4p is required for both acute rise and subsequent fall in stress-induced phosphatidylinositol 3,5-bisphosphate levels. Eukaryot Cell , 5(4): 723–731
doi: 10.1128/EC.5.4.723-731.2006 pmid:16607019
22 Duex J E, Tang F, Weisman L S (2006b). The Vac14p-Fig4p complex acts independently of Vac7p and couples PI3,5P2 synthesis and turnover. J Cell Biol , 172(5): 693–704
doi: 10.1083/jcb.200512105 pmid:16492811
23 Erdman S, Lin L, Malczynski M, Snyder M (1998). Pheromone-regulated genes required for yeast mating differentiation. J Cell Biol , 140(3): 461–483
doi: 10.1083/jcb.140.3.461 pmid:9456310
24 Faulhammer F, Konrad G, Brankatschk B, Tahirovic S, Kn?dler A, Mayinger P (2005). Cell growth-dependent coordination of lipid signaling and glycosylation is mediated by interactions between Sac1p and Dpm1p. J Cell Biol , 168(2): 185–191
doi: 10.1083/jcb.200407118 pmid:15657391
25 Ferguson C J, Lenk G M, Jones J M, Grant A E, Winters J J, Dowling J J, Giger R J, Meisler M H (2012). Neuronal expression of Fig4 is both necessary and sufficient to prevent spongiform neurodegeneration. Hum Mol Genet , 21(16): 3525–3534
doi: 10.1093/hmg/dds179 pmid:22581779
26 Ferguson C J, Lenk G M, Meisler M H (2009). Defective autophagy in neurons and astrocytes from mice deficient in PI(3,5)P2. Hum Mol Genet , 18(24): 4868–4878
doi: 10.1093/hmg/ddp460 pmid:19793721
27 Foti M, Audhya A, Emr S D (2001). Sac1 lipid phosphatase and Stt4 phosphatidylinositol 4-kinase regulate a pool of phosphatidylinositol 4-phosphate that functions in the control of the actin cytoskeleton and vacuole morphology. Mol Biol Cell , 12(8): 2396–2411
pmid:11514624
28 Gary J D, Sato T K, Stefan C J, Bonangelino C J, Weisman L S, Emr S D (2002). Regulation of Fab1 phosphatidylinositol 3-phosphate 5-kinase pathway by Vac7 protein and Fig4, a polyphosphoinositide phosphatase family member. Mol Biol Cell , 13(4): 1238–1251
doi: 10.1091/mbc.01-10-0498 pmid:11950935
29 Gong L W, De Camilli P (2008). Regulation of postsynaptic AMPA responses by synaptojanin 1. Proc Natl Acad Sci USA , 105(45): 17561–17566
doi: 10.1073/pnas.0809221105 pmid:18987319
30 Guo J, Ma Y H, Yan Q, Wang L, Zeng Y S, Wu J L, Li J (2012). Fig4 expression in the rodent nervous system and its potential role in preventing abnormal lysosomal accumulation. J Neuropathol Exp Neurol , 71(1): 28–39
doi: 10.1097/NEN.0b013e31823deda8 pmid:22157617
31 Guo S, Stolz L E, Lemrow S M, York J D (1999). SAC1-like domains of yeast SAC1, INP52, and INP53 and of human synaptojanin encode polyphosphoinositide phosphatases. J Biol Chem , 274(19): 12990–12995
doi: 10.1074/jbc.274.19.12990 pmid:10224048
32 Ha S A, Torabinejad J, DeWald D B, Wenk M R, Lucast L, De Camilli P, Newitt R A, Aebersold R, Nothwehr S F (2003). The synaptojanin-like protein Inp53/Sjl3 functions with clathrin in a yeast TGN-to-endosome pathway distinct from the GGA protein-dependent pathway. Mol Biol Cell , 14(4): 1319–1333
doi: 10.1091/mbc.E02-10-0686 pmid:12686590
33 Haffner C, Di Paolo G, Rosenthal J A, de Camilli P (2000). Direct interaction of the 170 kDa isoform of synaptojanin 1 with clathrin and with the clathrin adaptor AP-2. Current Biol , CB 10: 471–474
34 Ham H, Sreelatha A, Orth K (2011). Manipulation of host membranes by bacterial effectors. Nat Rev Microbiol , 9(9): 635–646
doi: 10.1038/nrmicro2602 pmid:21765451
35 Hammond G R, Fischer M J, Anderson K E, Holdich J, Koteci A, Balla T, Irvine R F (2012). PI4P and PI(4,5)P2 are essential but independent lipid determinants of membrane identity. Science , 337(6095): 727–730
doi: 10.1126/science.1222483 pmid:22722250
36 Harris T W, Hartwieg E, Horvitz H R, Jorgensen E M (2000). Mutations in synaptojanin disrupt synaptic vesicle recycling. J Cell Biol , 150(3): 589–600
doi: 10.1083/jcb.150.3.589 pmid:10931870
37 Haucke V (2005). Phosphoinositide regulation of clathrin-mediated endocytosis. Biochem Soc Trans , 33(Pt 6): 1285–1289
doi: 10.1042/BST20051285 pmid:16246100
38 Hokin L E, Hokin M R (1958). Phosphoinositides and protein secretion in pancreas slices. J Biol Chem , 233(4): 805–810
pmid:13587496
39 Hokin M R, Hokin L E (1953). Enzyme secretion and the incorporation of P32 into phospholipides of pancreas slices. J Biol Chem , 203(2): 967–977
pmid:13084667
40 Holzhausen L C, Lewis A A, Cheong K K, Brockerhoff S E (2009). Differential role for synaptojanin 1 in rod and cone photoreceptors. J Comp Neurol , 517(5): 633–644
doi: 10.1002/cne.22176 pmid:19827152
41 Hughes W E, Pocklington M J, Orr E, Paddon C J (1999). Mutations in the Saccharomyces cerevisiae gene SAC1 cause multiple drug sensitivity. Yeast , 15(11): 1111–1124
doi: 10.1002/(SICI)1097-0061(199908)15:11<1111::AID-YEA440>3.0.CO;2-H pmid:10455234
42 Ikonomov O C, Sbrissa D, Fligger J, Delvecchio K, Shisheva A (2010). ArPIKfyve regulates Sac3 protein abundance and turnover: disruption of the mechanism by Sac3I41T mutation causing Charcot-Marie-Tooth 4J disorder. J Biol Chem , 285(35): 26760–26764
doi: 10.1074/jbc.C110.154658 pmid:20630877
43 Irie F, Okuno M, Pasquale E B, Yamaguchi Y (2005). EphrinB-EphB signalling regulates clathrin-mediated endocytosis through tyrosine phosphorylation of synaptojanin 1. Nat Cell Biol , 7(5): 501–509
doi: 10.1038/ncb1252 pmid:15821731
44 Jean S, Kiger A A (2012). Coordination between RAB GTPase and phosphoinositide regulation and functions. Nat Rev Mol Cell Biol , 13(7): 463–470
doi: 10.1038/nrm3379 pmid:22722608
45 Jin N, Chow C Y, Liu L, Zolov S N, Bronson R, Davisson M, Petersen J L, Zhang Y, Park S, Duex J E, Goldowitz D, Meisler M H, Weisman L S (2008). VAC14 nucleates a protein complex essential for the acute interconversion of PI3P and PI(3,5)P(2) in yeast and mouse. EMBO J , 27(24): 3221–3234
doi: 10.1038/emboj.2008.248 pmid:19037259
46 Jung J Y, Kim Y W, Kwak J M, Hwang J U, Young J, Schroeder J I, Hwang I, Lee Y (2002). Phosphatidylinositol 3- and 4-phosphate are required for normal stomatal movements. Plant Cell , 14(10): 2399–2412
doi: 10.1105/tpc.004143 pmid:12368494
47 Khvotchev M, Südhof T C (1998). Developmentally regulated alternative splicing in a novel synaptojanin. J Biol Chem , 273(4): 2306–2311
doi: 10.1074/jbc.273.4.2306 pmid:9442075
48 Kim D H, Eu Y J, Yoo C M, Kim Y W, Pih K T, Jin J B, Kim S J, Stenmark H, Hwang I (2001). Trafficking of phosphatidylinositol 3-phosphate from the trans-Golgi network to the lumen of the central vacuole in plant cells. Plant Cell , 13(2): 287–301
pmid:11226186
49 Kim W T, Chang S, Daniell L, Cremona O, Di Paolo G, De Camilli P (2002). Delayed reentry of recycling vesicles into the fusion-competent synaptic vesicle pool in synaptojanin 1 knockout mice. Proc Natl Acad Sci USA , 99(26): 17143–17148
doi: 10.1073/pnas.222657399 pmid:12481038
50 Kochend?rfer K U, Then A R, Kearns B G, Bankaitis V A, Mayinger P (1999). Sac1p plays a crucial role in microsomal ATP transport, which is distinct from its function in Golgi phospholipid metabolism. EMBO J , 18(6): 1506–1515
doi: 10.1093/emboj/18.6.1506 pmid:10075922
51 Koh T W, Verstreken P, Bellen H J (2004). Dap160/intersectin acts as a stabilizing scaffold required for synaptic development and vesicle endocytosis. Neuron , 43(2): 193–205
doi: 10.1016/j.neuron.2004.06.029 pmid:15260956
52 Kost B, Lemichez E, Spielhofer P, Hong Y, Tolias K, Carpenter C, Chua N H (1999). Rac homologues and compartmentalized phosphatidylinositol 4, 5-bisphosphate act in a common pathway to regulate polar pollen tube growth. J Cell Biol , 145(2): 317–330
doi: 10.1083/jcb.145.2.317 pmid:10209027
53 Krauss M, Haucke V (2007). Phosphoinositides: regulators of membrane traffic and protein function. FEBS Lett , 581(11): 2105–2111
doi: 10.1016/j.febslet.2007.01.089 pmid:17316616
54 Kremer T, Kempf C, Wittenmayer N, Nawrotzki R, Kuner T, Kirsch J, Dresbach T (2007). Mover is a novel vertebrate-specific presynaptic protein with differential distribution at subsets of CNS synapses. FEBS Lett , 581(24): 4727–4733
doi: 10.1016/j.febslet.2007.08.070 pmid:17869247
55 Krendel M, Osterweil E K, Mooseker M S (2007). Myosin 1E interacts with synaptojanin-1 and dynamin and is involved in endocytosis. FEBS Lett , 581(4): 644–650
doi: 10.1016/j.febslet.2007.01.021 pmid:17257598
56 Lee J O, Yang H, Georgescu M M, Di Cristofano A, Maehama T, Shi Y, Dixon J E, Pandolfi P, Pavletich N P (1999). Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell , 99(3): 323–334
doi: 10.1016/S0092-8674(00)81663-3 pmid:10555148
57 Lee S, Kim S, Nahm M, Kim E, Kim T I, Yoon J H, Lee S (2011). The phosphoinositide phosphatase Sac1 is required for midline axon guidance. Mol Cells , 32(5): 477–482
doi: 10.1007/s10059-011-0168-6 pmid:22042447
58 Lemmon M A (2003). Phosphoinositide recognition domains. Traffic , 4(4): 201–213
doi: 10.1034/j.1600-0854.2004.00071.x pmid:12694559
59 Lenk G M, Ferguson C J, Chow C Y, Jin N, Jones J M, Grant A E, Zolov S N, Winters J J, Giger R J, Dowling J J, Weisman L S, Meisler M H (2011). Pathogenic mechanism of the FIG4 mutation responsible for Charcot-Marie-Tooth disease CMT4J. PLoS Genet , 7(6): e1002104
doi: 10.1371/journal.pgen.1002104 pmid:21655088
60 Lichtarge O, Bourne H R, Cohen F E (1996). An evolutionary trace method defines binding surfaces common to protein families. J Mol Biol , 257(2): 342–358
doi: 10.1006/jmbi.1996.0167 pmid:8609628
61 Liu Y, Boukhelifa M, Tribble E, Morin-Kensicki E, Uetrecht A, Bear J E, Bankaitis V A (2008). The Sac1 phosphoinositide phosphatase regulates Golgi membrane morphology and mitotic spindle organization in mammals. Mol Biol Cell , 19(7): 3080–3096
doi: 10.1091/mbc.E07-12-1290 pmid:18480408
62 Malecz N, McCabe P C, Spaargaren C, Qiu R, Chuang Y, Symons M (2000). Synaptojanin 2, a novel Rac1 effector that regulates clathrin-mediated endocytosis. Current Biol , CB 10: 1383–1386
63 Manford A, Xia T, Saxena A K, Stefan C, Hu F, Emr S D, Mao Y (2010). Crystal structure of the yeast Sac1: implications for its phosphoinositide phosphatase function. EMBO J , 29(9): 1489–1498
doi: 10.1038/emboj.2010.57 pmid:20389282
64 Mani M, Lee S Y, Lucast L, Cremona O, Di Paolo G, De Camilli P, Ryan T A (2007). The dual phosphatase activity of synaptojanin1 is required for both efficient synaptic vesicle endocytosis and reavailability at nerve terminals. Neuron , 56(6): 1004–1018
doi: 10.1016/j.neuron.2007.10.032 pmid:18093523
65 Manji S S, Williams L H, Miller K A, Ooms L M, Bahlo M, Mitchell C A, Dahl H H (2011). A mutation in synaptojanin 2 causes progressive hearing loss in the ENU-mutagenised mouse strain Mozart. PLoS ONE , 6(3): e17607
doi: 10.1371/journal.pone.0017607 pmid:21423608
66 Martí-Renom M A, Stuart A C, Fiser A, Sánchez R, Melo F, Sali A (2000). Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct , 29(1): 291–325
doi: 10.1146/annurev.biophys.29.1.291 pmid:10940251
67 McPherson P S, Garcia E P, Slepnev V I, David C, Zhang X, Grabs D, Sossin W S, Bauerfeind R, Nemoto Y, De Camilli P (1996). A presynaptic inositol-5-phosphatase. Nature , 379(6563): 353–357
doi: 10.1038/379353a0 pmid:8552192
68 Minagawa T, Ijuin T, Mochizuki Y, Takenawa T (2001). Identification and characterization of a sac domain-containing phosphoinositide 5-phosphatase. J Biol Chem , 276(25): 22011–22015
doi: 10.1074/jbc.M101579200 pmid:11274189
69 Murphy E R, Boxberger J, Colvin R, Lee S J, Zahn G, Loor F, Kim K (2011). Pil1, an eisosome organizer, plays an important role in the recruitment of synaptojanins and amphiphysins to facilitate receptor-mediated endocytosis in yeast. Eur J Cell Biol , 90(10): 825–833
doi: 10.1016/j.ejcb.2011.06.006 pmid:21872358
70 Nemoto Y, De Camilli P (1999). Recruitment of an alternatively spliced form of synaptojanin 2 to mitochondria by the interaction with the PDZ domain of a mitochondrial outer membrane protein. EMBO J , 18(11): 2991–3006
doi: 10.1093/emboj/18.11.2991 pmid:10357812
71 Nemoto Y, Kearns B G, Wenk M R, Chen H, Mori K, Alb J G Jr, De Camilli P, Bankaitis V A (2000). Functional characterization of a mammalian Sac1 and mutants exhibiting substrate-specific defects in phosphoinositide phosphatase activity. J Biol Chem , 275(44): 34293–34305
doi: 10.1074/jbc.M003923200 pmid:10887188
72 Nemoto Y, Wenk M R, Watanabe M, Daniell L, Murakami T, Ringstad N, Yamada H, Takei K, De Camilli P (2001). Identification and characterization of a synaptojanin 2 splice isoform predominantly expressed in nerve terminals. J Biol Chem , 276(44): 41133–41142
doi: 10.1074/jbc.M106404200 pmid:11498538
73 Nicholson G, Lenk G M, Reddel S W, Grant A E, Towne C F, Ferguson C J, Simpson E, Scheuerle A, Yasick M, Hoffman S, Blouin R, Brandt C, Coppola G, Biesecker L G, Batish S D, Meisler M H (2011). Distinctive genetic and clinical features of CMT4J: a severe neuropathy caused by mutations in the PI(3,5)P(2) phosphatase FIG4. Brain , 134: 1959–1971
74 Novick P, Osmond B C, Botstein D (1989). Suppressors of yeast actin mutations. Genetics , 121(4): 659–674
pmid:2656401
75 Odorizzi G, Babst M, Emr S D (2000). Phosphoinositide signaling and the regulation of membrane trafficking in yeast. Trends Biochem Sci , 25(5): 229–235
doi: 10.1016/S0968-0004(00)01543-7 pmid:10782093
76 Osborne S L, Thomas C L, Gschmeissner S, Schiavo G (2001). Nuclear PtdIns(4,5)P2 assembles in a mitotically regulated particle involved in pre-mRNA splicing. J Cell Sci , 114(Pt 13): 2501–2511
pmid:11559758
77 Parker J A, Metzler M, Georgiou J, Mage M, Roder J C, Rose A M, Hayden M R, Neri C(2007). Huntingtin-interacting protein 1 influences worm and mouse presynaptic function and protects Caenorhabditis elegans neurons against mutant polyglutamine toxicity. J Neurosci , 27: 11056–11064
78 Parrish W R, Stefan C J, Emr S D (2004). Essential role for the myotubularin-related phosphatase Ymr1p and the synaptojanin-like phosphatases Sjl2p and Sjl3p in regulation of phosphatidylinositol 3-phosphate in yeast. Mol Biol Cell , 15(8): 3567–3579
doi: 10.1091/mbc.E04-03-0209 pmid:15169871
79 Perera R M, Zoncu R, Lucast L, De Camilli P, Toomre D (2006). Two synaptojanin 1 isoforms are recruited to clathrin-coated pits at different stages. Proc Natl Acad Sci USA , 103(51): 19332–19337
doi: 10.1073/pnas.0609795104 pmid:17158794
80 Piao H, Mayinger P (2012). Growth and metabolic control of lipid signalling at the Golgi. Biochem Soc Trans , 40(1): 205–209
doi: 10.1042/BST20110637 pmid:22260691
81 Pical C, Westergren T, Dove S K, Larsson C, Sommarin M (1999). Salinity and hyperosmotic stress induce rapid increases in phosphatidylinositol 4,5-bisphosphate, diacylglycerol pyrophosphate, and phosphatidylcholine in Arabidopsis thaliana cells. J Biol Chem , 274(53): 38232–38240
doi: 10.1074/jbc.274.53.38232 pmid:10608898
82 Pizarro-Cerdá J, Cossart P (2004). Subversion of phosphoinositide metabolism by intracellular bacterial pathogens. Nat Cell Biol , 6(11): 1026–1033
doi: 10.1038/ncb1104-1026 pmid:15516995
83 Ramjaun A R, McPherson P S (1996). Tissue-specific alternative splicing generates two synaptojanin isoforms with differential membrane binding properties. J Biol Chem , 271(40): 24856–24861
doi: 10.1074/jbc.271.40.24856 pmid:8798761
84 Ramjaun A R, McPherson P S (1998). Multiple amphiphysin II splice variants display differential clathrin binding: identification of two distinct clathrin-binding sites. J Neurochem , 70(6): 2369–2376
doi: 10.1046/j.1471-4159.1998.70062369.x pmid:9603201
85 Ringstad N, Nemoto Y, De Camilli P (1997). The SH3p4/Sh3p8/SH3p13 protein family: binding partners for synaptojanin and dynamin via a Grb2-like Src homology 3 domain. Proc Natl Acad Sci USA , 94(16): 8569–8574
doi: 10.1073/pnas.94.16.8569 pmid:9238017
86 Rivas M P, Kearns B G, Xie Z, Guo S, Sekar M C, Hosaka K, Kagiwada S, York J D, Bankaitis V A (1999). Pleiotropic alterations in lipid metabolism in yeast sac1 mutants: relationship to “bypass Sec14p” and inositol auxotrophy. Mol Biol Cell , 10(7): 2235–2250
pmid:10397762
87 Rohde H M, Cheong F Y, Konrad G, Paiha K, Mayinger P, Boehmelt G (2003). The human phosphatidylinositol phosphatase SAC1 interacts with the coatomer I complex. J Biol Chem , 278(52): 52689–52699
doi: 10.1074/jbc.M307983200 pmid:14527956
88 Rudge S A, Anderson D M, Emr S D (2004). Vacuole size control: regulation of PtdIns(3,5)P2 levels by the vacuole-associated Vac14-Fig4 complex, a PtdIns(3,5)P2-specific phosphatase. Mol Biol Cell , 15(1): 24–36
doi: 10.1091/mbc.E03-05-0297 pmid:14528018
89 Saito T, Guan F, Papolos D F, Lau S, Klein M, Fann C S, Lachman H M (2001). Mutation analysis of SYNJ1: a possible candidate gene for chromosome 21q22-linked bipolar disorder. Mol Psychiatry , 6(4): 387–395
doi: 10.1038/sj.mp.4000871 pmid:11443522
90 Sbrissa D, Ikonomov O C, Fenner H, Shisheva A (2008). ArPIKfyve homomeric and heteromeric interactions scaffold PIKfyve and Sac3 in a complex to promote PIKfyve activity and functionality. J Mol Biol , 384(4): 766–779
doi: 10.1016/j.jmb.2008.10.009 pmid:18950639
91 Sbrissa D, Ikonomov O C, Fu Z, Ijuin T, Gruenberg J, Takenawa T, Shisheva A (2007). Core protein machinery for mammalian phosphatidylinositol 3,5-bisphosphate synthesis and turnover that regulates the progression of endosomal transport. Novel Sac phosphatase joins the ArPIKfyve-PIKfyve complex. J Biol Chem , 282(33): 23878–23891
doi: 10.1074/jbc.M611678200 pmid:17556371
92 Schor M, Then A, Tahirovic S, Hug N, Mayinger P (2001). The phosphoinositide phosphatase Sac1p controls trafficking of the yeast Chs3p chitin synthase. Current Biol , CB 11: 1421–1426
93 Singer-Krüger B, Nemoto Y, Daniell L, Ferro-Novick S, De Camilli P (1998). Synaptojanin family members are implicated in endocytic membrane traffic in yeast. J Cell Sci , 111(Pt 22): 3347–3356
pmid:9788876
94 Slepnev V I, De Camilli P (2000). Accessory factors in clathrin-dependent synaptic vesicle endocytosis. Nat Rev Neurosci , 1(3): 161–172
doi: 10.1038/35044540 pmid:11257904
95 Srinivasan S, Seaman M, Nemoto Y, Daniell L, Suchy S F, Emr S, De Camilli P, Nussbaum R (1997). Disruption of three phosphatidylinositol-polyphosphate 5-phosphatase genes from Saccharomyces cerevisiae results in pleiotropic abnormalities of vacuole morphology, cell shape, and osmohomeostasis. Eur J Cell Biol , 74(4): 350–360
pmid:9438131
96 Stefan C J, Audhya A, Emr S D (2002). The yeast synaptojanin-like proteins control the cellular distribution of phosphatidylinositol (4,5)-bisphosphate. Mol Biol Cell , 13(2): 542–557
doi: 10.1091/mbc.01-10-0476 pmid:11854411
97 Stefan C J, Manford A G, Baird D, Yamada-Hanff J, Mao Y, Emr S D (2011). Osh proteins regulate phosphoinositide metabolism at ER-plasma membrane contact sites. Cell , 144(3): 389–401
doi: 10.1016/j.cell.2010.12.034 pmid:21295699
98 Stefan C J, Padilla S M, Audhya A, Emr S D (2005). The phosphoinositide phosphatase Sjl2 is recruited to cortical actin patches in the control of vesicle formation and fission during endocytosis. Mol Cell Biol , 25(8): 2910–2923
doi: 10.1128/MCB.25.8.2910-2923.2005 pmid:15798181
99 Stolz L E, Huynh C V, Thorner J, York J D (1998). Identification and characterization of an essential family of inositol polyphosphate 5-phosphatases (INP51, INP52 and INP53 gene products) in the yeast Saccharomyces cerevisiae. Genetics , 148(4): 1715–1729
pmid:9560389
100 Stopkova P, Vevera J, Paclt I, Zukov I, Lachman H M (2004). Analysis of SYNJ1, a candidate gene for 21q22 linked bipolar disorder: a replication study. Psychiatry Res , 127(1-2): 157–161
doi: 10.1016/j.psychres.2004.03.003 pmid:15261714
101 Strahl T, Thorner J (2007). Synthesis and function of membrane phosphoinositides in budding yeast, Saccharomyces cerevisiae. Biochim Biophys Acta , 1771(3): 353–404
doi: 10.1016/j.bbalip.2007.01.015 pmid:17382260
102 Tahirovic S, Schorr M, Mayinger P (2005). Regulation of intracellular phosphatidylinositol-4-phosphate by the Sac1 lipid phosphatase. Traffic , 6(2): 116–130
doi: 10.1111/j.1600-0854.2004.00255.x pmid:15634212
103 Takenawa T, Itoh T (2006). Membrane targeting and remodeling through phosphoinositide-binding domains. IUBMB Life , 58(5-6): 296–303
doi: 10.1080/15216540600732039 pmid:16754321
104 Thole J M, Nielsen E (2008). Phosphoinositides in plants: novel functions in membrane trafficking. Curr Opin Plant Biol , 11(6): 620–631
doi: 10.1016/j.pbi.2008.10.010 pmid:19028349
105 Thole J M, Vermeer J E, Zhang Y, Gadella T W Jr, Nielsen E (2008). Root hair defective4 encodes a phosphatidylinositol-4-phosphate phosphatase required for proper root hair development in Arabidopsis thaliana. Plant Cell , 20(2): 381–395
doi: 10.1105/tpc.107.054304 pmid:18281508
106 Trapani J G, Obholzer N, Mo W, Brockerhoff S E, Nicolson T (2009). Synaptojanin1 is required for temporal fidelity of synaptic transmission in hair cells. PLoS Genet , 5(5): e1000480
doi: 10.1371/journal.pgen.1000480 pmid:19424431
107 Trivedi C M, Luo Y, Yin Z, Zhang M, Zhu W, Wang T, Floss T, Goettlicher M, Noppinger P R, Wurst W, Ferrari V A, Abrams C S, Gruber P J, Epstein J A (2007). Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3 beta activity. Nat Med , 13(3): 324–331
doi: 10.1038/nm1552 pmid:17322895
108 Verstreken P, Koh T W, Schulze K L, Zhai R G, Hiesinger P R, Zhou Y, Mehta S Q, Cao Y, Roos J, Bellen H J (2003). Synaptojanin is recruited by endophilin to promote synaptic vesicle uncoating. Neuron , 40(4): 733–748
doi: 10.1016/S0896-6273(03)00644-5 pmid:14622578
109 Viiri K, M?ki M, Lohi O (2012). Phosphoinositides as regulators of protein-chromatin interactions. Sci Signal , 5(222): pe19
doi: 10.1126/scisignal.2002917 pmid:22550339
110 Voronov S V, Frere S G, Giovedi S, Pollina E A, Borel C, Zhang H, Schmidt C, Akeson E C, Wenk M R, Cimasoni L, Arancio O, Davisson M T, Antonarakis S E, Gardiner K, De Camilli P, Di Paolo G (2008). Synaptojanin 1-linked phosphoinositide dyshomeostasis and cognitive deficits in mouse models of Down’s syndrome. Proc Natl Acad Sci USA , 105(27): 9415–9420
doi: 10.1073/pnas.0803756105 pmid:18591654
111 Wang X, Zhang X, Dong X P, Samie M, Li X, Cheng X, Goschka A, Shen D, Zhou Y, Harlow J, Zhu M X, Clapham D E, Ren D, Xu H (2012). TPC proteins are phosphoinositide-activated sodium-selective ion channels in endosomes and lysosomes. Cell , 151(2): 372–383
doi: 10.1016/j.cell.2012.08.036 pmid:23063126
112 Wei H C, Sanny J, Shu H, Baillie D L, Brill J A, Price J V, Harden N (2003). The Sac1 lipid phosphatase regulates cell shape change and the JNK cascade during dorsal closure in Drosophila. Current Biol , CB 13: 1882–1887
113 Whitters E A, Cleves A E, McGee T P, Skinner H B, Bankaitis V A (1993). SAC1p is an integral membrane protein that influences the cellular requirement for phospholipid transfer protein function and inositol in yeast. J Cell Biol , 122(1): 79–94
doi: 10.1083/jcb.122.1.79 pmid:8314848
114 Williams M E, Torabinejad J, Cohick E, Parker K, Drake E J, Thompson J E, Hortter M, Dewald D B (2005). Mutations in the Arabidopsis phosphoinositide phosphatase gene SAC9 lead to overaccumulation of PtdIns(4,5)P2 and constitutive expression of the stress-response pathway. Plant Physiol , 138(2): 686–700
doi: 10.1104/pp.105.061317 pmid:15923324
115 Winters J J, Ferguson C J, Lenk G M, Giger-Mateeva V I, Shrager P, Meisler M H, Giger R J (2011). Congenital CNS hypomyelination in the Fig4 null mouse is rescued by neuronal expression of the PI(3,5)P(2) phosphatase Fig4. J Neurosci , 31: 17736–17751
116 Wood C S, Hung C S, Huoh Y S, Mousley C J, Stefan C J, Bankaitis V, Ferguson K M, Burd C G (2012). Local control of phosphatidylinositol 4-phosphate signaling in the Golgi apparatus by Vps74 and Sac1 phosphoinositide phosphatase. Mol Biol Cell , 23(13): 2527–2536
doi: 10.1091/mbc.E12-01-0077 pmid:22553352
117 Yavari A, Nagaraj R, Owusu-Ansah E, Folick A, Ngo K, Hillman T, Call G, Rohatgi R, Scott M P, Banerjee U (2010). Role of lipid metabolism in smoothened derepression in hedgehog signaling. Dev Cell , 19(1): 54–65
doi: 10.1016/j.devcel.2010.06.007 pmid:20643350
118 Yeow-Fong L, Lim L, Manser E (2005). SNX9 as an adaptor for linking synaptojanin-1 to the Cdc42 effector ACK1. FEBS Lett , 579(22): 5040–5048
doi: 10.1016/j.febslet.2005.07.093 pmid:16137687
119 Zhang X, Chow C Y, Sahenk Z, Shy M E, Meisler M H, Li J (2008). Mutation of FIG4 causes a rapidly progressive, asymmetric neuronal degeneration. Brain , 131: 1990–2001
120 Zhong R, Burk D H, Nairn C J, Wood-Jones A, Morrison W H 3rd, Ye Z H (2005). Mutation of SAC1, an Arabidopsis SAC domain phosphoinositide phosphatase, causes alterations in cell morphogenesis, cell wall synthesis, and actin organization. Plant Cell , 17(5): 1449–1466
doi: 10.1105/tpc.105.031377 pmid:15805481
121 Zhong R, Ye Z H (2003). The SAC domain-containing protein gene family in Arabidopsis. Plant Physiol , 132(2): 544–555
doi: 10.1104/pp.103.021444 pmid:12805586
122 Zhong S, Hsu F, Stefan C J, Wu X, Patel A, Cosgrove M S, Mao Y (2012). Allosteric activation of the phosphoinositide phosphatase Sac1 by anionic phospholipids. Biochemistry , 51(15): 3170–3177
doi: 10.1021/bi300086c pmid:22452743
123 Zhu W, Trivedi C M, Zhou D, Yuan L, Lu M M, Epstein J A (2009). Inpp5f is a polyphosphoinositide phosphatase that regulates cardiac hypertrophic responsiveness. Circ Res , 105(12): 1240–1247
doi: 10.1161/CIRCRESAHA.109.208785 pmid:19875726
[1] Karimeh Haghani, Pouyan Asadi, Gholamreza Taheripak, Ali Noori-Zadeh, Shahram Darabi, Salar Bakhtiyari. Association of mitochondrial dysfunction and lipid metabolism with type 2 diabetes mellitus: A review of literature[J]. Front. Biol., 2018, 13(6): 406-417.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed