Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2013, Vol. 8 Issue (6) : 606-610    https://doi.org/10.1007/s11515-013-1283-x
RESEARCH ARTICLE
The effect of ethylene inhibitors (AgNO3, AVG), an ethylene- liberating compound (CEPA) and aeration on the formation of protocorm-like bodies of hybrid Cymbidium (Orchidaceae)
Jaime A. TEIXEIRA DA SILVA1,2()
1. Faculty of Agriculture and Graduate School of Agriculture, Kagawa University, Miki-cho, Kagawa, 761-0795, Japan; 2. Present address: P. O. Box 7, Miki-cho post office, Ikenobe 3011-2, Kagawa-ken, 761-0799, Japan
 Download: PDF(153 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Protocorm-like bodies (PLBs) or thin cell layers (TCLs) derived from PLBs of hybrid Cymbidium Twilight Moon ‘Day Light’ can induce new or neo-PLBs on Teixeira Cymbidium (TC) medium, which contains 0.1 mg/L α-naphthaleneacetic acid, 0.1 mg/L kinetin, 2 g/L tryptone and 20 g/L sucrose, and is solidified with 8 g/L Bacto agar. This study aimed to assess the response of neo-PLB formation to an ethylene-liberating compound (2-chloroethylphosphonic acid (CEPA)), to two ethylene inhibitors (silver nitrate (AgNO3) and aminoethoxyvinylglycine (AVG)), and to aeration (made possible by using Milliseal? or autoclaved filter paper). AgNO3 at 1 or 2 mg/L in TC medium significantly increased the fresh weight of PLBs while 1 mg/L of AgNO3 also showed a significant increase in the number of neo-PLB from both half-PLBs and from tTCLs. In contrast, AVG and CEPA inhibited neo-PLB formation. Neo-PLB formation from half-PLB or TCL explants in the presence of aeration resulted in significantly lower neo-PLB weight. The use of AgNO3 and aeration are alternative means to mass produce neo-PLBs for micropropagation purposes.

Keywords AgNO3      AVG      CEPA      PLB      Teixeira Cymbidium (TC) medium     
Corresponding Author(s): TEIXEIRA DA SILVA Jaime A.,Email:jaimetex@yahoo.com   
Issue Date: 01 December 2013
 Cite this article:   
Jaime A. TEIXEIRA DA SILVA. The effect of ethylene inhibitors (AgNO3, AVG), an ethylene- liberating compound (CEPA) and aeration on the formation of protocorm-like bodies of hybrid Cymbidium (Orchidaceae)[J]. Front Biol, 2013, 8(6): 606-610.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-013-1283-x
https://academic.hep.com.cn/fib/EN/Y2013/V8/I6/606
Fig.1  (A) Protocorm-like body (PLB)-derived transverse thin cell layer (tTCL) (left) or half-PLB (right) forming PLBs 60 days after culture on Teixeira medium No. 1 (TC; ) containing 0.1 mg/L a-naphthaleneacetic acid and 0.1 mg/L kinetin. (B) PLB formation on TC without plant growth regulators but supplemented with 2.0 mg/L AgNO. (C) PLB formation with excessive trichomes on TC without plant growth regulators but supplemented with 2.0 mg/L CEPA. Bars= 1 mm (A, for left and right), 5 mm (B, C). (A) modified from Teixeira da Silva ().
Medium compositionConcentration(mg/L)Percentage of explants forming neo-PLBs (%)Number of neo-PLBs per explantFresh weight (mg) of PLB explant+ neo-PLBs
Half-PLBs on:TC (control)*100 a8.3 ab526 b
PLB tTCLs on:TC (control)100 a2.1 d188 f
Half-PLBs on:TC minus PGRs100 a1.2 de321 de
PLB tTCLs on:TC minus PGRs100 a0.3 e81 gh
Aeration (Milliseal?)100 a7.9 ab481 c
Aeration (filter paper)100 a6.2 b386 d
Half-PLBs on:TC+ AgNO31100 a8.7 a576 ab
2100 a9.1 a601 a
4100 a8.6 a546 b
867 bc4.2 c301 e
1618 d0.8 e183 f
Half-PLBs on:TC+ AVG1100 a8.2 a581 ab
2100 a6.8 b315 de
481 b1.4 de285 e
846 c0.9 de191 f
160 e0 e56 h
Half-PLBs on:TC+ CEPA188 ab4.6 c281 e
261 bc2.2 d126 g
423 d0.6 e38 h
83 e0.1 e9 i
160 e0 e0 i
PLB tTCLs on:TC+ AgNO31100 a2.4 d186 f
2100 a3.1 cd202 ef
4100 a1.8 de196 f
846 c1.2 de124 g
1618 d0.3 e61 h
PLB tTCLs on:TC+ AVG1100 a1.8 de168 g
2100 a1.7 de173 g
488 ab1.2 de98 gh
816 d0.3 e66 h
160 e0 e0 i
PLB tTCLs on:TC+ CEPA179 b0.2 e48 h
221 d0 e0 i
47 e0 e0 i
80 e0 e0 i
160 e0 e0 i
Tab.1  Effect of ethylene inhibitors, an ethylene-liberating compound and aeration on -PLB formation from half-PLBs or PLB tTCLs 60 days after culture of hybrid Twilight Moon ‘Day Light’
1 Al-Khayri J M, Al-Bahrani A M (2004). Genotype-dependent in vitro response of date palm (Phoenix dactylifera L.) cultivars to silver nitrate. Sci Hortic (Amsterdam) , 99(2): 153–162
doi: 10.1016/S0304-4238(03)00091-8
2 Chi G L, Pua E C (1989). Ethylene inhibitors enhanced de novo shoot regeneration from cotyledons of Brassica campestris ssp. chinensis (Chinese cabbage) in vitro. Plant Sci , 64(2): 243–250
doi: 10.1016/0168-9452(89)90030-7
3 Cruz de Carvalho MH, Le B V, Zuily-Fodil Y, Thi A T P, Tran Thanh Van K, (2000). Efficient whole plant regeneration of common bean (Phaseolus vulgaris L.) using thin-cell-layer culture and silver nitrate. Plant Sci , 159(2): 223–232
doi: 10.1016/S0168-9452(00)00346-0 pmid:11074275
4 Dugardeyn J, Van Der Straeten D (2008). Ethylene: Fine-tuning plant growth and development by stimulation and inhibition of elongation. Plant Sci , 175(1–2): 59–70
doi: 10.1016/j.plantsci.2008.02.003
5 Ebrahimzadeh A, Jiménez S, Teixeira da Silva J A, Satoh S, Lao M T (2008). Post-harvest physiology of cut carnation flowers. Fresh Produce , 2: 56–71
6 Fuentes S R L, Calheiros M B P, Manetti-Filho J, Vieira L G E (2000). The effects of silver nitrate and different carbohydrate sources on somatic embryogenesis in Coffea canephora. Plant Cell Tissue Organ Cult , 60(1): 5–13
doi: 10.1023/A:1006474324652
7 Gude H, van der Plaas L H W (1985). Endogenous ethylene formation and the development of the alternative pathway in potato tuber disks. Physiol Plant , 65(1): 57–62
doi: 10.1111/j.1399-3054.1985.tb02359.x
8 Hossain M M, Kant R, Van P T, Winarto B, Zeng S J, Teixeira da Silva J A (2013). The application of biotechnology to orchids. Crit Rev Plant Sci , 32(2): 69–139
doi: 10.1080/07352689.2012.715984
9 Mensuari-Sodi A, Panizza M, Tognoni E (1992). Quantitation of ethylene losses in different container-seal systems and comparison of biotic and abiotic contributions to ethylene accumulation in cultured tissues. Physiol Plant , 84(3): 472–476
doi: 10.1111/j.1399-3054.1992.tb04693.x
10 Muday G K, Rahman A, Binder B M (2012). Auxin and ethylene: collaborators or competitors? Trends Plant Sci , 17(4): 181–195
doi: 10.1016/j.tplants.2012.02.001 pmid:22406007
11 Naik S K, Chand P K (2003). Silver nitrate and aminoethoxyvinylglycine promote in vitro adventitious shoot regeneration of pomegranate (Punica granatum L.). J Plant Physiol , 160(4): 423–430
doi: 10.1078/0176-1617-00949 pmid:12756923
12 Pua E C, Deng X Y, Koh A T C (1999). Genotypic variability of de novo shoot morphogenesis of Brassica oleracea in vitro in response to ethylene inhibitors and putrescine. J Plant Physiol , 155(4–5): 598–605
doi: 10.1016/S0176-1617(99)80060-1
13 Serek M, Woltering E J, Sisler E C, Frello S, Sriskandarajah S (2006). Controlling ethylene responses in flowers at the receptor level. Biotechnol Adv , 24(4): 368–381
doi: 10.1016/j.biotechadv.2006.01.007 pmid:16584864
14 Taylor P W J, Ko H L, Fraser T A, Masel N, Adkins S W (1994). Effect of silver nitrate on sugarcane cell suspension growth, protoplast isolation, ethylene production and shoot regeneration from cell suspension cultures. J Exp Bot , 45(8): 1163–1168
doi: 10.1093/jxb/45.8.1163
15 Teixeira da Silva J A, ed. 2006. Ornamental cut flowers: physiology in practice. In: Floriculture, Ornamental and Plant Biotechnology: Advances and Topical Issues (1st Edn, Vol I), Global Science Books, Ltd., Isleworth, UK, pp 124–140
16 Teixeira da Silva J A (2012). New basal media for protocorm-like body and callus induction of hybrid Cymbidium. J Fruit Ornamental Plant Res , 20(2): 127–133
17 Teixeira da Silva J A (2013a). Orchids: Advances in tissue culture, genetics, phytochemistry and transgenic biotechnology. Floriculture Ornamental Biotech , 7: 1–52
18 Teixeira da Silva J A (2013b). The role of thin cell layers in regeneration and transformation in orchids. Plant Cell Tissue Organ Cult , 113(2): 149–161
doi: 10.1007/s11240-012-0274-y
19 Teixeira da Silva J A, Dobránszki J (2013a). Plant thin cell layers: a 40-year celebration. J Plant Growth Regul , (In pr-ess)
doi: 10.1007/s00344-013-9336-6
20 Teixeira da Silva J A, Chan M T, Sanjaya, Chai M L, Tanaka M (2006a). Priming abiotic factors for optimal hybrid Cymbidium (Orchidaceae) PLB and callus induction, plantlet formation, and their subsequent cytogenetic stability analysis. Sci Hortic (Amsterdam) , 109(4): 368–378
doi: 10.1016/j.scienta.2006.05.016
21 Teixeira da Silva J A, Dobránszki J (2011). The plant Growth Correction Factor. I. The hypothetical and philosophical basis. Int J Plant Dev Biol , 5: 73–74
22 Teixeira da Silva J A, Dobránszki J (2013b). How timing of sampling can affect the outcome of the quantitative assessment of plant organogenesis. Sci Hortic (Amsterdam) , 159: 59–66
doi: 10.1016/j.scienta.2013.05.001
23 Teixeira da Silva J A, Giang D T T, Tanaka M (2006b). Novel photoautotrophic micropropagation of Spathiphyllum. Photosynthetica , 44(1): 53–61
doi: 10.1007/s11099-005-0158-z
24 Teixeira da Silva J A, Singh N, Tanaka M (2006c). Priming biotic factors for optimal protocorm-like body and callus induction in hybrid Cymbidium (Orchidaceae), and assessment of cytogenetic stability in regenerated plantlets. Plant Cell Tissue Organ Cult , 84: 119–128
25 Teixeira da Silva J A, Tanaka M (2006). Embryogenic callus, PLB and TCL paths to regeneration in hybrid Cymbidium (Orchidaceae). J Plant Growth Regul , 25: 203–210
doi: 10.1007/s00344-005-0104-0
26 Teixeira da Silva J A, Yam T, Fukai S, Nayak N, Tanaka M (2005). Establishment of optimum nutrient media for in vitro propagation of Cymbidium Sw. (Orchidaceae) using protocorm-like body segments. Prop. Ornamental Plants , 5: 129–136
27 Torrigiani P, Scaramagli S, Castiglione S, Altamura M M, Biondi S (2003). Down regulation of ethylene production and biosynthetic gene expression is associated to changes in putrescine metabolism in shoot-forming tobacco thin layers. Plant Sci , 164(6): 1087–1094
doi: 10.1016/S0168-9452(03)00115-8
28 Vacin E, Went F W (1949). Some pH changes in nutrient solutions. Bot Gaz , 110(4): 605–613
doi: 10.1086/335561
29 van Doorn W G, Woltering E J (2008). Physiology and molecular biology of petal senescence. J Exp Bot , 59(3): 453–480
doi: 10.1093/jxb/erm356 pmid:18310084
30 Yang S F, Hoffman N E (1984). Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol , 35(1): 155–189
doi: 10.1146/annurev.pp.35.060184.001103
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed