Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2013, Vol. 8 Issue (6) : 626-631    https://doi.org/10.1007/s11515-013-1286-7
RESEARCH ARTICLE
A functional approach toward xerogel immobilization for encapsulation biocompatibility of Rhizobium toward biosensor
Pooja Arora1, Sunita Sharma2(), Sib Krishna Ghoshal3, Neeraj Dilbaghi1(), Ashok Chaudhury1()
1. Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar-125001, Haryana, India; 2. Light and Matter Physics Group, Raman Research Institute, Bangalore, India; 3. Physics Department, University Teknologi of Malaysia, Malaysia
 Download: PDF(230 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Sol-gel derived silica has tremendous applications as a biocompatible scaffold for the immobilization of cells. The use of xerogel as a matrix in the blueprint of biosensors is an appealing proposition due to several inimitable characteristics of xerogels, primarily because of their high porous nature, amendable pore size, and exceptionally large internal surface area. Morphological (X-Ray Diffraction and Thermogravimmetric Analysis) and optical (Fourier Transform Infrared and UV-Vis absorption) studies of the silica matrices with entrapped Rhizobial (Rz) structure of the biomaterial has been made. Temporal and concentration dependent studies were conducted for impregnated samples; it showed that the response time for the new biosensor for determining the concentration of Rz is less than 20 min. In this work, first time a novel avenue to create a generic approach for the fabrication of biosensor has been created.

Keywords biosensor      Fourier Transform Infrared spectroscopy (FTIR)      Rhizobium      Thermo Gravimmetric Analysis (TGA)      sol-gel      xerogel      X-Ray Diffraction (XRD)     
Corresponding Author(s): Sharma Sunita,Email:sunphotonics@gmail.com; Dilbaghi Neeraj,Email:ndnano@gmail.com; Chaudhury Ashok,Email:ashokchaudhury@hotmail.com   
Issue Date: 01 December 2013
 Cite this article:   
Sunita Sharma,Sib Krishna Ghoshal,Pooja Arora, et al. A functional approach toward xerogel immobilization for encapsulation biocompatibility of Rhizobium toward biosensor[J]. Front Biol, 2013, 8(6): 626-631.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-013-1286-7
https://academic.hep.com.cn/fib/EN/Y2013/V8/I6/626
Fig.1  Schematic diagram of z-scan set up
Fig.2  Visual characteristic of the grown samples (Blank (1), RhB co-doped Rz (2=pre-doping, 3=post-doping))
Fig.3  TGA thermogram of blank sample
Fig.4  Concentration dependent UV-Vis absorption spectra of Rz doped silica matrices
Fig.5  FTIR spectra of dye doped samples (with and without Rz) (a) and the inset of a portion of it (b)
Fig.6  Variation of output intensity with dopant volume
Fig.7  Temporal response of the sample at 0.2 mL of Rz
1 Zourob M (2008). In Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems Springer, New York , pp. 109–123
2 Kishen A, John M S, Lim C S, Asundi A (2003). A fiber optic biosensor (FOBS) to monitor mutans streptococci in human saliva. Biosens Bioelectron , 18(11): 1371–1378
doi: 10.1016/S0956-5663(03)00081-2 pmid:12896838
3 Tsai H C, Doong R A, Chiang H C, Chen K T (2003). Sol-gel derived urease-based optical biosensor for the rapid determination of heavy metals. Anal Chim Acta , 48(1): 75–81
doi: 10.1016/S0003-2670(03)00066-7
4 Barbe C J, Kong L, Finnie K S, Calleja S, Hanna J V, Drabarek E, Cassidy D T, Blackford M G (2008). Sol-gel matrices for controlled release: from macro to nano using emulsion polymerisation. J Sol-Gel Sci Technol , 46(3): 393–401
doi: 10.1007/s10971-008-1721-4
5 Desimone M F, Alvarez G S, Foglia M L, Diaz L E (2009). Development of sol-gel hybrid materials for whole cell immobilization. Recent Pat Biotechnol , 3(1): 55–60
doi: 10.2174/187220809787172605 pmid:19149723
6 Gupta R, Kumar A (2008). Bioactive materials for biomedical applications using sol-gel technology. Biomed Mater , 3(3): 034005
doi: 10.1088/1748-6041/3/3/034005 pmid:18689920
7 Shaomin L, Zhi P X, Aimin Y, Haibin S, Lihong L (2007). New biosensors made of specially designed transparent chips with nano-optical tags. Smart Mater Struct , 16(6): 2214–2221
doi: 10.1088/0964-1726/16/6/024
8 MacDonald C, Morrow R, Weiss A S, Bilek M M M (2008). Covalent attachment of functional protein to polymer surfaces: a novel one-step dry process. J R Soc Interface , 5(23): 663–669
doi: 10.1098/rsif.2007.1352 pmid:18285286
9 Niki M, Solovieva N, Apperson K, Birch D J S, Voloshinovskii A (2005). Scintillators based on aromatic dye molecules doped in a sol-gel glass host. Appl Phys Lett , 86(10): 101914–101920
doi: 10.1063/1.1882758
10 Sharma S, Mohan D, Singh N, Sharma M, Sharma A K (2008a). Spectroscopic and lasing properties in xanthene dyes encapsulated in silica and polymeric matrices. Optik (Stuttg) , 121(1): 11–18
doi: 10.1016/j.ijleo.2008.05.005
11 Sharma S, Mohan D, Ghoshal S K (2008b). Measurement of nonlinear properties and optical limiting ability of Rhodamine6G doped silica and polymeric samples. Opt Commun , 281(10): 2923–2930
doi: 10.1016/j.optcom.2008.01.010
12 Somasegaran P, Hoben H J (1985). Methods in legume-Rhizobium technology. NIFTAL project and MIRCEN, University of Hawaii, HI
13 Vincent J M (1970). A manual for the practical study of root-nodule bacteria. IBP Handbook 15, Blackwell, Oxford, pp. 164–171
14 Rao N S S (1999). Soil Microbiology. Oxford and IBH Publishing Co. Pvt. Ltd. New Delhi, Calcutta , pp. 181–187
15 Arnon D I, Hoagland D R (1940). Crop production in artificial culture solution and in soil with reference to factors influencing yields and absorption of inorganic nutrient. Soil Sci , 50: 463–469
16 Huang Y, Siganakis G, Moharam M G, Wu S T (2004). Broadband. Optical limiter based on photo induced anisotropy of bacteriorhodopsin films. Appl Phys Lett , 5(29): 5445–5452
doi: 10.1063/1.1828590
17 Shah N H, Hafeez F Y, Asad S, Hussain A, Malik K A (1995) Biotechnology for Sustainable Development. (Eds.): K.A. Malik A. N and Khalid A M, NIBGE, Faisalabad, Pakistan , pp. 211–217
18 Anand R C, Dogra R C (1991). Physiological and biochemiscal characteristics of fast and slow growing Rhizobium sp., from pigeon pea (Cajanus cajan). J Appl Bacteriol , 70(3): 197–204
doi: 10.1111/j.1365-2672.1991.tb02924.x
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed