Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2014, Vol. 9 Issue (1) : 82-88    https://doi.org/10.1007/s11515-014-1292-4
RESEARCH ARTICLE
Influence of ectomycorrhizal inoculation on Pinus wallichiana and Cedrus deodara seedlings under nursery conditions
Zahoor Ahmad ITOO(),Zafar A. RESHI()
Biological Invasions Research Lab, Department of Botany, University of Kashmir, Srinagar 190006, India
 Download: PDF(130 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A study was undertaken to examine the extent of root colonization by four locally isolated ectomycorrhizal (ECM) fungi (Hebeloma theobrominum, Boletus dryophilus, Scleroderma citrinum and Suillus luteus) and their effects on seedling growth in Pinus wallichiana and Cedrus deodara under nursery conditions. Seedlings of the two conifers were inoculated with mycelium of ECM fungi and were grown in pots containing sterilized forest soil for six months. The percentage of ECM colonization of roots was 38%–52% in Pinus wallichiana and 33%–48% in Cedrus deodara. ECM colonization increased shoot height, needle number, shoot and root biomass and survival of inoculated seedlings. Among the four ECM fungi Hebeloma theobrominum was more effective with Pinus wallichiana and Scleroderma citrinum with Cedrus deodara in promoting seedling survival and overall growth. All the four ECM fungi used enhanced growth of inoculated seedlings and thus can be used in afforestation and regeneration programmes in degraded forests ecosystems.

Keywords afforestation      colonization      ectomycorrhizal      mycelium      seedling survival     
Corresponding Author(s): Zahoor Ahmad ITOO   
Issue Date: 13 May 2014
 Cite this article:   
Zahoor Ahmad ITOO,Zafar A. RESHI. Influence of ectomycorrhizal inoculation on Pinus wallichiana and Cedrus deodara seedlings under nursery conditions[J]. Front. Biol., 2014, 9(1): 82-88.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-014-1292-4
https://academic.hep.com.cn/fib/EN/Y2014/V9/I1/82
Fig.1  Hebeloma theobrominum growing in bioreactor after 8 days of incubation.
Fig.2  Biomass profile of Hebeloma theobrominum for batch fermentation using MMN medium. Conditions: Glucose 10 g/L; Temperature 23.0±2°C; Initial pH 5.8; Shaking speed 100 rpm; Air flow rate 1.5±0.5 L/min; inoculum size 6% (v/v).
TreatmentPinus wallichiana
ECM colonization %Seedling survival %Seedling height (cm)Biomass (mg)Needle no.
180d*20d40d60d180d20d40d60d180dShootRoot0d20d40d60d
Control187262.550353.2±0.1395.76±0.1566.88±0.12110.45±0.387170.33±1.05929.55±1.00910.27±0.26611.15±0.34512.92±0.33414.25±0.455
Hebeloma theobrominum5292.59077.5684.2±0.6608.56±0.1409.55±0.18613.86±0.149270.45±1.40848.45±1.99311.92±0.26614.82±0.33216.5±0.32819.95±0.665
Boletus dryophilus42928575625.1±0.1367.3±0.1778.45±0.10912.86±0.282246.54±2.46140.45±1.79710.33±0.39217.05±0.36318.29±0.38024.73±0.611
Scleroderma citrinum48577570574.0±0.1387.56±0.1068.2±0.17513.42±0.228258.86±2.87445.33±1.40012.24±0.37816.5±0.38618.3±0.53126.00±0.633
Suillus luteus38547565543.9±0.1686.75±0.1847.9±0.13312.48±0.309230.32±1.37637.45±1.3799.35±0.32317.35±0.39919.2±0.43525.7±0.529
ANOVA P = 0.05-----F = 5.267 / F critical 3.259F = 2.776F = 2.776F = 5.466/ F critical 3.259
Tab.1  Effect of ECM inoculation on ECM colonization, seedling survival, height, biomass and needle no. in Pinus wallichiana under nursery conditions
TreatmentCedrus deodara
ECM colonization %Seedling survival %Seedling height (cm)Biomass (mg)Needle no.
180d*20d40d60d180d20d40d60d180dShootRoot0d20d40d60d
Control148572.565482.9±0.0724.2±0.1065.48±0.0857.46±0.083147.33±0.92720.55±0.89817.47±0.49818.65±0.40219.33±0.51620.24±0.627
Hebeloma theobrominum3392.587.587763.3±0.0415.6±0.0557.55±0.0779.55±0.109173.32±1.46424.45±1.56617.47±0.35922.82±0.46025.82±0.59028.32±0.908
Boletus dryophilus40858575683.5±0.0944.8±0.1746.45±0.12610.83±0.334188.54±1.71425.45±1.34718.3±0.40920.9±0.63827.23±0.76533.34±0.737
Scleroderma citrinum48908575652.9±0.1.44.5±0.0526.2±0.08911.86±0.069228.86±1.85932.45±2.55017.4±0.34325.2±0.49028.5±0.59436.33±0.760
Suillus luteus38807570603.2±0.0664.8±0.1435.9±0.0699.83±0.166222.45±3.12130.32±1.85916.2±0.52824.5±0.75927.9±0.89335.32±0.952
ANOVA P = 0.05-----F = 3.490 / F critical 3.259F = 2.776F = 2.927F = 4.397 / F critical 3.259
Tab.2  Effect of ECM inoculation on ECM colonization, seedling survival, height, biomass and needle no. in Cedrus deodara under nursery conditions
1 AlexanderI J, AhmadN, LeeS S (1992). The role of mycorrhizas in the regeneration of some Malaysian forest trees. Philos Trans R Soc Lond B Biol Sci, 335(1275): 379-388
doi: 10.1098/rstb.1992.0029
2 AlguacilM M, CaravacaF, RoldanA (2005). Changes in rhizosphere microbial activity mediated by native or allochtonous AM fungi in the reafforestation of a Mediterranean degraded environment. Biol Fertil Soils, 41: 59-68
doi: 10.1007/s00374-004-0788-5
3 BaarJ, HortonT R, KretzerA M, BrunsT D (2002). Mycorrhizal colonization of Pinus muricata from resistant propagules after a stand-replacing wildfire. New Phytol, 143(2): 409-418
doi: 10.1046/j.1469-8137.1999.00452.x
4 BjorkmanE (1970). Forest tree mycorrhizal-the conditions for its formation and the significance for tree growth and afforestation. Plant Soil, 32(1-3): 589-610
doi: 10.1007/BF01372897
5 BoisG Y, PichéY, FungM Y, KhasaD P (2005). Mycorrhizal inoculum potentials of pure reclamation materials and revegetated tailing sands from the Canadian oil sand industry. Mycorrhiza, 15(3): 149-158
doi: 10.1007/s00572-004-0315-4 pmid: 15883852
6 BradburyS M, DanielsonR M, VisserS (1998). Ectomycorrhizas of regenerating stands of lodgepole pine (Pinus contorta). Can J Bot, 76(2): 218-277
doi: 10.1139/b97-172
7 BrundrettM C, BougherN L, DellB, GroveT S, MalajczukN (1996) Working with Mycorrhizas in Forestry and Agriculture. ACIAR Monograph32. 374 Pp.
8 CaravacaF, AlguacilM M, TorresP, RoldanA (2005). Survival of inocula and native AM fungi species associated with shrubs in a degraded Mediterranean ecosystem. Soil Biol Biochem, 37(2): 227-233
doi: 10.1016/j.soilbio.2004.06.019
9 ClineE T, AmmiratiJ F, EdmondsR L (2005). Does proximity to mature trees influence ectomycorrhizal fungus communities of Douglas-fir seedlings? New Phytol, 166(3): 993-1009
doi: 10.1111/j.1469-8137.2005.01387.x pmid: 15869658
10 DahlbergA (2002). Effects of fire on ectomycorrhizal fungi in Fennoscandian boreal forests. Silva Fennica, 36: 69-80
11 DarG H, BeigM A, GanaiN A (2010). Influence of Ectomycorrhizal Inoculation on Blue Pine (Pinus wallchiania) and Deodar (Cedrus deodara) Seedlings. Trends in Bioscience, 3: 60-62
12 DunabeitiaM, RodriguezN, SalcedoI, SarrionandiaE (2004) Field mycorrhization and its influence on the establishment and development of the seedlings in a broadleaf plantation in the Basque country. For Ecol Manage195: 129-139
13 JonesM D, DurallD M, CairneyJ W G (2003). Ectomycorrhizal fungal communities in young forest stands regenerating after clearcut logging. New Phytol, 157(3): 399-422
doi: 10.1046/j.1469-8137.2003.00698.x
14 KemppainenM J, PardoA G (2010) Nitrogen metabolism in ectomycorrhizal fungi: fHANT-AC gene regulation in Laccaria bicolor. Current research, technology and education topics in applied microbiology and microbial biotechnology A. Mendez Vilas (Ed.), Formatex
15 MarxD H (1980) Ectomycorrhiza fungus inoculations: a tool to improve forestation practices. In: MikolaP (ed) Tropical mycorrhiza research. Oxford University Press, Oxford
16 McGuireK L (2007). Common ectomycorrhizal networks may maintain monodominance in a tropical rain forest. Ecology, 88(3): 567-574
doi: 10.1890/05-1173 pmid: 17503583
17 NaraK (2006). Ectomycorrhizal networks and seedling establishment during early primary succession. New Phytol, 169(1): 169-178
doi: 10.1111/j.1469-8137.2005.01545.x pmid: 16390428
18 NaraK, HogetsuT (2004). Ectomycorrhizal fungi on established shrubs facilitate subsequent seedling establishment of successional plant species. Ecology, 85(6): 1700-1707
doi: 10.1890/03-0373
19 NuñezM A, HortonT R, SimberloffD (2009). Lack of belowground mutualisms hinders Pinaceae invasions. Ecology, 90(9): 2352-2359
doi: 10.1890/08-2139.1 pmid: 19769113
20 ParladéJ, LuqueJ, PeraJ, RincónA M (2004). Field performance of Pinus pinea and P. halepensis seedlings inoculated with Rhizopogon spp. and out planted in formerly arable land. Ann Sci, 61: 507-514
doi: 10.1051/forest:2004045
21 QuoreshiA M, PichéY, KhasaD P (2008). Field performance of conifer and hardwood species five years after nursery inoculation in the Canadian Prairie Provinces. New Phytol, 35: 235-253
22 SharmaR, RajakR C, PandeyA K (2008). Growth Response of Dendrocalamus Seedlings by Inoculation with Ectomycorrhizal Fungi. Middle-East J of Sci Res, 3: 200-206
23 SmithS E, ReadD J (2008) Mycorrhizal Symbiosis, third (eds). Academic Press, London.
24 SteinfeldD, AmaranthusM P, CazaresE (2003). Survival of Ponderosa pine (Pinus ponderosa dougl. ex laws.) seedlings outplanted with Rhizopogon mycorrhizae inoculated with spores at the nursery. J of Arboriculture, 29: 197-208
25 TesteF P, SimardS W (2008). Mycorrhizal networks and distance from mature trees alter patterns of competition and facilitation in dry Douglas-fir forests. Oecologia, 158(2): 193-203
doi: 10.1007/s00442-008-1136-5 pmid: 18781333
26 TesteF P, SimardS W, DurallD M (2009). Role of mycorrhizal networks and tree proximity in ectomycorrhizal colonization of planted seedlings. Fungal Ecol, 2(1): 21-30
doi: 10.1016/j.funeco.2008.11.003
27 TurjamanM, TamaiY, SegahH, LiminS H, OsakiM, TawarayaM (2006). Increase in early growth and nutrient uptake of shorea seminis seedlings inoculated with two ectomycorrhizal fungi. J Trop For Sci, 18: 243-249
28 VisserS (1995). Ectomycorrhizal fungal succession in Jack pine stands following wildfire. New Phytol, 129(3): 389-401
doi: 10.1111/j.1469-8137.1995.tb04309.x
29 WangC W, LuoX F, LeiZ P (1985). The effect of ectomycorrhizal fungi on biomass production of Pinus tabulaeformis seedlings. Scientia Silvae Sinicae, 21: 375-382
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed