Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2014, Vol. 9 Issue (1) : 66-74    https://doi.org/10.1007/s11515-014-1295-1
RESEARCH ARTICLE
Genome-wide antagonism between 5-hydroxymethylcytosine and DNA methylation in the adult mouse brain
Junjie U. GUO1,2,3,Keith E. SZULWACH4,Yijing SU1,3,Yujing LI4,Bing YAO4,Zihui XU4,Joo Heon SHIN5,Bing XIE5,Yuan GAO1,5,Guo-li MING1,2,3,Peng JIN4,*(),Hongjun SONG1,2,3,*()
1. Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
2. The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
3. Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
4. Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
5. Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
 Download: PDF(441 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Mounting evidence points to critical roles for DNA modifications, including 5-methylcytosine (5mC) and its oxidized forms, in the development, plasticity and disorders of the mammalian nervous system. The novel DNA base 5-hydroxymethylcytosine (5hmC) is known to be capable of initiating passive or active DNA demethylation, but whether and how extensively 5hmC functions in shaping the post-mitotic neuronal DNA methylome is unclear. Here we report the genome-wide distribution of 5hmC in dentate granule neurons from adult mouse hippocampus in vivo. 5hmC in the neuronal genome is highly enriched in gene bodies, especially in exons, and correlates with gene expression. Direct genome-wide comparison of 5hmC distribution between embryonic stem cells and neurons reveals extensive differences, reflecting the functional disparity between these two cell types. Importantly, integrative analysis of 5hmC, overall DNA methylation and gene expression profiles of dentate granule neurons in vivo reveals the genome-wide antagonism between these two states of cytosine modifications, supporting a role for 5hmC in shaping the neuronal DNA methylome by promoting active DNA demethylation.

Keywords dentate granule neuron      active DNA demethylation      TET      methylome     
Corresponding Author(s): Peng JIN   
Issue Date: 13 May 2014
 Cite this article:   
Junjie U. GUO,Keith E. SZULWACH,Yijing SU, et al. Genome-wide antagonism between 5-hydroxymethylcytosine and DNA methylation in the adult mouse brain[J]. Front. Biol., 2014, 9(1): 66-74.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-014-1295-1
https://academic.hep.com.cn/fib/EN/Y2014/V9/I1/66
Fig.1  Distribution of 5hmC in the genome of dentate granule neurons (DGNs) in vivo. (A) Correlation between 5hmC-seq results from two biologic replicates. Pearson’s correlation was calculated using non-overlapping 10-kb windows. (B) qPCR validation of DGN 5hmC-marked regions detected by 5hmC-seq. Regions 1-17 were those marked with 5hmC. Neg was a negative control region with no significant 5hmC. (C) Chromosome-wide 5hmC levels normalized by an input library. Note the lower abundance in the mitochondrial genome and sex chromosomes. (D) 5hmC levels within different genic regions, compared to intergenic regions. E, Meta-gene (left), meta-exon (middle), and meta-intron analyses of 5hmC levels.
Fig.2  Relationship between 5hmC, gene expression, and protein-DNA interaction in DGNs. (A) Meta-gene analysis of 5hmC levels correlated with gene expression. 5hmC levels were averaged across all genes stratified by their expression rank (top). Spearman’s correlations in 500 bp windows were shown (bottom). (B) 5hmC levels near the binding sites of four neuronal DNA-interacting factors previously determined in cultured mouse cortical neurons (Kim et al., 2010).
Fig.3  Comparison of 5hmC distributions between DGNs and ESCs. (A) A correlation matrix of 5hmC-seq results from two DGN replicates and on ESC sample. Pearson’s correlations were shown. (B) A scatter plot of DGN and ESC gene-body 5hmC levels. DGN- and ESC-specific 5hmC-marked genes were indicated by blue and red circles, respectively. (C) Examples of DGN-specific 5hmC-marked genes (top) and ESC-specific 5hmC-marked genes (bottom). (D) Gene ontology analysis of 1129 DGN-specific 5hmC-marked genes (left) and 1004 ESC-specific 5hmC-marked genes (right).
Fig.4  Global antagonism between 5hmC and overall DNA methylation in both DGNs and ESCs. (A) A chromosome-wide view of 5hmC (top) and overall DNA methylation (bottom) levels. Signals were moving-averaged using 10-kb windows. (B) A density plots of genome-wide paired values of DGN overall DNA methylation and 5hmC levels of 10-kb windows. (C) Boxplots of gene-body DNA methylation (left) and 5hmC (right) levels stratified by the expression ranks of all genes. Spearman’s correlations were shown at the bottom. (D) A density plots of genome-wide paired values of ESC overall DNA methylation and 5hmC levels of 10-kb windows. 5hmC levels were log10-transformed.
1 BhutaniN, BurnsD M, BlauH M (2011). DNA demethylation dynamics. Cell, 146(6): 866–872
doi: 10.1016/j.cell.2011.08.042 pmid: 21925312
2 BirdA (2002). DNA methylation patterns and epigenetic memory. Genes Dev, 16(1): 6–21
doi: 10.1101/gad.947102 pmid: 11782440
3 BoothM J, BrancoM R, FiczG, OxleyD, KruegerF, ReikW, BalasubramanianS (2012). Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science, 336(6083): 934–937
doi: 10.1126/science.1220671 pmid: 22539555
4 BrancoM R, FiczG, ReikW (2012). Uncovering the role of 5-hydroxymethylcytosine in the epigenome. Nat Rev Genet, 13(1): 7–13
pmid: 22083101
5 DawlatyM M, BreilingA, LeT, RaddatzG, BarrasaM I, ChengA W, GaoQ, PowellB E, LiZ, XuM, FaullK F, LykoF, JaenischR (2013). Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development. Dev Cell, 24(3): 310–323
doi: 10.1016/j.devcel.2012.12.015 pmid: 23352810
6 FengJ, ChangH, LiE, FanG (2005). Dynamic expression of de novo DNA methyltransferases Dnmt3a and Dnmt3b in the central nervous system. J Neurosci Res, 79(6): 734–746
doi: 10.1002/jnr.20404 pmid: 15672446
7 FengJ, ZhouY, CampbellS L, LeT, LiE, SweattJ D, SilvaA J, FanG (2010). Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat Neurosci, 13(4): 423–430
doi: 10.1038/nn.2514 pmid: 20228804
8 FrauerC, HoffmannT, BultmannS, CasaV, CardosoM C, AntesI, LeonhardtH (2011). Recognition of 5-hydroxymethylcytosine by the Uhrf1 SRA domain. PLoS ONE, 6(6): e21306
doi: 10.1371/journal.pone.0021306 pmid: 21731699
9 GlobischD, MünzelM, MüllerM, MichalakisS, WagnerM, KochS, BrücklT, BielM, CarellT (2010). Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS ONE, 5(12): e15367
doi: 10.1371/journal.pone.0015367 pmid: 21203455
10 GollM G, BestorT H (2005). Eukaryotic cytosine methyltransferases. Annu Rev Biochem, 74(1): 481–514
doi: 10.1146/annurev.biochem.74.010904.153721 pmid: 15952895
11 GotoK, NumataM, KomuraJ I, OnoT, BestorT H, KondoH (1994). Expression of DNA methyltransferase gene in mature and immature neurons as well as proliferating cells in mice. Differentiation, 56(1–2): 39–44
doi: 10.1046/j.1432-0436.1994.56120039.x pmid: 8026645
12 GuT P, GuoF, YangH, WuH P, XuG F, LiuW, XieZ G, ShiL, HeX, JinS G, IqbalK, ShiY G, DengZ, SzabóP E, PfeiferG P, LiJ, XuG L (2011). The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature, 477(7366): 606–610
doi: 10.1038/nature10443 pmid: 21892189
13 GuoJ U, MaD K, MoH, BallM P, JangM H, BonaguidiM A, BalazerJ A, EavesH L, XieB, FordE, ZhangK, MingG L, GaoY, SongH (2011a). Neuronal activity modifies the DNA methylation landscape in the adult brain. Nat Neurosci, 14(10): 1345–1351
doi: 10.1038/nn.2900 pmid: 21874013
14 GuoJ U, SuY, ShinJ H, ShinJ, LiH, XieB, ZhongC, HuS, LeT, FanG, ZhuH, ChangQ, GaoY, MingG L, SongH (2013). Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nat Neurosci, doi: 10.1038/nn.3607
pmid: 24362762
15 GuoJ U, SuY, ZhongC, MingG L, SongH (2011b). Emerging roles of TET proteins and 5-hydroxymethylcytosines in active DNA demethylation and beyond. Cell Cycle, 10(16): 2662–2668
doi: 10.4161/cc.10.16.17093 pmid: 21811096
16 GuoJ U, SuY, ZhongC, MingG L, SongH (2011c). Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell, 145(3): 423–434
doi: 10.1016/j.cell.2011.03.022 pmid: 21496894
17 HeY F, LiB Z, LiZ, LiuP, WangY, TangQ, DingJ, JiaY, ChenZ, LiL, SunY, LiX, DaiQ, SongC X, ZhangK, HeC, XuG L (2011). Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science, 333(6047): 1303–1307
doi: 10.1126/science.1210944 pmid: 21817016
18 InoueA, ZhangY (2011). Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos. Science, 334(6053): 194
doi: 10.1126/science.1212483 pmid: 21940858
19 ItoS, D’AlessioA C, TaranovaO V, HongK, SowersL C, ZhangY (2010). Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature, 466(7310): 1129–1133
doi: 10.1038/nature09303 pmid: 20639862
20 ItoS, ShenL, DaiQ, WuS C, CollinsL B, SwenbergJ A, HeC, ZhangY (2011). Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science, 333(6047): 1300–1303
doi: 10.1126/science.1210597 pmid: 21778364
21 KaasG A, ZhongC, EasonD E, RossD L, VachhaniR V, MingG L, KingJ R, SongH, SweattJ D (2013). TET1 controls CNS 5-methylcytosine hydroxylation, active DNA demethylation, gene transcription, and memory formation. Neuron, 79(6): 1086–1093
doi: 10.1016/j.neuron.2013.08.032 pmid: 24050399
22 KimT K, HembergM, GrayJ M, CostaA M, BearD M, WuJ, HarminD A, LaptewiczM, Barbara-HaleyK, KuerstenS, Markenscoff-PapadimitriouE, KuhlD, BitoH, WorleyP F, KreimanG, GreenbergM E (2010). Widespread transcription at neuronal activity-regulated enhancers. Nature, 465(7295): 182–187
doi: 10.1038/nature09033 pmid: 20393465
23 KohliR M, ZhangY (2013). TET enzymes, TDG and the dynamics of DNA demethylation. Nature, 502(7472): 472–479
doi: 10.1038/nature12750 pmid: 24153300
24 KriaucionisS, HeintzN (2009). The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science, 324(5929): 929–930
doi: 10.1126/science.1169786 pmid: 19372393
25 LienertF, WirbelauerC, SomI, DeanA, MohnF, SchóbelerD (2011). Identification of genetic elements that autonomously determine DNA methylation states. Nat Genet, 43(11): 1091–1097
doi: 10.1038/ng.946 pmid: 21964573
26 ListerR, PelizzolaM, DowenR H, HawkinsR D, HonG, Tonti-FilippiniJ, NeryJ R, LeeL, YeZ, NgoQ M, EdsallL, Antosiewicz-BourgetJ, StewartR, RuottiV, MillarA H, ThomsonJ A, RenB, EckerJ R (2009). Human DNA methylomes at base resolution show widespread epigenomic differences. Nature, 462(7271): 315–322
doi: 10.1038/nature08514 pmid: 19829295
27 MaD K, GuoJ U, MingG L, SongH (2009a). DNA excision repair proteins and Gadd45 as molecular players for active DNA demethylation. Cell Cycle, 8(10): 1526–1531
doi: 10.4161/cc.8.10.8500 pmid: 19377292
28 MaD K, PonnusamyK, SongM R, MingG L, SongH (2009b). Molecular genetic analysis of FGFR1 signalling reveals distinct roles of MAPK and PLCgamma1 activation for self-renewal of adult neural stem cells. Mol Brain, 2(1): 16
doi: 10.1186/1756-6606-2-16 pmid: 19505325
29 MeissnerA, MikkelsenT S, GuH, WernigM, HannaJ, SivachenkoA, ZhangX, BernsteinB E, NusbaumC, JaffeD B, GnirkeA, JaenischR, LanderE S (2008). Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature, 454(7205): 766–770
pmid: 18600261
30 MellénM, AyataP, DewellS, KriaucionisS, HeintzN (2012). MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell, 151(7): 1417–1430
doi: 10.1016/j.cell.2012.11.022 pmid: 23260135
31 MillerC A, SweattJ D (2007). Covalent modification of DNA regulates memory formation. Neuron, 53(6): 857–869
doi: 10.1016/j.neuron.2007.02.022 pmid: 17359920
32 PastorW A, AravindL, RaoA (2013). TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat Rev Mol Cell Biol, 14(6): 341–356
doi: 10.1038/nrm3589 pmid: 23698584
33 PastorW A, PapeU J, HuangY, HendersonH R, ListerR, KoM, McLoughlinE M, BrudnoY, MahapatraS, KapranovP, TahilianiM, DaleyG Q, LiuX S, EckerJ R, MilosP M, AgarwalS, RaoA (2011). Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature, 473(7347): 394–397
doi: 10.1038/nature10102 pmid: 21552279
34 RudenkoA, DawlatyM M, SeoJ, ChengA W, MengJ, LeT, FaullK F, JaenischR, TsaiL H (2013). Tet1 is critical for neuronal activity-regulated gene expression and memory extinction. Neuron, 79(6): 1109–1122
doi: 10.1016/j.neuron.2013.08.003 pmid: 24050401
35 ShuklaS, KavakE, GregoryM, ImashimizuM, ShutinoskiB, KashlevM, OberdoerfferP, SandbergR, OberdoerfferS (2011). CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature, 479(7371): 74–79
doi: 10.1038/nature10442 pmid: 21964334
36 SongC X, SzulwachK E, DaiQ, FuY, MaoS Q, LinL, StreetC, LiY, PoidevinM, WuH, GaoJ, LiuP, LiL, XuG L, JinP, HeC (2013). Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming. Cell, 153(3): 678–691
doi: 10.1016/j.cell.2013.04.001 pmid: 23602153
37 SongC X, SzulwachK E, FuY, DaiQ, YiC, LiX, LiY, ChenC H, ZhangW, JianX, WangJ, ZhangL, LooneyT J, ZhangB, GodleyL A, HicksL M, LahnB T, JinP, HeC (2011). Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat Biotechnol, 29(1): 68–72
doi: 10.1038/nbt.1732 pmid: 21151123
38 SpruijtC G, GnerlichF, SmitsA H, PfaffenederT, JansenP W, BauerC, MünzelM, WagnerM, MüllerM, KhanF, EberlH C, MensingaA, BrinkmanA B, LephikovK, MüllerU, WalterJ, BoelensR, van IngenH, LeonhardtH, CarellT, VermeulenM (2013). Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell, 152(5): 1146–1159
doi: 10.1016/j.cell.2013.02.004 pmid: 23434322
39 StadlerM B, MurrR, BurgerL, IvanekR, LienertF, SchölerA, van NimwegenE, WirbelauerC, OakeleyE J, GaidatzisD, TiwariV K, SchübelerD (2011a). DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature, 480(7378): 490–495
pmid: 22170606
40 StadlerM B, MurrR, BurgerL, IvanekR, LienertF, SchölerA, van NimwegenE, WirbelauerC, OakeleyE J, GaidatzisD, TiwariV K, SchübelerD (2011b). DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature, 480(7378): 490–495
pmid: 22170606
41 SzulwachK E, LiX, LiY, SongC X, HanJ W, KimS, NamburiS, HermetzK, KimJ J, RuddM K, YoonY S, RenB, HeC, JinP (2011a). Integrating 5-hydroxymethylcytosine into the epigenomic landscape of human embryonic stem cells. PLoS Genet, 7(6): e1002154
doi: 10.1371/journal.pgen.1002154 pmid: 21731508
42 SzulwachK E, LiX, LiY, SongC X, WuH, DaiQ, IrierH, UpadhyayA K, GearingM, LeveyA I, VasanthakumarA, GodleyL A, ChangQ, ChengX, HeC, JinP (2011b). 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat Neurosci, 14(12): 1607–1616
doi: 10.1038/nn.2959 pmid: 22037496
43 TahilianiM, KohK P, ShenY, PastorW A, BandukwalaH, BrudnoY, AgarwalS, IyerL M, LiuD R, AravindL, RaoA (2009). Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science, 324(5929): 930–935
doi: 10.1126/science.1170116 pmid: 19372391
44 ValinluckV, SowersL C (2007). Endogenous cytosine damage products alter the site selectivity of human DNA maintenance methyltransferase DNMT1. Cancer Res, 67(3): 946–950
doi: 10.1158/0008-5472.CAN-06-3123 pmid: 17283125
45 WangF, YangY, LinX, WangJ Q, WuY S, XieW, WangD, ZhuS, LiaoY Q, SunQ, YangY G, LuoH R, GuoC, HanC, TangT S (2013). Genome-wide loss of 5-hmC is a novel epigenetic feature of Huntington’s disease. Hum Mol Genet, 22(18): 3641–3653
doi: 10.1093/hmg/ddt214 pmid: 23669348
46 WuS C, ZhangY (2010). Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol, 11(9): 607–620
doi: 10.1038/nrm2950 pmid: 20683471
47 XuY, WuF, TanL, KongL, XiongL, DengJ, BarberaA J, ZhengL, ZhangH, HuangS, MinJ, NicholsonT, ChenT, XuG, ShiY, ZhangK, ShiY G (2011). Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells. Mol Cell, 42(4): 451–464
doi: 10.1016/j.molcel.2011.04.005 pmid: 21514197
48 YamaguchiS, ShenL, LiuY, SendlerD, ZhangY (2013). Role of Tet1 in erasure of genomic imprinting. Nature, 504(7480): 460–464
doi: 10.1038/nature12805 pmid: 24291790
49 YaoB, LinL, StreetR C, ZalewskiZ A, GallowayJ N, WuH, NelsonD L, JinP (2013). Genome-wide alteration of 5-hydroxymethylcytosine in a mouse model of fragile X-associated tremor/ataxia syndrome. Hum Mol Genet, (Oct): 20 (Epub ahead of print)
pmid: 24108107
50 YuM, HonG C, SzulwachK E, SongC X, ZhangL, KimA, LiX, DaiQ, ShenY, ParkB, MinJ H, JinP, RenB, HeC (2012). Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell, 149(6): 1368–1380
doi: 10.1016/j.cell.2012.04.027 pmid: 22608086
51 ZhangH, ZhangX, ClarkE, MulcaheyM, HuangS, ShiY G (2010). TET1 is a DNA-binding protein that modulates DNA methylation and gene transcription via hydroxylation of 5-methylcytosine. Cell Res, 20(12): 1390–1393
doi: 10.1038/cr.2010.156 pmid: 21079648
52 ZhangR R, CuiQ Y, MuraiK, LimY C, SmithZ D, JinS, YeP, RosaL, LeeY K, WuH P, LiuW, XuZ M, YangL, DingY Q, TangF, MeissnerA, DingC, ShiY, XuG L (2013). Tet1 regulates adult hippocampal neurogenesis and cognition. Cell Stem Cell, 13(2): 237–245
doi: 10.1016/j.stem.2013.05.006 pmid: 23770080
53 ZhuJ K (2009). Active DNA demethylation mediated by DNA glycosylases. Annu Rev Genet, 43(1): 143–166
doi: 10.1146/annurev-genet-102108-134205 pmid: 19659441
54 HahnM A, QiuR, WuX, LiA X, ZhangH, WangJ, JuiJ, JinS G, JiangY, PfeiferG P, LuQ (2013). Dynamics of 5-hydroxymethylcytosine and chromatin marks in Mammalian neurogenesis. Cell Rep, 3: 291–300
[1] GAO Xingyi, YANG Weikang, QIAO Jianfang, YAO Jun, XU Kefen. Distribution and status of bustards in China[J]. Front. Biol., 2008, 3(4): 385-391.
[2] LI Jiaqi, SHI Hongquan, LIU Naifa. Habitat selection of the Tibetan Snow Cock in the spring in Lhasa[J]. Front. Biol., 2008, 3(2): 232-235.
[3] Bai Zhiqiang, Xia Zunyi. Recent approach to Buchia biostratigraphy from the Tethyan Himalaya area, China[J]. Front. Biol., 2006, 1(2): 213-218.
[4] Zheng Zhemin, Ou Xiaohong. New Species of Genus Hedotettix Bolivar (Orthoptera: Tetrigoidea) from Yunnan Province, China[J]. Front. Biol., 2006, 1(1): 61-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed