|
|
Genome-wide antagonism between 5-hydroxymethylcytosine and DNA methylation in the adult mouse brain |
Junjie U. GUO1,2,3,Keith E. SZULWACH4,Yijing SU1,3,Yujing LI4,Bing YAO4,Zihui XU4,Joo Heon SHIN5,Bing XIE5,Yuan GAO1,5,Guo-li MING1,2,3,Peng JIN4,*( ),Hongjun SONG1,2,3,*( ) |
1. Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA 2. The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA 3. Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. 4. Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA 5. Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA |
|
|
Abstract Mounting evidence points to critical roles for DNA modifications, including 5-methylcytosine (5mC) and its oxidized forms, in the development, plasticity and disorders of the mammalian nervous system. The novel DNA base 5-hydroxymethylcytosine (5hmC) is known to be capable of initiating passive or active DNA demethylation, but whether and how extensively 5hmC functions in shaping the post-mitotic neuronal DNA methylome is unclear. Here we report the genome-wide distribution of 5hmC in dentate granule neurons from adult mouse hippocampus in vivo. 5hmC in the neuronal genome is highly enriched in gene bodies, especially in exons, and correlates with gene expression. Direct genome-wide comparison of 5hmC distribution between embryonic stem cells and neurons reveals extensive differences, reflecting the functional disparity between these two cell types. Importantly, integrative analysis of 5hmC, overall DNA methylation and gene expression profiles of dentate granule neurons in vivo reveals the genome-wide antagonism between these two states of cytosine modifications, supporting a role for 5hmC in shaping the neuronal DNA methylome by promoting active DNA demethylation.
|
Keywords
dentate granule neuron
active DNA demethylation
TET
methylome
|
Corresponding Author(s):
Peng JIN
|
Issue Date: 13 May 2014
|
|
1 |
BhutaniN, BurnsD M, BlauH M (2011). DNA demethylation dynamics. Cell, 146(6): 866–872 doi: 10.1016/j.cell.2011.08.042 pmid: 21925312
|
2 |
BirdA (2002). DNA methylation patterns and epigenetic memory. Genes Dev, 16(1): 6–21 doi: 10.1101/gad.947102 pmid: 11782440
|
3 |
BoothM J, BrancoM R, FiczG, OxleyD, KruegerF, ReikW, BalasubramanianS (2012). Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science, 336(6083): 934–937 doi: 10.1126/science.1220671 pmid: 22539555
|
4 |
BrancoM R, FiczG, ReikW (2012). Uncovering the role of 5-hydroxymethylcytosine in the epigenome. Nat Rev Genet, 13(1): 7–13 pmid: 22083101
|
5 |
DawlatyM M, BreilingA, LeT, RaddatzG, BarrasaM I, ChengA W, GaoQ, PowellB E, LiZ, XuM, FaullK F, LykoF, JaenischR (2013). Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development. Dev Cell, 24(3): 310–323 doi: 10.1016/j.devcel.2012.12.015 pmid: 23352810
|
6 |
FengJ, ChangH, LiE, FanG (2005). Dynamic expression of de novo DNA methyltransferases Dnmt3a and Dnmt3b in the central nervous system. J Neurosci Res, 79(6): 734–746 doi: 10.1002/jnr.20404 pmid: 15672446
|
7 |
FengJ, ZhouY, CampbellS L, LeT, LiE, SweattJ D, SilvaA J, FanG (2010). Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat Neurosci, 13(4): 423–430 doi: 10.1038/nn.2514 pmid: 20228804
|
8 |
FrauerC, HoffmannT, BultmannS, CasaV, CardosoM C, AntesI, LeonhardtH (2011). Recognition of 5-hydroxymethylcytosine by the Uhrf1 SRA domain. PLoS ONE, 6(6): e21306 doi: 10.1371/journal.pone.0021306 pmid: 21731699
|
9 |
GlobischD, MünzelM, MüllerM, MichalakisS, WagnerM, KochS, BrücklT, BielM, CarellT (2010). Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS ONE, 5(12): e15367 doi: 10.1371/journal.pone.0015367 pmid: 21203455
|
10 |
GollM G, BestorT H (2005). Eukaryotic cytosine methyltransferases. Annu Rev Biochem, 74(1): 481–514 doi: 10.1146/annurev.biochem.74.010904.153721 pmid: 15952895
|
11 |
GotoK, NumataM, KomuraJ I, OnoT, BestorT H, KondoH (1994). Expression of DNA methyltransferase gene in mature and immature neurons as well as proliferating cells in mice. Differentiation, 56(1–2): 39–44 doi: 10.1046/j.1432-0436.1994.56120039.x pmid: 8026645
|
12 |
GuT P, GuoF, YangH, WuH P, XuG F, LiuW, XieZ G, ShiL, HeX, JinS G, IqbalK, ShiY G, DengZ, SzabóP E, PfeiferG P, LiJ, XuG L (2011). The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature, 477(7366): 606–610 doi: 10.1038/nature10443 pmid: 21892189
|
13 |
GuoJ U, MaD K, MoH, BallM P, JangM H, BonaguidiM A, BalazerJ A, EavesH L, XieB, FordE, ZhangK, MingG L, GaoY, SongH (2011a). Neuronal activity modifies the DNA methylation landscape in the adult brain. Nat Neurosci, 14(10): 1345–1351 doi: 10.1038/nn.2900 pmid: 21874013
|
14 |
GuoJ U, SuY, ShinJ H, ShinJ, LiH, XieB, ZhongC, HuS, LeT, FanG, ZhuH, ChangQ, GaoY, MingG L, SongH (2013). Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nat Neurosci, doi: 10.1038/nn.3607 pmid: 24362762
|
15 |
GuoJ U, SuY, ZhongC, MingG L, SongH (2011b). Emerging roles of TET proteins and 5-hydroxymethylcytosines in active DNA demethylation and beyond. Cell Cycle, 10(16): 2662–2668 doi: 10.4161/cc.10.16.17093 pmid: 21811096
|
16 |
GuoJ U, SuY, ZhongC, MingG L, SongH (2011c). Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell, 145(3): 423–434 doi: 10.1016/j.cell.2011.03.022 pmid: 21496894
|
17 |
HeY F, LiB Z, LiZ, LiuP, WangY, TangQ, DingJ, JiaY, ChenZ, LiL, SunY, LiX, DaiQ, SongC X, ZhangK, HeC, XuG L (2011). Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science, 333(6047): 1303–1307 doi: 10.1126/science.1210944 pmid: 21817016
|
18 |
InoueA, ZhangY (2011). Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos. Science, 334(6053): 194 doi: 10.1126/science.1212483 pmid: 21940858
|
19 |
ItoS, D’AlessioA C, TaranovaO V, HongK, SowersL C, ZhangY (2010). Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature, 466(7310): 1129–1133 doi: 10.1038/nature09303 pmid: 20639862
|
20 |
ItoS, ShenL, DaiQ, WuS C, CollinsL B, SwenbergJ A, HeC, ZhangY (2011). Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science, 333(6047): 1300–1303 doi: 10.1126/science.1210597 pmid: 21778364
|
21 |
KaasG A, ZhongC, EasonD E, RossD L, VachhaniR V, MingG L, KingJ R, SongH, SweattJ D (2013). TET1 controls CNS 5-methylcytosine hydroxylation, active DNA demethylation, gene transcription, and memory formation. Neuron, 79(6): 1086–1093 doi: 10.1016/j.neuron.2013.08.032 pmid: 24050399
|
22 |
KimT K, HembergM, GrayJ M, CostaA M, BearD M, WuJ, HarminD A, LaptewiczM, Barbara-HaleyK, KuerstenS, Markenscoff-PapadimitriouE, KuhlD, BitoH, WorleyP F, KreimanG, GreenbergM E (2010). Widespread transcription at neuronal activity-regulated enhancers. Nature, 465(7295): 182–187 doi: 10.1038/nature09033 pmid: 20393465
|
23 |
KohliR M, ZhangY (2013). TET enzymes, TDG and the dynamics of DNA demethylation. Nature, 502(7472): 472–479 doi: 10.1038/nature12750 pmid: 24153300
|
24 |
KriaucionisS, HeintzN (2009). The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science, 324(5929): 929–930 doi: 10.1126/science.1169786 pmid: 19372393
|
25 |
LienertF, WirbelauerC, SomI, DeanA, MohnF, SchóbelerD (2011). Identification of genetic elements that autonomously determine DNA methylation states. Nat Genet, 43(11): 1091–1097 doi: 10.1038/ng.946 pmid: 21964573
|
26 |
ListerR, PelizzolaM, DowenR H, HawkinsR D, HonG, Tonti-FilippiniJ, NeryJ R, LeeL, YeZ, NgoQ M, EdsallL, Antosiewicz-BourgetJ, StewartR, RuottiV, MillarA H, ThomsonJ A, RenB, EckerJ R (2009). Human DNA methylomes at base resolution show widespread epigenomic differences. Nature, 462(7271): 315–322 doi: 10.1038/nature08514 pmid: 19829295
|
27 |
MaD K, GuoJ U, MingG L, SongH (2009a). DNA excision repair proteins and Gadd45 as molecular players for active DNA demethylation. Cell Cycle, 8(10): 1526–1531 doi: 10.4161/cc.8.10.8500 pmid: 19377292
|
28 |
MaD K, PonnusamyK, SongM R, MingG L, SongH (2009b). Molecular genetic analysis of FGFR1 signalling reveals distinct roles of MAPK and PLCgamma1 activation for self-renewal of adult neural stem cells. Mol Brain, 2(1): 16 doi: 10.1186/1756-6606-2-16 pmid: 19505325
|
29 |
MeissnerA, MikkelsenT S, GuH, WernigM, HannaJ, SivachenkoA, ZhangX, BernsteinB E, NusbaumC, JaffeD B, GnirkeA, JaenischR, LanderE S (2008). Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature, 454(7205): 766–770 pmid: 18600261
|
30 |
MellénM, AyataP, DewellS, KriaucionisS, HeintzN (2012). MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell, 151(7): 1417–1430 doi: 10.1016/j.cell.2012.11.022 pmid: 23260135
|
31 |
MillerC A, SweattJ D (2007). Covalent modification of DNA regulates memory formation. Neuron, 53(6): 857–869 doi: 10.1016/j.neuron.2007.02.022 pmid: 17359920
|
32 |
PastorW A, AravindL, RaoA (2013). TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat Rev Mol Cell Biol, 14(6): 341–356 doi: 10.1038/nrm3589 pmid: 23698584
|
33 |
PastorW A, PapeU J, HuangY, HendersonH R, ListerR, KoM, McLoughlinE M, BrudnoY, MahapatraS, KapranovP, TahilianiM, DaleyG Q, LiuX S, EckerJ R, MilosP M, AgarwalS, RaoA (2011). Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature, 473(7347): 394–397 doi: 10.1038/nature10102 pmid: 21552279
|
34 |
RudenkoA, DawlatyM M, SeoJ, ChengA W, MengJ, LeT, FaullK F, JaenischR, TsaiL H (2013). Tet1 is critical for neuronal activity-regulated gene expression and memory extinction. Neuron, 79(6): 1109–1122 doi: 10.1016/j.neuron.2013.08.003 pmid: 24050401
|
35 |
ShuklaS, KavakE, GregoryM, ImashimizuM, ShutinoskiB, KashlevM, OberdoerfferP, SandbergR, OberdoerfferS (2011). CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature, 479(7371): 74–79 doi: 10.1038/nature10442 pmid: 21964334
|
36 |
SongC X, SzulwachK E, DaiQ, FuY, MaoS Q, LinL, StreetC, LiY, PoidevinM, WuH, GaoJ, LiuP, LiL, XuG L, JinP, HeC (2013). Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming. Cell, 153(3): 678–691 doi: 10.1016/j.cell.2013.04.001 pmid: 23602153
|
37 |
SongC X, SzulwachK E, FuY, DaiQ, YiC, LiX, LiY, ChenC H, ZhangW, JianX, WangJ, ZhangL, LooneyT J, ZhangB, GodleyL A, HicksL M, LahnB T, JinP, HeC (2011). Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat Biotechnol, 29(1): 68–72 doi: 10.1038/nbt.1732 pmid: 21151123
|
38 |
SpruijtC G, GnerlichF, SmitsA H, PfaffenederT, JansenP W, BauerC, MünzelM, WagnerM, MüllerM, KhanF, EberlH C, MensingaA, BrinkmanA B, LephikovK, MüllerU, WalterJ, BoelensR, van IngenH, LeonhardtH, CarellT, VermeulenM (2013). Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell, 152(5): 1146–1159 doi: 10.1016/j.cell.2013.02.004 pmid: 23434322
|
39 |
StadlerM B, MurrR, BurgerL, IvanekR, LienertF, SchölerA, van NimwegenE, WirbelauerC, OakeleyE J, GaidatzisD, TiwariV K, SchübelerD (2011a). DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature, 480(7378): 490–495 pmid: 22170606
|
40 |
StadlerM B, MurrR, BurgerL, IvanekR, LienertF, SchölerA, van NimwegenE, WirbelauerC, OakeleyE J, GaidatzisD, TiwariV K, SchübelerD (2011b). DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature, 480(7378): 490–495 pmid: 22170606
|
41 |
SzulwachK E, LiX, LiY, SongC X, HanJ W, KimS, NamburiS, HermetzK, KimJ J, RuddM K, YoonY S, RenB, HeC, JinP (2011a). Integrating 5-hydroxymethylcytosine into the epigenomic landscape of human embryonic stem cells. PLoS Genet, 7(6): e1002154 doi: 10.1371/journal.pgen.1002154 pmid: 21731508
|
42 |
SzulwachK E, LiX, LiY, SongC X, WuH, DaiQ, IrierH, UpadhyayA K, GearingM, LeveyA I, VasanthakumarA, GodleyL A, ChangQ, ChengX, HeC, JinP (2011b). 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat Neurosci, 14(12): 1607–1616 doi: 10.1038/nn.2959 pmid: 22037496
|
43 |
TahilianiM, KohK P, ShenY, PastorW A, BandukwalaH, BrudnoY, AgarwalS, IyerL M, LiuD R, AravindL, RaoA (2009). Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science, 324(5929): 930–935 doi: 10.1126/science.1170116 pmid: 19372391
|
44 |
ValinluckV, SowersL C (2007). Endogenous cytosine damage products alter the site selectivity of human DNA maintenance methyltransferase DNMT1. Cancer Res, 67(3): 946–950 doi: 10.1158/0008-5472.CAN-06-3123 pmid: 17283125
|
45 |
WangF, YangY, LinX, WangJ Q, WuY S, XieW, WangD, ZhuS, LiaoY Q, SunQ, YangY G, LuoH R, GuoC, HanC, TangT S (2013). Genome-wide loss of 5-hmC is a novel epigenetic feature of Huntington’s disease. Hum Mol Genet, 22(18): 3641–3653 doi: 10.1093/hmg/ddt214 pmid: 23669348
|
46 |
WuS C, ZhangY (2010). Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol, 11(9): 607–620 doi: 10.1038/nrm2950 pmid: 20683471
|
47 |
XuY, WuF, TanL, KongL, XiongL, DengJ, BarberaA J, ZhengL, ZhangH, HuangS, MinJ, NicholsonT, ChenT, XuG, ShiY, ZhangK, ShiY G (2011). Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells. Mol Cell, 42(4): 451–464 doi: 10.1016/j.molcel.2011.04.005 pmid: 21514197
|
48 |
YamaguchiS, ShenL, LiuY, SendlerD, ZhangY (2013). Role of Tet1 in erasure of genomic imprinting. Nature, 504(7480): 460–464 doi: 10.1038/nature12805 pmid: 24291790
|
49 |
YaoB, LinL, StreetR C, ZalewskiZ A, GallowayJ N, WuH, NelsonD L, JinP (2013). Genome-wide alteration of 5-hydroxymethylcytosine in a mouse model of fragile X-associated tremor/ataxia syndrome. Hum Mol Genet, (Oct): 20 (Epub ahead of print) pmid: 24108107
|
50 |
YuM, HonG C, SzulwachK E, SongC X, ZhangL, KimA, LiX, DaiQ, ShenY, ParkB, MinJ H, JinP, RenB, HeC (2012). Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell, 149(6): 1368–1380 doi: 10.1016/j.cell.2012.04.027 pmid: 22608086
|
51 |
ZhangH, ZhangX, ClarkE, MulcaheyM, HuangS, ShiY G (2010). TET1 is a DNA-binding protein that modulates DNA methylation and gene transcription via hydroxylation of 5-methylcytosine. Cell Res, 20(12): 1390–1393 doi: 10.1038/cr.2010.156 pmid: 21079648
|
52 |
ZhangR R, CuiQ Y, MuraiK, LimY C, SmithZ D, JinS, YeP, RosaL, LeeY K, WuH P, LiuW, XuZ M, YangL, DingY Q, TangF, MeissnerA, DingC, ShiY, XuG L (2013). Tet1 regulates adult hippocampal neurogenesis and cognition. Cell Stem Cell, 13(2): 237–245 doi: 10.1016/j.stem.2013.05.006 pmid: 23770080
|
53 |
ZhuJ K (2009). Active DNA demethylation mediated by DNA glycosylases. Annu Rev Genet, 43(1): 143–166 doi: 10.1146/annurev-genet-102108-134205 pmid: 19659441
|
54 |
HahnM A, QiuR, WuX, LiA X, ZhangH, WangJ, JuiJ, JinS G, JiangY, PfeiferG P, LuQ (2013). Dynamics of 5-hydroxymethylcytosine and chromatin marks in Mammalian neurogenesis. Cell Rep, 3: 291–300
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|