Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2014, Vol. 9 Issue (3) : 216-224    https://doi.org/10.1007/s11515-014-1304-4
REVIEW
Neurotrophin signaling and visceral hypersensitivity
Li-Ya QIAO()
Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
 Download: PDF(181 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Neurotrophin family are traditionally recognized for their nerve growth promoting function and are recently identified as crucial factors in regulating neuronal activity in the central and peripheral nervous systems. The family members including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) are reported to have distinct roles in the development and maintenance of sensory phenotypes in normal states and in the modulation of sensory activity in disease. This paper highlights receptor tyrosine kinase (Trk) -mediated signal transduction by which neurotrophins regulate neuronal activity in the visceral sensory reflex pathways with emphasis on the distinct roles of NGF and BDNF signaling in physiologic and pathophysiological processes. Viscero-visceral cross-organ sensitization exists widely in human diseases. The role of neurotrophins in mediating neural cross talk and interaction in primary afferent neurons in the dorsal root ganglia (DRG) and neurotrophin signal transduction in the context of cross-organ sensitization are also discussed.

Keywords neurotrophin signal, transduction visceral, hypersensitivity, cross-sensitization     
Corresponding Author(s): Li-Ya QIAO   
Issue Date: 24 June 2014
 Cite this article:   
Li-Ya QIAO. Neurotrophin signaling and visceral hypersensitivity[J]. Front. Biol., 2014, 9(3): 216-224.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-014-1304-4
https://academic.hep.com.cn/fib/EN/Y2014/V9/I3/216
1 AlagiriM, ChottinerS, RatnerV, SladeD, HannoP M (1997). Interstitial cystitis: Unexplained associations with other chronic disease and pain syndromes. Urology, 49(5 5A): 52-57
doi: 10.1016/S0090-4295(99)80332-X
2 AllenA M, SabanR (2010). Model for chronic overexpression of NGF challenges old paradigms: focus on “overexpression of NGF in mouse urothelium leads to neuronal hyperinnervation, pelvic sensitivity, and changes in urinary bladder function”. Am J Physiol Regul Integr Comp Physiol, 298(3): R532-R533
doi: 10.1152/ajpregu.00001.2010
3 ApplebaumA E, VanceW H, CoggeshallR E (1980). Segmental Localization of Sensory Cells That Innervate the Bladder. J Comp Neurol, 192(2): 203-209
doi: 10.1002/cne.901920202
4 AvenL, Paez-CortezJ, AcheyR, KrishnanR, Ram-MohanS, CruikshankW W, FineA, AiX (2014). An NT4/TrkB-dependent increase in innervation links early-life allergen exposure to persistent airway hyperreactivity. FASEB J, 28(2): 897-907
doi: 10.1096/fj.13-238212
5 BaradaK A, MouradF H, SawahS I, KhouryC, Safieh-GarabedianB, NassarC F, TawilA, JurjusA, SaadéN E (2007). Up-regulation of nerve growth factor and interleukin-10 in inflamed and non-inflamed intestinal segments in rats with experimental colitis. Cytokine, 37(3): 236-245
doi: 10.1016/j.cyto.2007.04.005
6 BardeY A, EdgarD, ThoenenH (1982). Purification of a new neurotrophic factor from mammalian brain. EMBO J, 1(5): 549-553
7 Ben-AmiH, GinesinY, BeharD M, FischerD (2002). Diagnosis and treatment of urinary tract complications in Crohn's disease: An experience over 15 years. Can J Gastroenterol, 16(4): 225-229
8 BennS C, CostiganM, TateS, FitzgeraldM, WoolfC J (2001). Developmental expression of the TTX-resistant voltage-gated sodium channels Nav1.8 (SNS) and Nav1.9 (SNS2) in primary sensory neurons. J Neurosci, 21(16): 6077-6085
9 BergerR E (2009). Inflammation in the Uterus Induces Phosphorylated Extracellular Signal-Regulated Kinase and Substance P Immunoreactivity in Dorsal Root Ganglia Neurons Innervating Both Uterus and Colon in Rats Comment. J Urol, 181(3): 1136-1136
doi: 10.1016/j.juro.2008.11.060
10 BielefeldtK, LambK, GebhartG F (2006). Convergence of sensory pathways in the development of somatic and visceral hypersensitivity. Am J Physiol Gastrointest Liver Physiol, 291(4): G658-G665
doi: 10.1152/ajpgi.00585.2005
11 BoniniP, PierucciD, CicconiS, PorzioO, LauroR, MarlierL NJL, BorboniP (2001). Neurotrophins and neurotrophin receptors mRNAs expression in pancreatic islets and insulinoma cell lines. JOP, 2(3): 105-111
12 BronR, KlesseL J, ShahK, ParadaL F, WinterJ (2003). Activation of Ras is necessary and sufficient for upregulation of vanilloid receptor type 1 in sensory neurons by neurotrophic factors. Mol Cell Neurosci, 22(1): 118-132
doi: 10.1016/S1044-7431(02)00022-2
13 BrumovskyP R, GebhartG F (2010). Visceral organ cross-sensitization- an integrated perspective. Auton Neurosci, 153(1-2): 106-115
doi: 10.1016/j.autneu.2009.07.006
14 CaritoV, PingitoreA, CioneE, PerrottaI, MancusoD, RussoA, GenchiG, CaroleoM C (2012). Localization of nerve growth factor (NGF) receptors in the mitochondrial compartment: characterization and putative role. Biochim Biophys Acta, 1820(2): 96-103
doi: 10.1016/j.bbagen.2011.10.015
15 ChabanV V(2008). Visceral sensory neurons that innervate both uterus and colon express nociceptive TRPv1 and P2X3 receptors in rats. Ethn Dis, 18(2 Suppl 2): S2-20-24
16 ChenC L, BroomD C, LiuY, de NooijJ C, LiZ, CenC, SamadO A, JessellT M, WoolfC J, MaQ (2006). Runx1 determines nociceptive sensory neuron phenotype and is required for thermal and neuropathic pain. Neuron, 49(3): 365-377
doi: 10.1016/j.neuron.2005.10.036
17 ChristiansonJ A, LiangR M, UstinovaE E, DavisB M, FraserM O, PezzoneM A (2007). Convergence of bladder and colon sensory innervation occurs at the primary afferent level. Pain, 128(3): 235-243
doi: 10.1016/j.pain.2006.09.023
18 ChungC W, ZhangQ L, QiaoL Y (2010). Endogenous Nerve Growth Factor Regulates Collagen Expression and Bladder Hypertrophy through Akt and MAPK Pathways during Cystitis. J Biol Chem, 285(6): 4206-4212
doi: 10.1074/jbc.M109.040444
19 CruzC D (2014). Neurotrophins in bladder function: what do we know and where do we go from here? Neurourol Urodyn, 33(1): 39-45
doi: 10.1002/nau.22438
20 DalyD M, NocchiL, GrundyD (2013). Highlights in basic autonomic neurosciences: cross-organ sensitization between the bladder and bowel. Auton Neurosci, 179(1-2): 1-4
doi: 10.1016/j.autneu.2013.05.445
21 DaviesA M, BandtlowC, HeumannR, KorschingS, RohrerH, ThoenenH (1987). Timing and site of nerve growth-factor synthesis in developing skin in relation to innervation and expression of the receptor. Nature, 326(6111): 353-358
doi: 10.1038/326353a0
22 DelafoyL, GelotA, EschalierA, BertrandC, DohertyA M, DiopL,(2006). Interactive involvement of brain derived neurotrophic factor, nerve growth factor, and calcitonin gene related peptide in colonic hypersensitivity in the rat. Gut, 55(7): 940-945
doi: 10.1136/gut.2005.064063
23 DelcroixJ D, VallettaJ S, WuC, HuntS J, KowalA S, MobleyW C (2003). NGF signaling in sensory neurons: Evidence that early endosomes carry NGF retrograde signals. Neuron, 39(1): 69-84
doi: 10.1016/S0896-6273(03)00397-0
24 DinisP, CharruaA, AvelinoA, YaqoobM, BevanS, NagyI, CruzF (2004). Anandamide-evoked activation of vanilloid receptor 1 contributes to the development of bladder hyperreflexia and nociceptive transmission to spinal dorsal horn neurons in cystitis. J Neurosci, 24(50): 11253-11263
doi: 10.1523/JNEUROSCI.2657-04.2004
25 DonnererJ, SchuligoiR, SteinC (1992). Increased content and transport of substance P and calcitonin gene-related peptide in sensory nerves innervating inflamed tissue: evidence for a regulatory function of nerve growth factor in vivo. Neuroscience, 49(3): 693-698
doi: 10.1016/0306-4522(92)90237-V
26 DonnererJ, SteinC (1992). Evidence for an increase in the release of CGRP from sensory nerves during inflammation. Ann N Y Acad Sci, 657(1 Calcitonin Ge): 505-506
doi: 10.1111/j.1749-6632.1992.tb22814.x
27 EdwardsR H, RutterW J, HanahanD (1989). Directed expression of NGF to pancreatic beta cells in transgenic mice leads to selective hyperinnervation of the islets. Cell, 58(1): 161-170
doi: 10.1016/0092-8674(89)90412-1
28 ElliottJ, MacLellanA, SainiJ K, ChanJ, ScottS, KawajaM D (2009). Transgenic mice expressing nerve growth factor in smooth muscle cells. Neuroreport, 20(3): 223-227
doi: 10.1097/WNR.0b013e32831add70
29 ErsahinM, OzdemirZ, ÖzsavcıD, AkakınD, YeğenB Ç, ReiterR J, ŞenerG (2012). Melatonin treatment protects against spinal cord injury induced functional and biochemical changes in rat urinary bladder. J Pineal Res, 52(3): 340-348
doi: 10.1111/j.1600-079X.2011.00948.x
30 EvansR J, MoldwinR M, CossonsN, DarekarA, MillsI W, ScholfieldD (2011). Proof of Concept Trial of Tanezumab for the Treatment of Symptoms Associated With Interstitial Cystitis. J Urol, 185(5): 1716-1721
doi: 10.1016/j.juro.2010.12.088
31 FitzgeraldJ J, UstinovaE, KoronowskiK B, de GroatW C, PezzoneM A (2013). Evidence for the role of mast cells in colon-bladder cross organ sensitization. Autonomic Neuroscience-Basic & Clinical, 173(1-2): 6-13
doi: 10.1016/j.autneu.2012.09.002
32 GriderJ R, PilandB E, GulickM A, QiaoL Y (2006). Brain-derived neurotrophic factor augments peristalsis by augmenting 5-HT and calcitonin gene-related peptide release. Gastroenterology, 130(3): 771-780
doi: 10.1053/j.gastro.2005.12.026
33 GruartA, SciarrettaC, Valenzuela-HarringtonM, Delgado-GarciaJ M, MinichielloL (2007). Mutation at the TrkB PLC gamma-docking site affects hippocampal LTP and associative learning in conscious mice. Learn Mem, 14(1-2): 54-62
doi: 10.1101/lm.428307
34 GueriosS D, WangZ Y, BjorlingD E (2006). Nerve growth factor mediates peripheral mechanical hypersensitivity that accompanies experimental cystitis in mice. Neurosci Lett, 392(3): 193-197
doi: 10.1016/j.neulet.2005.09.026
35 GuoA, VulchanovaL, WangJ, LiX, EldeR (1999). Immunocytochemical localization of the vanilloid receptor 1 (VR1): relationship to neuropeptides, the P2X(3) purinoceptor and IB4 binding sites. Eur J Neurosci, 11(3): 946-958
doi: 10.1046/j.1460-9568.1999.00503.x
36 HaJ, LoK W, MyersK R, CarrT M, HumsiM K, RasoulB A, SegalR A, PfisterK K (2008). A neuron-specific cytoplasmic dynein isoform preferentially transports TrkB signaling endosomes. J Cell Biol, 181(6): 1027-1039
doi: 10.1083/jcb.200803150
37 HuangE J, ReichardtL F (2001). Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci, 24(1): 677-736
doi: 10.1146/annurev.neuro.24.1.677
38 HuangE J, ReichardtL F (2003). Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem, 72(1): 609-642
doi: 10.1146/annurev.biochem.72.121801.161629
39 HuangT, KrimmR E (2014). BDNF and NT4 play interchangeable roles in gustatory development. Dev Biol, 386(2): 308-320
doi: 10.1016/j.ydbio.2013.12.031
40 JiR R, SamadT A, JinS X, SchmollR, WoolfC J (2002). p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron, 36(1): 57-68
doi: 10.1016/S0896-6273(02)00908-X
41 KashibaH, UchidaY, SenbaE (2003). Distribution and colocalization of NGF and GDNF family ligand receptor mRNAs in dorsal root and nodose ganglion neurons of adult rats. Brain Res Mol Brain Res, 110(1): 52-62
doi: 10.1016/S0169-328X(02)00584-3
42 KashibaH, UedaY, UeyamaT, NemotoK, SenbaE (1997). Relationship between BDNF- and trk-expressing neurones in rat dorsal root ganglion: An analysis by in situ hybridization. Neuroreport, 8(5): 1229-1234
doi: 10.1097/00001756-199703240-00034
43 KayJ C, XiaC M, LiuM, ShenS, YuS J, ChungC, QiaoL Y (2013). Endogenous PI3K/Akt and NMDAR act independently in the regulation of CREB activity in lumbosacral spinal cord in cystitis. Exp Neurol, 250: 366-375
doi: 10.1016/j.expneurol.2013.10.015
44 KeastJ R, DegroatW C (1992). Segmental Distribution and Peptide Content of Primary Afferent Neurons Innervating the Urogenital Organs and Colon of Male-Rats. J Comp Neurol, 319(4): 615-623
doi: 10.1002/cne.903190411
45 KilicA, SonarS S, YildirimA O, FehrenbachH, NockherW A, RenzH(2011). Nerve growth factor induces type III collagen production in chronic allergic airway inflammation. J Allergy Clin Immunol, 128(5): 1058-1066e1051-1054
46 KorschingS (1993). The Neurotrophic Factor Concept- a Reexamination. J Neurosci, 13(7): 2739-2748
47 KrimmR F, DavisB M, NoelT, AlbersK M (2006). Overexpression of neurotrophin 4 in skin enhances myelinated sensory endings but does not influence sensory neuron number. J Comp Neurol, 498(4): 455-465
doi: 10.1002/cne.21074
48 LambK, GebhartG F, BielefeldtK (2004). Increased nerve growth factor expression triggers bladder overactivity. J Pain, 5(3): 150-156
doi: 10.1016/j.jpain.2004.01.001
49 LeeS L, KimJ K, KimD S, ChoH J (1999). Expression of mRNAs encoding full-length and truncated TrkB receptors in rat dorsal root ganglia and spinal cord following peripheral inflammation. Neuroreport, 10(13): 2847-2851
doi: 10.1097/00001756-199909090-00027
50 LeiQ, MalykhinaA P (2012). Colonic inflammation up-regulates voltage-gated sodium channels in bladder sensory neurons via activation of peripheral transient potential vanilloid 1 receptors. Neurogastroenterol Motil, 24(6): 575-e257
doi: 10.1111/j.1365-2982.2012.01910.x
51 LiJ C, MicevychP, McDonaldJ, RapkinA, ChabanV (2008). Inflammation in the uterus induces phosphorylated extracellular signal-regulated kinase and substance P immunoreactivity in dorsal root ganglia neurons innervating both uterus and colon in rats. J Neurosci Res, 86(12): 2746-2752
doi: 10.1002/jnr.21714
52 LinA, LourenssenS, StanzelR D P, BlennerhassettM G (2005). Nerve growth factor sensitivity is broadly distributed among myenteric neurons of the rat colon. J Comp Neurol, 490(2): 194-206
doi: 10.1002/cne.20654
53 LinY T, RoL S, WangH L, ChenJ C (2011). Up-regulation of dorsal root ganglia BDNF and trkB receptor in inflammatory pain: an in vivo and in vitro study. J Neuroinflammation, 8(1): 126
doi: 10.1186/1742-2094-8-126
54 LommatzschM, BraunA, MannsfeldtA, BotchkarevV A, BotchkarevaN V, PausR, FischerA, LewinG R, RenzH (1999). Abundant production of brain-derived neurotrophic factor by adult visceral epithelia- Implications for paracrine and target-derived neurotrophic functions. Am J Pathol, 155(4): 1183-1193
doi: 10.1016/S0002-9440(10)65221-2
55 LommatzschM, QuarcooD, Schulte-HerbrüggenO, WeberH, VirchowJ C, RenzH, BraunA (2005). Neurotrophins in murine viscera: a dynamic pattern from birth to adulthood. Int J Dev Neurosci, 23(6): 495-500
doi: 10.1016/j.ijdevneu.2005.05.009
56 LopesC, LiuZ J, XuY, MaQ (2012). Tlx3 and Runx1 Act in Combination to Coordinate the Development of a Cohort of Nociceptors, Thermoceptors, and Pruriceptors. J Neurosci, 32(28): 9706-9715
doi: 10.1523/JNEUROSCI.1109-12.2012
57 LuciniC, MaruccioL, GirolamoP, CastaldoL (2003). Brain-derived neurotrophic factor in higher vertebrate pancreas: immunolocalization in glucagon cells. Anat Embryol (Berl), 206(4): 311-318
58 MalykhinaA P (2007). Neural mechanisms of pelvic organ cross-sensitization. Neuroscience, 149(3): 660-672
doi: 10.1016/j.neuroscience.2007.07.053
59 MalykhinaA P, QinC, greenwood-van meerveld, foreman, lupu, akbarali(2006). Hyperexcitability of convergent colon and bladder dorsal root ganglion neurons after colonic inflammation: mechanism for pelvic organ cross-talk. Neurogastroenterol Motil, 18(10): 936-948
doi: 10.1111/j.1365-2982.2006.00807.x
60 MannionR J, CostiganM, DecosterdI, AmayaF, MaQ P, HolstegeJ C, JiR R, AchesonA, LindsayR M, WilkinsonG A, WoolfC J (1999). Neurotrophins: peripherally and centrally acting modulators of tactile stimulus-induced inflammatory pain hypersensitivity. Proc Natl Acad Sci USA, 96(16): 9385-9390
doi: 10.1073/pnas.96.16.9385
61 MatriconJ, MullerE, AccarieA, MeleineM, EtienneM, VoilleyN, BusserollesJ, EschalierA, LazdunskiM, BourduS, GelotA, ArdidD (2013). Peripheral contribution of NGF and ASIC1a to colonic hypersensitivity in a rat model of irritable bowel syndrome. Neurogastroenterol Motil, 25(11): e740-e754
doi: 10.1111/nmo.12199
62 MichaelG J, AverillS, NitkunanA, RattrayM, BennettD L H, YanQ, PriestleyJ V (1997). Nerve growth factor treatment increases brain-derived neurotrophic factor selectively in TrkA-expressing dorsal root ganglion cells and in their central terminations within the spinal cord. J Neurosci, 17(21): 8476-8490
63 MolliverD C, WrightD E, LeitnerM L, ParsadanianA S, DosterK, WenD, YanQ, SniderW D (1997). IB4-binding DRG neurons switch from NGF to GDNF dependence in early postnatal life. Neuron, 19(4): 849-861
doi: 10.1016/S0896-6273(00)80966-6
64 MoqrichA, EarleyT J, WatsonJ, AndahazyM, BackusC, Martin-ZancaD, WrightD E, ReichardtL F, PatapoutianA (2004). Expressing TrkC from the TrkA locus causes a subset of dorsal root ganglia neurons to switch fate. Nat Neurosci, 7(8): 812-818
doi: 10.1038/nn1283
65 MorganC, NadelhaftI, de GroatW C (1981). The distribution of visceral primary afferents from the pelvic nerve to Lissauer's tract and the spinal gray matter and its relationship to the sacral parasympathetic nucleus. J Comp Neurol, 201(3): 415-440
doi: 10.1002/cne.902010308
66 MulderryP K (1994). Neuropeptide Expression by Newborn and Adult-Rat Sensory Neurons in Culture- Effects of Nerve Growth-Factor and Other Neurotrophic Factors. Neuroscience, 59(3): 673-688
doi: 10.1016/0306-4522(94)90186-4
67 NaturaG, von BanchetG S, SchaibleH G (2005). Calcitonin gene-related peptide enhances TTX-resistant sodium currents in cultured dorsal root ganglion neurons from adult rats. Pain, 116(3): 194-204
doi: 10.1016/j.pain.2005.04.002
68 NazifO, TeichmanJ M, GebhartG F (2007). Neural upregulation in interstitial cystitis. Urology, 69(4 Suppl): 24-33
doi: 10.1016/j.urology.2006.08.1108
69 NgB K, ChenL, MandemakersW, CosgayaJ M, ChanJ R (2007). Anterograde transport and secretion of brain-derived neurotrophic factor along sensory axons promote Schwann cell myelination. J Neurosci, 27(28): 7597-7603
doi: 10.1523/JNEUROSCI.0563-07.2007
70 ObataK, NoguchiK (2006). BDNF in sensory neurons and chronic pain. Neurosci Res, 55(1): 1-10
doi: 10.1016/j.neures.2006.01.005
71 ObataK, YamanakaH, DaiY, TachibanaT, FukuokaT, TokunagaA, YoshikawaH, NoguchiK (2003). Differential activation of extracellular signal-regulated protein kinase in primary afferent neurons regulates brain-derived neurotrophic factor expression after peripheral inflammation and nerve injury. J Neurosci, 23(10): 4117-4126
72 PanX Q, GonzalezJ A, ChangS, ChackoS, WeinA J, MalykhinaA P (2010). Experimental colitis triggers the release of substance P and calcitonin gene-related peptide in the urinary bladder via TRPV1 signaling pathways. Exp Neurol, 225(2): 262-273
doi: 10.1016/j.expneurol.2010.05.012
73 PatelT D, JackmanA, RiceF L, KuceraJ, SniderW D (2000). Development of sensory neurons in the absence of NGF/TrkA signaling in vivo. Neuron, 25(2): 345-357
doi: 10.1016/S0896-6273(00)80899-5
74 PlourdeV, St-PierreS, QuirionR (1997). Calcitonin gene-related peptide in viscerosensitive response to colorectal distension in rats. Am J Physiol, 273(1 Pt 1): G191-G196
75 PodratzJ L, WindebankA J (2005). NGF rescues DRG neurons in vitro from oxidative damage produced by hemodialyzers. Neurotoxicology, 26(3): 343-350
doi: 10.1016/j.neuro.2005.01.003
76 PuntambekarP, MukherjeaD, JajooS, RamkumarV (2005). Essential role of Rac1/NADPH oxidase in nerve growth factor induction of TRPV1 expression. J Neurochem, 95(6): 1689-1703
doi: 10.1111/j.1471-4159.2005.03518.x
77 QiaoL Y, GriderJ R (2007). Up-regulation of calcitonin gene-related peptide and receptor tyrosine kinase TrkB in rat bladder afferent neurons following TNBS colitis. Exp Neurol, 204(2): 667-679
doi: 10.1016/j.expneurol.2006.12.024
78 QiaoL Y, GriderJ R (2010). Colitis elicits differential changes in the expression levels of receptor tyrosine kinase TrkA and TrkB in colonic afferent neurons: a possible involvement of axonal transport. Pain, 151(1): 117-127
doi: 10.1016/j.pain.2010.06.029
79 QiaoL Y, GulickM A, bowers kuemmerle grider (2008). Differential changes in brain-derived neurotrophic factor and extracellular signal-regulated kinase in rat primary afferent pathways with colitis. Neurogastroenterol Motil, 20(8): 928-938
doi: 10.1111/j.1365-2982.2008.01119.x
80 QiaoL Y, YuS J, KayJ C, XiaC M (2013). In Vivo Regulation of Brain-Derived Neurotrophic Factor in Dorsal Root Ganglia Is Mediated by Nerve Growth Factor-Triggered Akt Activation during Cystitis. PLoS ONE, 8(11): e81547
doi: 10.1371/journal.pone.0081547
81 QinC, MalykhinaA P, AkbaraliH I, ForemanR D (2005). Cross-organ sensitization of lumbosacral spinal neurons receiving urinary bladder input in rats with inflamed colon. Gastroenterology, 129(6): 1967-1978
doi: 10.1053/j.gastro.2005.09.013
82 RosenbaumT, VidaltamayoR, Sanchez-SotoM C, ZentellaA, HiriartM (1998). Pancreatic beta cells synthesize and secrete nerve growth factor. Proc Natl Acad Sci USA, 95(13): 7784-7788
doi: 10.1073/pnas.95.13.7784
83 RozaC, ReehP W (2001). Substance P, calcitonin gene related peptide and PGE2 co-released from the mouse colon: a new model to study nociceptive and inflammatory responses in viscera, in vitro. Pain, 93(3): 213-219
doi: 10.1016/S0304-3959(01)00318-9
84 RuizG, BanosJ E (2005). The effect of endoneurial nerve growth factor on calcitonin gene-related peptide expression in primary sensory neurons. Brain Res, 1042(1): 44-52
doi: 10.1016/j.brainres.2005.02.009
85 SainiR, GonzalezR R, TeA E (2008). Chronic pelvic pain syndrome and the overactive bladder: the inflammatory link. Curr Urol Rep, 9(4): 314-319
doi: 10.1007/s11934-008-0054-8
86 SchnegelsbergB, SunT T, CainG, BhattacharyaA, NunnP A, FordA P D W, VizzardM A, CockayneD A (2010). Overexpression of NGF in mouse urothelium leads to neuronal hyperinnervation, pelvic sensitivity, and changes in urinary bladder function. Am J Physiol Regul Integr Comp Physiol, 298(3): R534-R547
doi: 10.1152/ajpregu.00367.2009
87 SilossantiagoI, MolliverD C, OzakiS, SmeyneR J, FaganA M, BarbacidM, SniderW D (1995). Non-TrkA-expressing small DRG neurons are lost in TrkA deficient mice. J Neurosci, 15(9): 5929-5942
88 SkaperS D, PollockM, FacciL (2001). Mast cells differentially express and release active high molecular weight neurotrophins. Brain Res Mol Brain Res, 97(2): 177-185
doi: 10.1016/S0169-328X(01)00314-X
89 SkeldalS, SykesA M, GlerupS, MatusicaD, PalstraN, AutioH, BoskovicZ, MadsenP, CastrenE, NykjaerA, CoulsonE J (2012). Mapping of the Interaction Site between Sortilin and the p75 Neurotrophin Receptor Reveals a Regulatory Role for the Sortilin Intracellular Domain in p75 Neurotrophin Receptor Shedding and Apoptosis. J Biol Chem, 287(52): 43798-43809
doi: 10.1074/jbc.M112.374710
90 StanzelR D, LourenssenS, BlennerhassettM G (2008). Inflammation causes expression of NGF in epithelial cells of the rat colon. Exp Neurol, 211(1): 203-213
doi: 10.1016/j.expneurol.2008.01.028
91 SteinA T, Ufret-VincentyC A, HuaL, SantanaL F, GordonS E (2006). Phosphoinositide 3-kinase binds to TRPV1 and mediates NGF-stimulated TRPV1 trafficking to the plasma membrane. J Gen Physiol, 128(5): 509-522
doi: 10.1085/jgp.200609576
92 SteinkampM, SchulteN, SpaniolU, PflugerC, HartmannC, KirschJ, Von BoyenG (2012). Brain derived neurotrophic factor inhibits apoptosis in enteric glia during gut inflammation. Med Sci Monit, 18(4): Br117-Br122
93 SterneG D, BrownR A, GreenC J, TerenghiG (1998). NT-3 modulates NPY expression in primary sensory neurons following peripheral nerve injury. J Anat, 193(2): 273-281
doi: 10.1046/j.1469-7580.1998.19320273.x
94 SwanwickC C, HarrisonM B, KapurJ (2004). Synaptic and extrasynaptic localization of brain-derived neurotrophic factor and the tyrosine kinase B receptor in cultured hippocampal neurons. J Comp Neurol, 478(4): 405-417
doi: 10.1002/cne.20295
95 TenderG C, KayeA D, LiY Y, CuiJ G (2011). Neurotrophin-3 and tyrosine kinase C have modulatory effects on neuropathic pain in the rat dorsal root ganglia. Neurosurgery, 68(4): 1048-1055
96 TheissA L, FruchtmanS, LundP K (2004). Growth factors in inflammatory bowel disease: the actions and interactions of growth hormone and insulin-like growth factor-I. Inflamm Bowel Dis, 10(6): 871-880
doi: 10.1097/00054725-200411000-00021
97 TonraJ R, CurtisR, WangV, ClifferK D, ParkJ S, TimmersA, NguyenT, LindsayR M, AchesonA, DistefanoP S (1998). Axotomy upregulates the anterograde transport and expression of brain-derived neurotrophic factor by sensory neurons. J Neurosci, 18(11): 4374-4383
98 TyagiP, BanerjeeR, BasuS, YoshimuraN, ChancellorM, HuangL (2006). Intravesical antisense therapy for cystitis using TAT-peptide nucleic acid conjugates. Mol Pharm, 3(4): 398-406
doi: 10.1021/mp050093x
99 Valdovinos-FloresC, GonsebattM E (2013). Nerve growth factor exhibits an antioxidant and an autocrine activity in mouse liver that is modulated by buthionine sulfoximine, arsenic, and acetaminophen. Free Radic Res, 47(5): 404-412
doi: 10.3109/10715762.2013.783210
100 VazS H, JorgensenT N, Cristovao-FerreiraS, DuflotS, RibeiroJ A, GetherU, SebastiaoA M (2011). Brain-derived Neurotrophic Factor (BDNF) Enhances GABA Transport by Modulating the Trafficking of GABA Transporter-1 (GAT-1) from the Plasma Membrane of Rat Cortical Astrocytes. J Biol Chem, 286(47): 40464-40476
doi: 10.1074/jbc.M111.232009
101 WangX, ButowtR, VaskoM R, von BartheldC S (2002). Mechanisms of the release of anterogradely transported neurotrophin-3 from axon terminals. J Neurosci, 22(3): 931-945
102 WatsonF L, HeerssenH M, BhattacharyyaA, KlesseL, LinM Z, SegalR A (2001). Neurotrophins use the Erk5 pathway to mediate a retrograde survival response. Nat Neurosci, 4(10): 981-988
doi: 10.1038/nn720
103 WehrmanT, HeX L, RaabB, DukipattiA, BlauH, GarciaK C (2007). Structural and mechanistic insights into nerve growth factor interactions with the TrkA and p75 receptors. Neuron, 53(1): 25-38
doi: 10.1016/j.neuron.2006.09.034
104 WhorwellP J, LuptonE W, ErduranD, WilsonK (1986). Bladder Smooth-Muscle Dysfunction in Patients with Irritable-Bowel-Syndrome. Gut, 27(9): 1014-1017
doi: 10.1136/gut.27.9.1014
105 Wilson-GerwingT D, DmyterkoM V, ZochodneD W, JohnstonJ W, VergeV M (2005). Neurotrophin-3 suppresses thermal hyperalgesia associated with neuropathic pain and attenuates transient receptor potential vanilloid receptor-1 expression in adult sensory neurons. J Neurosci, 25(3): 758-767
doi: 10.1523/JNEUROSCI.3909-04.2005
106 Wilson-GerwingT D, StuckyC L, McCombG W, VergeV M K (2008). Neurotrophin-3 significantly reduces sodium channel expression linked to neuropathic pain states. Exp Neurol, 213(2): 303-314
doi: 10.1016/j.expneurol.2008.06.002
107 WrightD E, SniderW D (1995). Neurotrophin receptor mRNA expression defines distinct populations of neurons in rat dorsal root ganglia. J Comp Neurol, 351(3): 329-338
doi: 10.1002/cne.903510302
108 XiaC M, GulickM A, YuS J, GriderJ R, MurthyK S, KuemmerleJ F, AkbaraliH I, QiaoL Y (2012). Up-regulation of brain-derived neurotrophic factor in primary afferent pathway regulates colon-to-bladder cross-sensitization in rat. J Neuroinflammation, 9(1): 30
doi: 10.1186/1742-2094-9-30
109 YoshimuraN, BennettN E, HayashiY, OgawaT, NishizawaO, ChancellorM B, de GroatW C, SekiS (2006). Bladder overactivity and hyperexcitability of bladder afferent neurons after intrathecal delivery of nerve growth factor in rats. J Neurosci, 26(42): 10847-10855
doi: 10.1523/JNEUROSCI.3023-06.2006
110 YuS J, GriderJ R, GulickM A, XiaC, ShenS, QiaoL Y (2012). Up-regulation of brain-derived neurotrophic factor is regulated by extracellular signal-regulated protein kinase 5 and by nerve growth factor retrograde signaling in colonic afferent neurons in colitis. Exp Neurol, 238(2): 209-217
doi: 10.1016/j.expneurol.2012.08.007
111 YuS J, XiaC M, KayJ C, QiaoL Y (2012). Activation of extracellular signal-regulated protein kinase 5 is essential for cystitis- and nerve growth factor-induced calcitonin gene-related peptide expression in sensory neurons. Mol Pain,8: 48
doi: 10.1186/1744-8069-8-48
112 YuY B, ZuoX L, ZhaoQ J, ChenF X, YangJ, DongY Y, WangP, LiY Q (2012). Brain-derived neurotrophic factor contributes to abdominal pain in irritable bowel syndrome. Gut, 61(5): 685-694
doi: 10.1136/gutjnl-2011-300265
113 ZampieriN, ChaoM V (2004). Structural biology. The p75 NGF receptor exposed. Science, 304(5672): 833-834
doi: 10.1126/science.1098110
114 ZhangQ L, QiaoL Y (2012). Regulation of IGF-1 but not TGF-beta 1 by NGF in the smooth muscle of the inflamed urinary bladder. Regul Pept, 177(1-3): 73-78
doi: 10.1016/j.regpep.2012.05.088
115 ZhangX M, HuangJ H, McNaughtonP A (2005). NGF rapidly increases membrane expression of TRPV1 heat-gated ion channels. EMBO J, 24(24): 4211-4223
doi: 10.1038/sj.emboj.7600893
116 ZhangY H, ChiX X, NicolG D (2008). Brain-derived neurotrophic factor enhances the excitability of rat sensory neurons through activation of the p75 neurotrophin receptor and the sphingomyelin pathway. Journal of Physiology-London, 586(13): 3113-3127
doi: 10.1113/jphysiol.2008.152439
117 ZhouL J, ZhongY, RenW J, LiY Y, ZhangT, LiuX G (2008). BDNF induces late-phase LTP of C-fiber evoked field potentials in rat spinal dorsal horn. Exp Neurol, 212(2): 507-514
doi: 10.1016/j.expneurol.2008.04.034
118 ZhuW G, OxfordG S (2007). Phosphoinositide-3-kinase and mitogen activated protein kinase signaling pathways mediate acute NGF sensitization of TRPV1. Mol Cell Neurosci, 34(4): 689-700
doi: 10.1016/j.mcn.2007.01.005
119 ZvaraP, VizzardM A (2007). Exogenous overexpression of nerve growth factor in the urinary bladder produces bladder overactivity and altered micturition circuitry in the lumbosacral spinal cord. BMC Physiol, 7(1): 9
doi: 10.1186/1472-6793-7-9
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed