Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2014, Vol. 9 Issue (3) : 234-243    https://doi.org/10.1007/s11515-014-1311-5
RESEARCH ARTICLE
Proteomic analysis of differentially expressed proteins between Xiangyou 15 variety and the mutant M15
Zhen-Qian ZHANG1,2,Gang XIAO1,2,Rui-Yang LIU1,Tai-Long TAN1,2,Chun-Yun GUAN1,2,*(),Guo-Huai WANG1,2,She-Yuan CHEN1,Xian-Meng WU1,Mei GUAN1,Qin LI2
1. Hunan Branch of National Oilseed Crops Improvement Centre, Hunan Agricultural University, Changsha, Hunan 410128, China
2. Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization,Changsha, Hunan 410128, China
 Download: PDF(602 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A high oleic acid rapeseed material M15 (derived from Xiangyou 15 variety) has been received more attention for its significant effect for human health. And it has almost the same physiological characteristic with Xiangyou 15 variety. To find out the difference between high oleic acid rapeseed material and Xiangyou 15 seedling, a comparative proteomic approach based on 2-DE and mass spectrometry was adopted. A total of 277 protein spots showed a significant change in intensity by more than 2.0-fold from M15 compared with Xiangyou 15 variety. Among them, 48 spots that changed at least 3.0-fold were excised from gels and successfully identified by MALDI-TOF/TOF MS. The identified proteins involved in metabolism of carbohydrate and energy (75%), stress and defense (8.3%), photosynthesis (6.3%), protein metabolism (2.1%) and other functions (8.3%). Then real-time quantitative PCR (qPCR) analysis was used to verify the expression levels of differentially expressed proteins, but the results did well agree with the proteomic results. In this work, most of the proteins involved in metabolism of carbohydrate and energy have higher expression in M15, which may reveal M15 has higher metabolism ability. These results provided much information to understand the differences between high oleic acid rapeseed material and Xiangyou 15 variety, which will be useful to screen high oleic rapeseed materials in seedling period.

Keywords proteomic analysis      high oleic acid      2-D electrophoresis      real-time quantitative PCR     
Corresponding Author(s): Chun-Yun GUAN   
Issue Date: 24 June 2014
 Cite this article:   
Tai-Long TAN,Chun-Yun GUAN,Guo-Huai WANG, et al. Proteomic analysis of differentially expressed proteins between Xiangyou 15 variety and the mutant M15[J]. Front. Biol., 2014, 9(3): 234-243.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-014-1311-5
https://academic.hep.com.cn/fib/EN/Y2014/V9/I3/234
Fig.1  The 15-day-seedling of different rapeseed. (A) The 15-day-seedling of Xiangyou 15 variety. (B) The 15-day-seedling of M15
StepVoltage (V)Voltage increase modelTime
S150Accelerated12 h
S2100Accelerated30 min
S3250Accelerated30 min
S4500Accelerated30 min
S51000Accelerated30 min
S64000Linear2 h
S710000Linear3 h
S810000Linear70000 VHr
S9500AcceleratedAny time
Tab.1  Running conditions of isoelectric focusing
Gene nameGI NumberSequence (5′-3′)
β-glucosidasegi1732572F:GGACAAAGTGAAAAACTGGATTACGR: GTAGGCTGAACGGCTAAAGACCC
ATP synthase CF1 alpha subunitgi7525018F: ACCCGTGAGTGAGGCTTATTTGGR: CTGAAATCTTACCTCGACCATCA
Glutamine synthetasegi12643761F: ATCCTTTCCGTGGAGGCAATAACR: GAAAATCTCAGCAGCTCTTGCACGT
Myrosinasegi|127733, gi|56130949F: GCGAACTCAATGCTACTGGCTACR: TTTGTGGTAGTAATCAAGACCTCCT
Ribulose-1,5-bisphosphate carboxylase/oxygenase large subunitgi|27752813F: AGAGCTATATTTGCCAGAGAATTGGR: CTCGGCAATAATGAGCCAAACTA
Ribulose bisphosphategi|266893F: GAAGTTCGTTGAGAGCCTTGGAGTTR: TCTCATAAGTCATCTCGGGTTGC
Rubisco ssu precursorgi|17855F: GTTGGAAAGAAGAAGTTTGAGACCCR: TTCGGTAAGGTCAGGAAGGTAAGAG
ATP synthase subunit betagi|75336517F: ACAATGCTCTGGTGGTTAAGGGTCR: GCTCATAGCTACAGCTCTAACTCGG
Fructose-bisphosphate aldolasegi|42573227F: GTGTTGGACAAATCCGAATGGGTCAR: GGAGGACGACAGAAGCGGAAGAA
Putative chloroplast translation elongation factor EF-Tugi|23397095F: AGATGAAGAGTCGAAGATGGTTATGR: CACCAACAGTCTTTCCTCCTTCT
Actingi|32186916F: GTCCGTGACATAAAGGAGAAACTR: GAACCTCAGGACAACGGAATCTC
Rubisco activasegi|23320705F: TGTATGCTCCTTTAATTCGTGATGGR: CGTCACGAGTAGGTGCCCAGTAG
High chlorophyll fluorescence 136gi|15237225F: GGAACGAGACAGACTTTGTTAGAGAR: GTTTGCCAATAATCCATCCTTCT
Chlorophyll a/b binding proteingi|18266039F: TGGCTATTTGGGCTACTCAAGTGATR: CCATCTCCTGCGACTCTGTAACCT
Chlorophyll a/b binding protein type Igi|7271945F: TGGCTATTTGGGCTACTCAAGTGATR: CCATCTCCTGCGACTCTGTAACCT
Tab.2  Primer sequences used in qPCR
SamplesPalmitic acidStearic acidOleic acidLinoleic acidLinolenic acidArachidonic acid
Xiangyou 15 variety4.334%1.939%64.208%19.707%9.007%0.805%
M153.631%2.159%80.935%7.399%4.636%1.241%
Tab.3  The fatty acid content of rapeseed
Fig.2  Two-dimensional electrophoresis gel of separated proteins. Proteins were separated in an IPG strip (24 cm, pH 4-7) and in the second dimension on a 12% gel. (A) Xiangyou 15 variety, (B) M15.
Spot No.Protein nameAccession no.The species categoryProtein MWProtein PIFold change(M15/Xiangyou 15 variety)
Carbohydrate and energy proteins
8510Ribulose bisphosphate carboxylasegi|1346967Chloroplast Brassica oleracea52922.55.880.32
7513Ribulose-1,5-bisphosphate carboxylase/oxygenase large subunitgi|27752813Arabidopsislyrata subsp. lyrata47433.96.133.45
2115Ribulose-1,5-bisphosphate carboxylase/oxygenase large subunitgi|21634119Jacquemontia reclinata49905.16.710.31
3111Ribulose 5-bisphosphate carboxylase large subunitgi|11990183Diodia sarmentosa51527.95.960.24
8613Ribulose-1,5-bisphosphate carboxylase/oxygenase large subunitgi|52001695Tristiropsis acutangula50582.460.33
8408Ribulose-1,5-bisphosphate carboxylase/oxygenase large subunitgi|34015063Tristiropsis acutangula44167.26.123.44
1106Ribulose-bisphosphate carboxylase large subunitgi|17154704Tigridia pavonia49200.76.343.91
609Ribulose bisphosphategi|266893Cucumber45681.27.574.04
3205Ribulose-1,5-bisphosphate carboxylase/oxygenasegi|12274881Huperzia billardierei49929.26.733.62
9019Ribulose-1,5-bisphosphate carboxylase/oxygenase large subunitgi|13548758Dacrycarpus imbricatus47995.26.63.41
4107Ribulosebiphosphate carboxylase large subunitgi|1079594Pentodon53300.76.223.06
1111Ribulose bisphosphate carboxylasegi|1346967Chloroplast Brassica oleracea52922.55.884.54
1003Rubisco ssu precursorgi|17855Brassica napus20301.17.633.5
4002Rubisco ssu precursorgi|17855Brassica napus20301.17.633.18
9702Ribulose bisphosphate carboxylasegi|1346967Chloroplast Brassica oleracea52922.55.880.24
4304Ribulose bisphosphate carboxylasegi|1346967Chloroplast Brassica oleracea52922.55.880.33
4313Ribulose 1,5-bisphospate carboxylasegi|14670019Synandrodaphne paradoxa436876.253.87
6516Ribulose-1,5-bisphosphate carboxylasegi|1050738Pentodon pentandrus517226.043.68
6002Rubisco ssu precursorgi|17855Brassica napus20301.17.633.77
4003Rubisco ssu precursorgi|17855Brassica napus20301.17.634.76
5305Ribulose bisphosphate carboxylasegi|1346967Chloroplast Brassica oleracea52922.55.884.21
9405Ribulose-1,5-bisphosphate carboxylase/oxygenase large subunitgi|34015063Tristiropsis acutangula44167.26.120.25
6709Ribulose bisphosphate carboxylasegi|1346967Chloroplast Brassica oleracea52922.55.884.4
1617Rubisco activasegi|23320705Medicago sativa29999.25.630.25
8414Ribulose bisphosphate carboxylasegi|1346967Chloroplast Brassica oleracea52922.55.880.31
7403Ribulose bisphosphate carboxylasegi|1346967Chloroplast Brassica oleracea52922.55.883.76
7201Ribulose bisphosphate carboxylasegi|1346967Chloroplast Brassica oleracea52922.55.883.66
10Ribulose bisphosphate carboxylasegi|1346967Chloroplast Brassica oleracea52922.55.882.01
5504Ribulose bisphosphategi|266893Cucumber45681.27.574.09
809ATP synthase CF1 alpha subunitgi|7525018Arabidopsis thaliana552945.193.97
3802ATP synthase subunit β-1gi|26391487Arabidopsis thaliana596346.183.74
1710ATP synthase subunit betagi|75336517Brassica napus53682.95.214.05
1610ATP synthase subunit betagi|75336517Brassica napus53682.95.213.01
3113Fructose-bisphosphate aldolasegi|42573227Arabidopsis thaliana41318.59.070.24
8706β-glucosidasegi|1732572Brassica nigra506766.270.26
8705β-glucosidasegi|1732572Brassica nigra506766.270.28
Stress and defense proteins
9701Myrosinasegi|127733Brassica napus62695.96.620.28
3816Myrosinasegi|56130949Brassica rapa subsp. pekin629266.654.39
5806Myrosinasegi|127733Brassica napus62695.96.623.36
7808Myrosinasegi|127733Brassica napus62695.96.623.38
Photosynthesis
3204Chlorophyll a/b binding proteingi|18266039Brassica oleracea28184.15.174.13
1205Chlorophyll a/b binding protein type Igi|7271945Asarina barclaiana18689.65.63.08
2403HCF136 (High chlorophyll fluorescence 136)gi|15237225Arabidopsis thaliana44076.46.793.76
Protein metabolism
1511Glutamine synthetase, chloroplasticgi|12643761Brassica napus47314.96.163.54
Other proteins
2605Actingi|32186916Upland cotton41700.95.314.43
8608Putative chloroplast translation elongation factor EF-Tugi|23397095Arabidopsis thaliana51623.65.840.31
6815OSJNBa0042N22.23gi|32492228Oryza sativa844979.174.08
2002Unknow proteingi|55168344Oryza sativa123805.37.024.19
Tab.4  Proteins identified by MS/MS
Fig.3  Real-time PCR analysis of the transcript levels of differentially expressed proteins.

Spot 8706, 8705, β-glucosidase(gi1732572),

Spot 809, ATP synthase CF1 alpha subunit(gil7525018), Spot 9701, 5806, 7808,, Myrosinase (gi|127733),

Spot 1511, Myrosinase(gi|12643761),

Spot 7513, ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit(gi|27752813),

Spot 609 and 5504, Ribulose bisphosphate(gi|266893),.

Spot 1003, 4002, 6002 and 4003, rubisco ssu precursor(gi|17855),

Spot 1710, 1610, ATP synthase subunit beta(gi|75336517),

Spot 3113, fructose-bisphosphate aldolase(gi|42573227),

Spot 8608, putative chloroplast translation elongation factor EF-Tu(gi|23397095),

Spot 2605, actin(gi|32186916),

Spot 1617, rubisco activase(gi|23320705),

Spot 2403, High chlorophyll fluorescence 136(gi|15237225),

Spot 3204, chlorophyll a/b binding protein(gi|18266039),

Spot 1205, chlorophyll a/b binding protein type I, (gi|7271945).

1 Allman FM A, GomesK, FavaloroE J, PetoczP (2005). A diet rich in high-oleic-acid sunflower oil favorably alters low-density lipoprotein cholesterol, triglycerides, and factor VII coagulant activity. J Am Diet Assoc, 105(7): 1071-1079
doi: 10.1016/j.jada.2005.04.008 pmid: 15983523
2 ArchieR P Jr. (2003). Rubisco activase-Rubisco’s catalytic chaperone. Photosynthesis Research,75: 11-27
3 BradfordM M (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72(1-2): 248-254
doi: 10.1016/0003-2697(76)90527-3 pmid: 942051
4 CandianoG, BruschiM, MusanteL, SantucciL, GhiggeriG M, CarnemollaB, OrecchiaP, ZardiL, RighettiP G (2004). Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis, 25(9): 1327-1333
doi: 10.1002/elps.200305844 pmid: 15174055
5 ChenX, TruksaM, ShahS, WeselakeR J (2010). A survey of quantitative real-time polymerase chain reaction internal reference genes for expression studies in Brassica napus. Anal Biochem, 405(1): 138-140
doi: 10.1016/j.ab.2010.05.032 pmid: 20522329
6 DavidC J, JohnT R (1991). Development and characteristics of myrosinase in Brassica napus during early seedling growth. Physiol Plant, 82(2): 163-170
doi: 10.1111/j.1399-3054.1991.tb00076.x
7 DelwicheC F, PalmerJ D (1996). Rampant horizontal transfer and duplication of rubisco genes in eubacteria and plastids. Mol Biol Evol, 13(6): 873-882
doi: 10.1093/oxfordjournals.molbev.a025647 pmid: 8754222
8 DownsC G, ChristeyM C, DaviesK M, KingG A, SeelyeJ F, SinclairB K, StevensonD G (1994). Hairy roots of Brassica napus: II. Glutamine synthetase overexpression alters ammonia assimilation and the response to phosphinothricin. Plant Cell Rep, 14(1): 41-46
doi: 10.1007/BF00233296 pmid: 24194225
9 FalkA, RaskL (1995). Expression of a zeatin-O-glucoside-degrading β-glucosidase in Brassica napus. Plant Physiol, 108(4): 1369-1377
doi: 10.1104/pp.108.4.1369 pmid: 7659745
10 FerroM, SalviD, BrugièreS, MirasS, KowalskiS, LouwagieM, GarinJ, JoyardJ, RollandN (2003). Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana. Mol Cell Proteomics, 2(5): 325-345
pmid: 12766230
11 FullerG, DiamondM J, ApplewhiteT H (1967). High-oleic safflower oil. Stability and chemical modification. J Am Oil Chem Soc, 44(4): 264-266
doi: 10.1007/BF02639272 pmid: 6041386
12 GreenB R, DurnfordD G (1996). The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annu Rev Plant Physiol Plant Mol Biol, 47(1): 685-714
doi: 10.1146/annurev.arplant.47.1.685 pmid: 15012305
13 GuanC Y, LiuC L, ChenS Y, PengQ, LiX, GuangM (2006). A mutant of winter rapeseed (Brassica napus L.) with high oleic acid composition. Acta Agonomica Sinica., 32: 1625-1629 (Ch)
14 GuanM, LiX (2008). The studies of agronom ic characteristics of high oleic acid lines on rapeseed (Brassica napus). Chin J Oil Crop Sci, 30: 25-28 (Ch)
15 GuanM, LiX, GuanC (2012). Microarray analysis of differentially expressed genes between Brassica napus strains with high- and low-oleic acid contents. Plant Cell Rep, 31(5): 929-943
doi: 10.1007/s00299-011-1213-9 pmid: 22203212
16 HortonP, WentworthM, RubanA (2005). Control of the light harvesting function of chloroplast membranes: the LHCII-aggregation model for non-photochemical quenching. FEBS Lett, 579(20): 4201-4206
doi: 10.1016/j.febslet.2005.07.003 pmid: 16051219
17 HuaW, LiR J, ZhanG M, LiuJ, LiJ, WangX F, LiuG H, WangH Z (2012). Maternal control of seed oil content in Brassica napus: the role of silique wall photosynthesis. Plant J, 69(3): 432-444
doi: 10.1111/j.1365-313X.2011.04802.x pmid: 21954986
18 IshitaA, BirgitH B, MagnorH, BjørnI H, CarolineM (2011). Oilseed rape seeds with ablated defence cells of the glucosinolate-myrosinase system. Production and characteristics of double haploid MINELESS plants of Brassica napus L. J Ex Bot, 62(14): 4975-4993
19 IwonaR, CatherineE R, DilipKN, JonesP J H. (2006). Phytosterols mixed with medium-chain triglycerides and high-oleic canola oil decrease plasma lipids in overweight men. Metabolism, 55(3): 391-395
doi: 10.1016/j.metabol.2005.09.015 pmid: 16483884
20 JanssonS (1994). The light-harvesting chlorophyll a/b-binding proteins. Biochim Biophys Acta, 1184(1): 1-19
doi: 10.1016/0005-2728(94)90148-1 pmid: 8305447
21 JiangY, YangB, HarrisN S, DeyholosM K (2007). Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. J Exp Bot, 58(13): 3591-3607
doi: 10.1093/jxb/erm207 pmid: 17916636
22 KamalA H M, KimK H, ShinK H, ChoiJ S, BaikB K, TsujimotoH, HeoH Y, ParkC S, WooS H (2010). Abiotic stress responsive proteins of wheat grain determined using proteomics technique. Aust J Crop Sci, 4: 196-208
23 KatayamaH, NagasuT, OdaY (2001). Improvement of in-gel digestion protocol for peptide mass fingerprinting by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom, 15(16): 1416-1421
doi: 10.1002/rcm.379 pmid: 11507753
24 LiX B, FanX P, WangX L, CaiL, YangW C (2005). The cotton ACTIN1 gene is functionally expressed in fibers and participates in fiber elongation. Plant Cell, 17(3): 859-875
doi: 10.1105/tpc.104.029629 pmid: 15722467
25 LiuC, ZhangY, CaoD, HeY, KuangT, YangC (2008). Structural and functional analysis of the antiparallel strands in the lumenal loop of the major light-harvesting chlorophyll a/b complex of photosystem II (LHCIIb) by site-directed mutagenesis. J Biol Chem, 283(1): 487-495
doi: 10.1074/jbc.M705736200 pmid: 17959607
26 LivakK J, SchmittgenT D (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25(4): 402-408
doi: 10.1006/meth.2001.1262 pmid: 11846609
27 LuW, TangX, HuoY, XuR, QiS, HuangJ, ZhengC, WuC A (2012). Identification and characterization of fructose 1,6-bisphosphate aldolase genes in Arabidopsis reveal a gene family with diverse responses to abiotic stresses. Gene, 503(1): 65-74
doi: 10.1016/j.gene.2012.04.042 pmid: 22561114
28 MarkA D, JayT A, MichaelD B (2001). Capturing value in the supply chain the case of high oleic acid soybeans. International Food and Agribusiness Management Review., 5: 87-103
29 NancyA E (2002). Alternative splicing and the control of flowering time. Plant Cell, 14(4): 743-747
doi: 10.1105/tpc.000000 pmid: 11971131
30 OchsG, SchockG, WildA (1993). Chloroplastic glutamine synthetase from Brassica napus. Plant Physiol, 103(1): 303-304
doi: 10.1104/pp.103.1.303 pmid: 7911583
31 PortisA R Jr, Jr (2003). Rubisco activase- Rubisco’s catalytic chaperone. Photosynth Res, 75(1): 11-27
doi: 10.1023/A:1022458108678 pmid: 16245090
32 PortisA R Jr, ParryM A J (2007). Discoveries in Rubisco (Ribulose 1,5-bisphosphate carboxylase/oxygenase): a historical perspective. Photosynth Res, 94(1): 121-143
doi: 10.1007/s11120-007-9225-6 pmid: 17665149
33 RaskL, AndréassonE, EkbomB, EkbomB, ErikssonS, PontoppidanB, MeijerJ (2000). Myrosinase: gene family evolution and herbivore defense in Brassicaceae. Plant Mol Biol, 42: 99-113
34 ZoranR, IvanaM, JianmingF, EduardoC, BenjaminP D (2007). Chloroplast protein synthesis elongation factor, EF-Tu, reduces thermal aggregation of rubisco activase. J Plant Physiol, 164(12): 1564-1571
doi: 10.1016/j.jplph.2007.07.008 pmid: 17766005
35 SpreitzerR J, SalvucciM E (2002). Rubisco: structure, regulatory interactions, and possibilities for a better enzyme. Annu Rev Plant Biol, 53(1): 449-475
doi: 10.1146/annurev.arplant.53.100301.135233 pmid: 12221984
36 RobertJ N, BenjaminW, ThomasA W, PatrickS, GarryH, RobertF (2004). Decreased aortic early atherosclerosis and associated risk factors in hypercholesterolemic hamsters fed a high- or mid-oleic acid oil compared to a high-linoleic acid oil. J Nutr Biochem, 15(9): 540-547
doi: 10.1016/j.jnutbio.2004.04.001 pmid: 15350986
37 RuuskaS A, SchwenderJ, OhlroggeJ B (2004). The capacity of green oilseeds to utilize photosynthesis to drive biosynthetic processes. Plant Physiol, 136(1): 2700-2709
doi: 10.1104/pp.104.047977 pmid: 15347783
38 SalekdehaG H, SiopongcoaJ, WadeL J, GhareyazieB, BennettJ (2002). A proteomic approach to analyzing drought- and salt-responsiveness in rice. Field Crops Res, 76(2-3): 199-219
doi: 10.1016/S0378-4290(02)00040-0
39 JörgS, FernandoGn, JohnB O, YairS H. (2004). Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds. Nature, 432(7018): 779-782
doi: 10.1038/nature03145 pmid: 15592419
40 SinghB N, MishraR N, AgarwalP K, GoswamiM, NairS, SoporyS K, ReddyM K (2004). A pea chloroplast translation elongation factor that is regulated by abiotic factors. Biochem Biophys Res Commun, 320(2): 523-530
doi: 10.1016/j.bbrc.2004.05.192 pmid: 15219860
41 StewartG R, MannA F, FentemP A (1980). Enzymes of gluiamate formation: glutamate dehydrogenase, glutamine synthetase, and glutamate synthase. In: Zn B JMiflin, ed: The Biochemistry of Plants, l5. Academic Press, San Diego, CA, 271-327
42 XiaoG, WuX M, GuanC Y (2009). Identification of differentially expressed genes in seeds of two Brassica napus mutant lines with different oleic acid content. Afr J Biotechnol, 8: 5155-5162
43 YanS P, ZhangQ Y, TangZ C, SuW A, SunW N (2006). Comparative proteomic analysis provides new insights into chilling stress responses in rice. Mol Cell Proteomics, 5(3): 484-496
doi: 10.1074/mcp.M500251-MCP200 pmid: 16316980
44 ZavaletaM H A, ThomasB J, ThomasH, ScottI M (1999). Regreening of senescent Nicotiana leaves. J Exp Bot, 50(340): 1677-1682
doi: 10.1093/jxb/50.340.1677
45 ZhangZ Q, XiaoG, GuanC Y (2009). Determining biodiesel yield by gas chromatography inner standard method. Journal of the Chinese Cereals and Oils Association., 24: 139-142 (Ch)
46 ZhangZ Q, XiaoG, LiuR Y, TanT L, GuanC Y, WangG H(2011). Efficient Construction of a normalized cDNA library of the high oleic acid rapeseed seed. African Journal of Agricultural Research., 6: 4288-4292
[1] SHAN Zhixin, LIN Qiuxiong, FU Yongheng, DENG Chunyu, LI Xiaohong, YU Xiyong. A simple and visualized method to screen for effective siRNAs by using green fluorescence protein (GFP) as a reporter[J]. Front. Biol., 2008, 3(4): 428-432.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed