Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2014, Vol. 9 Issue (4) : 306-316    https://doi.org/10.1007/s11515-014-1324-0
RESEARCH ARTICLE
Isolation and characterization of tyrosinase produced by marine actinobacteria and its application in the removal of phenol from aqueous environment
Suki ROY1,Ishita DAS1,Minki MUNJAL1,Loganathan KARTHIK1,2,Gaurav KUMAR1,2,Sathish KUMAR1,Kokati Venkata Bhaskara RAO1,*()
1. Molecular and Microbiology Research Laboratory, School of Bio Sciences and Technology, VIT University, Vellore-632014, Tamil Nadu, India
2. Department of Biotechnology, Shri JJT University, Jhunjhunu, Rajasthan, India
 Download: PDF(650 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The present study was focused on screening and characterization of tyrosinase enzyme produced by marine actinobacteria and its application in phenolic compounds removal from aqueous solution. A total of 20 strains were isolated from marine sediment sample and screened for tyrosinase production by using skimmed milk agar medium. Among 20 isolates, two isolates LK-4 and LK-20 showed zone of hydrolysis and these were taken for secondary screening by using tyrosine agar medium. Based on the result of secondary screening LK-4 was selected for further analysis, such as tyrosinase assay, protein content and specific activity of the enzyme. The tyrosinase enzyme was produced in a SS medium and was partially purified by ammonium sulfate precipitation, dialysis and SDS PAGE. The isolate (LK-4) was identified as Streptomyces espinosus using 16S rRNA gene sequencing and named as “Streptomyces espinosus strain LK4 (KF806735)”. The tyrosinase enzyme was immobilized in sodium alginate which was applied to remove phenolic compounds from water. The enzyme efficiently removed the phenolic compounds from aqueous solution within few hours which indicated that tyrosinase enzyme produced by Streptomyces espinosus strain LK-4 can be potently used for the removal of phenol and phenolic compounds from wastewater in industries.

Keywords actinobacteria      phenolic compounds      immobilization      tyrosinase     
Corresponding Author(s): Kokati Venkata Bhaskara RAO   
Issue Date: 11 August 2014
 Cite this article:   
Suki ROY,Ishita DAS,Minki MUNJAL, et al. Isolation and characterization of tyrosinase produced by marine actinobacteria and its application in the removal of phenol from aqueous environment[J]. Front. Biol., 2014, 9(4): 306-316.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-014-1324-0
https://academic.hep.com.cn/fib/EN/Y2014/V9/I4/306
Fig.1  Secondary screening of tyrosinase production by LK-4 and LK-20. (A) Tyrosine agar plate, (B) tyrosine broth.
Fig.2  SDS-PAGE of tyrosinase produced by LK-4.
Fig.3  HPLC profile of partially purified tyrosinase enzyme from LK-4.
Fig.4  Optimum pH for tyrosinase production by LK-4. Data is given as mean±SD (n=3).
Fig.5  Optimum temperature for tyrosinase production by LK-4. Data is given as mean ± SD (n =3).
Fig.6  Optimum concentration of tyrosine for tyrosinase production by LK-4. Data is given as mean ± SD (n =3).
Fig.7  Phylogenetic tree of Streptomyces espinosus strain LK-4 (KF806735).
Fig.8  Removal of different concentrations of phenol from aqueous solution by immobilized tyrosinase enzyme produced by Streptomyces espinosus strain LK-4.(A) Phenol 1mM. (B) Phenol 2 mM. (C) Phenol 3 mM. (D) Phenol 4 mM. (E) Phenol 5 mM.
Isolate nameTotal activity(U/(mL·min))Protein content(mg/mL)Specific activity(U/mg)
LK-46±1.51.3±0.05120±2.3
LK-202±1.41.1±0.0825±1.9
Tab.1  Secondary screening of tyrosinase produced by two isolate LK-4 and LK-20
Purification stageTotal volume (mL)Protein content(mg/mL)Total activity(U/(mL·min))Specific activity(U/mg)Purification (fold)Yield (%)
Crude extract6000.51505986.521100
Precipitation1560.233891672.941.69677.03
Dialysis900.102562556.892.59250.69
Tab.2  Characterization of tyrosinase produced by isolate LK-4
1 Adeyemi O, Oginni O, Osubor C C, Adeyemi O, Oloyede O B, Oladiji A T, Adebayo E A (2009). Effect of water contaminated with phthalate, benzene and cyclohexane on Clarias gariepinus’ cellular system. Food Chem Toxicol, 47(8): 1941–1944
doi: 10.1016/j.fct.2009.05.016 pmid: 19457444
2 Anwar A, Qader S A, Raiz A, Iqbal S, Azhar A (2009). Calcium alginate: a support material for immobilization of proteases from newly isolated strain of Bacillus subtilis KIBGE-HAS. World Appl Sci J, 7: 1281–1286
3 Bevilaqua J V, Freire M C, Anna S (2002). Phenol removal through combined biological and enzymatic treatments. Braz J Chem Eng, 19(2): 151–158
doi: 10.1590/S0104-66322002000200010
4 Bradford M M (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72(1–2): 248–254
doi: 10.1016/0003-2697(76)90527-3 pmid: 942051
5 Chung T P, Tseng H Y, Juang R S (2003). Mass transfer effect and intermediate detection for phenol degradation in immobilized Pseudomonas putida systems. Process Biochem, 38(10): 1497–1507
doi: 10.1016/S0032-9592(03)00038-4
6 Crecchio C, Ruggiero P, Pizzigallo M D R (1995). Polyphenoloxidases immobilized in organic gels: Properties and applications in the detoxification of aromatic compounds. Biotechnol Bioeng, 48(6): 585–591
doi: 10.1002/bit.260480605 pmid: 18623526
7 Cuypers R, Sudh?lter E J, Zuilhof H (2010). Hydrogen bonding in phosphine oxide/phosphate-phenol complexes. ChemPhysChem, 11(10): 2230–2240
doi: 10.1002/cphc.201000084 pmid: 20602407
8 Dajanta K, Wongkham S, Thirach P, Baophoeng P, Apichartsrangkoon A, Santithum P, Chukeatirote E (2009). Comparative study of proteolytic activity of protease-producing bacteria isolated from Thua nao. Maejo Int J Sci Technol, 3: 269–276
9 Dalfard B, Khajeh K, Soudi M R, Manesh H N, Ranjbar B, Sajedi R H (2006). Isolation and biochemical characterization of laccase and tyrosinase activities in a novel melanogenic soil bacterium. Enzyme Microb Technol, 39(7): 1409–1416
doi: 10.1016/j.enzmictec.2006.03.029
10 Decker H, Tuczek F (2000). Tyrosinase/catecholoxidase activity of hemocyanins: structural basis and molecular mechanism. Trends Biochem Sci, 25(8): 392–397
doi: 10.1016/S0968-0004(00)01602-9 pmid: 10916160
11 Della-Cioppa G, Garger S J, Holtz R B, McCulloch M J, Sverlow G G (1998a). Method for making stable extracellular tyrosinase and synthesis of polyphenolic polymers therefrom. US Patent 5801047
12 Della-Cioppa G, Garger S J, Sverlow G G, Turpen T H, Grill L K, Chedekal M R (1998b). Melanin production by Streptomyces. US Patent 5814495
13 Dolashki A, Gushterova A (2009). Identification and characterization of tyrosinase from Streptomyces albus by mass spectrometry. Biotechnol & Biotechnol, 23: 946–950
14 Dura’n N, Rosa M A, D’Annibale A, Gianfreda L (2002). Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports: a review. Enzyme Microb Technol, 31(7): 907–931
doi: 10.1016/S0141-0229(02)00214-4
15 Escribano J, Cabanes J, Chazarra S, Garc?’a-Carmona F (1997). Characterization of monophenolase activity of table beet polyphenol oxidase. Determination of kinetic parameters on the tyramine/dopamine pair. J Agric Food Chem, 45(11): 4209–4214
doi: 10.1021/jf970384l
16 Fairhead M, Th?ny-Meyer L (2012). Bacterial tyrosinases: old enzymes with new relevance to biotechnology. New Biotechnol, 29(2): 183–191
doi: 10.1016/j.nbt.2011.05.007 pmid: 21664502
17 Gernjak W, Krutzler T, Glaser A, Malato S, Caceres J, Bauer R, Fernández-Alba A R (2003). Photo-Fenton treatment of water containing natural phenolic pollutants. Chemosphere, 50(1): 71–78
doi: 10.1016/S0045-6535(02)00403-4 pmid: 12656231
18 Grady C P L Jr (1990). Biodegradation of toxic organics: status and potential. J Environ Eng, 116(5): 805–828
doi: 10.1061/(ASCE)0733-9372(1990)116:5(805)
19 Ha S R, Vinitnantharat S, Ozaki H (2000). Bioregeneration by mixed microorganisms of granular activated carbon loaded with a mixture of phenols. Biotechnol Lett, 22(13): 1093–1096
doi: 10.1023/A:1005650612768
20 Haghbeen K, Jazii F R, Karkhane A A, Borojerdi S S (2004). Purification of tyrosinase from edible mushroom. Iranian J Biotechnol, 2: 189–194
21 Halaouli S, Asther M, Sigoillot J C, Hamdi M, Lomascolo A (2006). Fungal tyrosinases: new prospects in molecular characteristics, bioengineering and biotechnological applications. J Appl Microbiol, 100(2): 219–232
doi: 10.1111/j.1365-2672.2006.02866.x pmid: 16430498
22 Jones B V, Sun F, Marchesi J R (2007). Using skimmed milk agar to functionally screen a gut metagenomic library for proteases may lead to false positives. Lett Appl Microbiol, 45(4): 418–420
doi: 10.1111/j.1472-765X.2007.02202.x pmid: 17897385
23 Kameda E, Langone M A, Coelho M A (2006). Tyrosinase extract from Agaricus bisporus mushroom and its in natura tissue for specific phenol removal. Environ Technol, 27(11): 1209–1215
doi: 10.1080/09593332708618736 pmid: 17203602
24 Karthik L, Kumar G, Bhaskara Rao K V (2010). Diversity of marine actinomycetes from Nicobar marine sediments and its antifungal activity. Int J Pharm Pharm Sci, 2: 199–203
25 Kathiresan K, Balagurunathan R, Manilamani M, Selvan (2005). Fungicidal effect of marine actinomycetes against phytopathogenic fungi. Indian J Biotechnol, 4: 271–276
26 Katz E, Betancourt A (1988). Induction of tyrosinase by L-methionine in Streptomyces antibioticus. Can J Microbiol, 34(12): 1297–1303
doi: 10.1139/m88-227 pmid: 3148362
27 Klibanov A M, Alberti B N, Morris E D, Felshin L M (1980). Enzymatic removal of toxic phenols and anilines from waste waters. J Appl Biochem, 2: 414–421
28 Kruger N J (1994). The Bradford method for protein quantitation. Methods Mol Biol, 32: 9–15
pmid: 7951753
29 Matoba Y, Kumagai T, Yamamoto A, Yoshitsu H, Sugiyama M (2006). Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis. J Biol Chem, 281(13): 8981–8990
doi: 10.1074/jbc.M509785200 pmid: 16436386
30 Maurya S, Singh D (2010). Quantitative Analysis of Total Phenolic Content in Adhatoda vasica Nees Extracts. Int J Pharm Tech Res, 2: 2403–2406
31 Mayer A M, Staples R C (2002). Laccase: new functions for an old enzyme. Phytochemistry, 60(6): 551–565
doi: 10.1016/S0031-9422(02)00171-1 pmid: 12126701
32 Molina L P, Hiner A N P, Tudela J, Garc?’a-Ca’novas F, Rodr?’guez-Lo’pez J N (2003). Enzymatic removal of phenolsfrom aqueous solution by artichoke (Cynara scolymus L.)extracts. Enzyme Microb Technol, 33(5): 738–742
doi: 10.1016/S0141-0229(03)00208-4
33 Nambudiri A M D, Bhat J V (1972). Conversion of p-cumarate into caffeate by Streptomyces nigrifaciens. Biochem J, 130: 425–433
pmid: 4146278
34 Peralta-Zamora P, Pereira C M, Tiburtius E R L, Moraes S G, Rosa M A, Minussi R C, Dura’n N (2003). Decolorization of reactive dyes by immobilized laccase. Appl Catal B, 42(2): 131–144
doi: 10.1016/S0926-3373(02)00220-5
35 Philipp S, Held T, Kutzner H J (1991). Purifi cation and characterization of the tyrosinase of Streptomyces michiganensis DSM 40015. J Basic Microbiol, 31(4): 293–300
doi: 10.1002/jobm.3620310412
36 Popa C, Bahrim G (2011). Streptomyces tyrosinase: production and practical applications. Innov Rom Food Biotechnol, 8: 1–7
37 Raval K M, Vaswani P S, Majumder D R (2012). Biotransformation of a single amino acid L tyrosine into a bioactive molecule L-DOPA. Int J Sci Res, 2: 2250–3153
38 Rice R H, Cohen D E (1996). The basic science of poisons. McGraw-Hill, New York
39 Robb D A (1995). Exploiting tyrosinase activity in aqueous and nonaqueous media. Acs Sym Ser, 600: 159–165
doi: 10.1021/bk-1995-0600.ch012
40 Saboury A A, Zolghadri S, Haghbeen K, Moosavi-Movahedi A A (2006). The inhibitory effect of benzenethiol on the cresolase and catecholase activities of mushroom tyrosinase. J Enzyme Inhib Med Chem, 21(6): 711–717
doi: 10.1080/14756360600810787 pmid: 17252944
41 Saiki R K, Scharf S, Faloona F, Mullis K B, Horn G T, Erlich H A, Arnheim N (1985). Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science, 230(4732): 1350–1354
doi: 10.1126/science. pmid: 2999980
42 Saitou N, Nei M (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol, 4(4): 406–425
pmid: 3447015
43 Saiyood S, Vangnai A S, Thiravetyan P, Inthorn D (2010). Bisphenol A removal by the Dracaena plant and the role of plant-associating bacteria. J Hazard Mater, 178(1–3): 777–785
doi: 10.1016/j.jhazmat.2010.02.008 pmid: 20304555
44 Seo S Y, Sharma V K, Sharma N (2003). Mushroom tyrosinase: recent prospects. J Agric Food Chem, 51(10): 2837–2853
doi: 10.1021/jf020826f pmid: 12720364
45 Shesterenko Y A, Sevastyanov O V, Romanoyskaya L L (2012). Removal of phenols from aqueous solutions using Tyrosinase immobilized on polymer carriers and inorganic coagulants. J Water Chem Technol, 34(2): 107–111
doi: 10.3103/S1063455X12020063
46 Shi J, Bian W, Yin X (2009). Organic contaminants removal by the technique of pulsed high-voltage discharge in water. J Hazard Mater, 171(1–3): 924–931
doi: 10.1016/j.jhazmat.2009.06.134 pmid: 19640640
47 Shubhrasekhar C, Supriya M, Karthik L, Gaurav K, Bhaskara Rao K V (2013). Isolation, characterization and application of biosurfactant produced by marine actinobacteria isolated from Saltpan soil from coastal area of Andhra Pradesh, India. Res J Biotechnol, 8: 18–25
48 Vermelho A B, Meirelles M N L, Lopes A, Petinate S D G, Chaia A A, Branquinha M H (1996). Detection of extracellular proteases from microorganisms on agar plates. Mem Inst Oswaldo Cruz, 91(6): 755–760
doi: 10.1590/S0074-02761996000600020 pmid: 9283660
49 Wang Q, Fang X, Bai B, Liang X, Shuler P J, Goddard W A 3rd, Tang Y (2007). Engineering bacteria for production of rhamnolipid as an agent for enhanced oil recovery. Biotechnol Bioeng, 98(4): 842–853
doi: 10.1002/bit.21462 pmid: 17486652
50 Xu D Y, Yang Y, Yang Z (2011). Activity and stability of cross-linked tyrosinase aggregates in aqueous and nonaqueous media. J Biotechnol, 152(1–2): 30–36
doi: 10.1016/j.jbiotec.2011.01.014 pmid: 21262284
51 Zhao J, Li Y, Zhang C, Zeng Q, Zhou Q (2008). Sorption and degradation of bisphenol A by aerobic activated sludge. J Hazard Mater, 155(1–2): 305–311
doi: 10.1016/j.jhazmat.2007.11.075 pmid: 18179868
[1] Vadim V. Davydov,Evgenya R. Grabovetskaya,Amjad Hamdallah. Age-dependent peculiarities modulation of activity of aldehyde scavenger enzymes in mitochondria of rat thigh muscle during stress[J]. Front. Biol., 2016, 11(1): 28-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed