Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2014, Vol. 9 Issue (6) : 448-471    https://doi.org/10.1007/s11515-014-1336-9
REVIEW
Microbial enzyme systems for lignin degradation and their transcriptional regulation
Takanori FURUKAWA,Fatai Olumide BELLO,Louise HORSFALL()
School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK
 Download: PDF(750 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Lignocellulosic biomass is the most abundant renewable resource in nature and has received considerable attention as one of the most promising alternatives to oil resources for the provision of energy and certain raw materials. The phenolic polymer lignin is the second most abundant constituent of this biomass resource and has been shown to have the potential to be converted into industrially important aromatic chemicals after degradation. However, due to its chemical and structural nature, it exhibits high resistance toward mechanical, chemical, and biological degradation, and this causes a major obstacle for achieving efficient conversion of lignocellulosic biomass. In nature, lignin-degrading microorganisms have evolved unique extracellular enzyme systems to decompose lignin using radical mediated oxidative reactions. These microorganisms produce a set of different combinations of enzymes with multiple isozymes and isoforms by responding to various environmental stimuli such as nutrient availability, oxygen concentration and temperature, which are thought to enable effective decomposition of the lignin in lignocellulosic biomass. In this review, we present an overview of the microbial ligninolytic enzyme systems including general molecular aspects, structural features, and systematic differences in each microorganism. We also describe the gene expression pattern and the transcriptional regulation mechanisms of each ligninolytic enzyme with current data.

Keywords lignocellulose biorefinery      lignin degradation      lignin peroxidases      manganese peroxidases      versatile peroxidases      laccases     
Corresponding Author(s): Louise HORSFALL   
Just Accepted Date: 13 October 2014   Online First Date: 19 November 2014    Issue Date: 13 January 2015
 Cite this article:   
Takanori FURUKAWA,Fatai Olumide BELLO,Louise HORSFALL. Microbial enzyme systems for lignin degradation and their transcriptional regulation[J]. Front. Biol., 2014, 9(6): 448-471.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-014-1336-9
https://academic.hep.com.cn/fib/EN/Y2014/V9/I6/448
Fig.1  Structural model of softwood lignin. Schematic representation of a structural model of softwood lignin proposed by Adler (Adler, 1977) (adapted from (Crestini et al., 2010)).
Fig.2  Chemical structure of the primary lignin monomers. Chemical structure of the three main monolignols p-coumaryl, coniferyl, and sinapyl alcohol is shown.
Fig.3  Common inter-unit linkages found in lignin polymer. Major structural units in the lignin polymer are shown (adapted from (Crestini et al., 2010).
Fig.4  Typical catalytic cycle of general heme peroxidases. The catalytic cycle of general heme peroxidases consist of three step reactions including two-electron oxidation of the resting ferric enzyme [Fe(III)] by hydroxyperoxide to yield Compound I oxo-ferryl intermediate [Fe(VI) = OP·+]. Compound I subsequently oxidizes electron donor substrates (AH) by one-electron oxidation forming Compound II [Fe(VI) = O] and a substrate cation radical (A·). Finally, Compound II oxidizes the substrate by subtracting one electron to return to the native resting state (Dunford 1999).
Fig.5  Three-dimensional structures of ligninolytic enzymes. 3D structures of the ligninolytic enzymes are shown. (A) A lignin peroxidase from P. chrysosporium; Protein Data Bank (PDB) ID: 1LGA (Poulos et al., 1993). (B) A manganese peroxidase from P. chrysosporium; 3M5Q (Sundaramoorthy et al., 2010). (C) A versatile peroxidase from P. erynjii; PDB ID: 3FM1 (Perez-Boada et al., 2005). (D) A laccase from T. versicolor; PDB ID: 1GYC (Piontek et al., 2002). (E) A Dye-decolorizing type peroxidase from R. jostii; PDB ID: 3QNR (Roberts et al., 2011).
Fig.6  Catalytic cycle of laccases. A schematic representation of the catalytic site and the catalytic cycle of laccases, showing the mechanism of reduction and oxidation of the enzyme copper sites. A substrate reduces the T1 site in the resting enzyme, which then transfers the electron to the trinuclear site resulting in a fully reduced state of the enzyme. Thereafter, reduction of one oxygen molecule occurs at the trinuclear center through the formation of oxygen-bound intermediates, peroxy-intermediates and native-intermediates, with two sequential electron transfer resulting in a formation of two molecules of water (Reproduced from (Wong, 2009))
241b Xu F, Shin W, Brown S H, Wahleithner J A, Sundaram U M, Solomon E I (1996). A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity, and stability. BiochimBiophysActa, 1292: 303–311
1 Adler E (1977). Lignin chemistry—past, present and future. Wood Sci Technol, 11(3): 169–218
https://doi.org/10.1007/BF00365615
2 Ahmad M, Roberts J N, Hardiman E M, Singh R, Eltis L D, Bugg T D (2011). Identification of DypB from Rhodococcus jostii RHA1 as a lignin peroxidase. Biochemistry, 50(23): 5096–5107
https://doi.org/10.1021/bi101892z pmid: 21534568
3 Ahmad M, Taylor C R, Pink D, Burton K, Eastwood D, Bending G D, Bugg T D (2010). Development of novel assays for lignin degradation: comparative analysis of bacterial and fungal lignin degraders. Mol Biosyst, 6(5): 815–821
https://doi.org/10.1039/b908966g pmid: 20567767
4 Akin D E, Morrison Iii W H, Rigsby L L, Gamble G R, Sethuraman A, Eriksson K E L (1996). Biological delignification of plant components by the white rot fungi Ceriporiopsis subvermispora and Cyathus stercoreus. Anim Feed Sci Technol, 63(1–4): 305–321
https://doi.org/10.1016/S0377-8401(96)00998-4
5 Alvarez J M, Canessa P, Mancilla R A, Polanco R, Santibá?ez P A, Vicu?a R (2009). Expression of genes encoding laccase and manganese-dependent peroxidase in the fungus Ceriporiopsis subvermispora is mediated by an ACE1-like copper-fist transcription factor. Fungal Genet Biol, 46(1): 104–111
https://doi.org/10.1016/j.fgb.2008.10.002 pmid: 18955150
6 Andreu G, Vidal T (2011). Effects of laccase-natural mediator systems on kenaf pulp. Bioresour Technol, 102(10): 5932–5937
https://doi.org/10.1016/j.biortech.2011.03.008 pmid: 21444198
7 Antoni D, Zverlov V V, Schwarz W H (2007). Biofuels from microbes. Appl Microbiol Biotechnol, 77(1): 23–35
https://doi.org/10.1007/s00253-007-1163-x pmid: 17891391
8 Arantes V, Jellison J, Goodell B (2012). Peculiarities of brown-rot fungi and biochemical Fenton reaction with regard to their potential as a model for bioprocessing biomass. Appl Microbiol Biotechnol, 94(2): 323–338
https://doi.org/10.1007/s00253-012-3954-y pmid: 22391968
9 Asgher M, Bhatti H N, Ashraf M, Legge R L (2008). Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzyme system. Biodegradation, 19(6): 771–783
https://doi.org/10.1007/s10532-008-9185-3 pmid: 18373237
10 Ausec L, Zakrzewski M, Goesmann A, Schlüter A, Mandic-Mulec I (2011). Bioinformatic analysis reveals high diversity of bacterial genes for laccase-like enzymes. PLoS One, 6(10): e25724
https://doi.org/10.1371/journal.pone.0025724 pmid: 22022440
11 Azadi P, Inderwildi O R, Farnood R, King D A (2013). Liquid fuels, hydrogen and chemicals from lignin: A critical review. Renew Sustain Energy Rev, 21: 506–523
https://doi.org/10.1016/j.rser.2012.12.022
12 Bajpai P (2004). Biological bleaching of chemical pulps. Crit Rev Biotechnol, 24(1): 1–58
https://doi.org/10.1080/07388550490465817 pmid: 15328766
13 Bajpai P, Anand A, Bajpai P K (2006). Bleaching with lignin-oxidizing enzymes. Biotechnol Annu Rev, 12: 349–378
https://doi.org/10.1016/S1387-2656(06)12010-4 pmid: 17045199
14 Balakshin Mikhail Y, Capanema Ewellyn A, Chang H (2007). MWL fraction with a high concentration of lignin-carbohydrate linkages: Isolation and 2D NMR spectroscopic analysis. Holzforschung, 61(1): 1–7
https://doi.org/10.1515/HF.2007.001
15 Baldrian P (2006). Fungal laccases- occurrence and properties. FEMS Microbiol Rev, 30(2): 215–242
https://doi.org/10.1111/j.1574-4976.2005.00010.x pmid: 16472305
16 Banci L, Camarero S, Martínez A T, Martínez M J, Pérez-Boada M, Pierattelli R, Ruiz-Due?as F J (2003). NMR study of manganese(II) binding by a new versatile peroxidase from the white-rot fungus Pleurotus eryngii. J Biol Inorg Chem, 8(7): 751–760
https://doi.org/10.1007/s00775-003-0476-1 pmid: 12884090
17 Bao W, Fukushima Y, Jensen K A Jr, Moen M A, Hammel K E (1994). Oxidative degradation of non-phenolic lignin during lipid peroxidation by fungal manganese peroxidase. FEBS Lett, 354(3): 297–300
https://doi.org/10.1016/0014-5793(94)01146-X pmid: 7957943
18 Beedlow P A, Tingey D T, Phillips D L, Hogsett W E, Olszyk D M (2004). Rising atmospheric CO2 and carbon sequestration in forests. Front Ecol Environ, 2: 315–322
19 Belinky P A, Flikshtein N, Lechenko S, Gepstein S, Dosoretz C G (2003). Reactive oxygen species and induction of lignin peroxidase in Phanerochaete chrysosporium. Appl Environ Microbiol, 69(11): 6500–6506
https://doi.org/10.1128/AEM.69.11.6500-6506.2003 pmid: 14602606
20 Bindoff N L, Stott P A, AchutaRao K M, Allen M R, Gillett N, Gutzler D, Hansingo K, Hegerl G, Hu Y, Jain S, Mokhov I I, Overland J, Perlwitz J, Sebbari R, Zhang X (2013). Detection and Attribution of Climate Change: from Global to Regional. In: Stocker T F, Qin D, Plattner G K, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex V, Midgley P M (eds.) . Climate Change 2013: The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA, Cambridge University Press, 867–952
21 Blanchette R A (1995). Degradation of the lignocellulose complex in wood. Can J Bot, 73(S1): 999–1010
https://doi.org/10.1139/b95-350
22 Blanchette Robert A, Burnes Todd A, Eerdmans Marjorie M, Akhtar M (1992). Evaluating isolates of Phanerochaete chrysosporium and Ceriporiopsis subvermispora for use in biological pulping processes. Holzforschung, 46(2): 109–116
https://doi.org/10.1515/hfsg.1992.46.2.109
23 Boerjan W, Ralph J, Baucher M (2003). Lignin biosynthesis. Annu Rev Plant Biol, 54(1): 519–546
https://doi.org/10.1146/annurev.arplant.54.031902.134938 pmid: 14503002
24 Bogan B W, Schoenike B, Lamar R T, Cullen D (1996). Expression of lip genes during growth in soil and oxidation of anthracene by Phanerochaete chrysosporium. Appl Environ Microbiol, 62(10): 3697–3703
pmid: 8837425
25 Bourbonnais R, Paice M G (1990). Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett, 267(1): 99–102
https://doi.org/10.1016/0014-5793(90)80298-W pmid: 2365094
26 Bozell J J, Petersen G R (2010). Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem, 12(4): 539
https://doi.org/10.1039/b922014c
27 Brown J A, Li D, Alic M, Gold M H (1993). Heat Shock induction of manganese peroxidase gene transcription in Phanerochaete chrysosporium. Appl Environ Microbiol, 59(12): 4295–4299
pmid: 16349125
28 Brown M E, Barros T, Chang M C (2012). Identification and characterization of a multifunctional dye peroxidase from a lignin-reactive bacterium. ACS Chem Biol, 7(12): 2074–2081
https://doi.org/10.1021/cb300383y pmid: 23054399
29 Bugg T D, Ahmad M, Hardiman E M, Rahmanpour R (2011a). Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep, 28(12): 1883–1896
https://doi.org/10.1039/c1np00042j pmid: 21918777
30 Bugg T D, Ahmad M, Hardiman E M, Singh R (2011b). The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol, 22(3): 394–400
https://doi.org/10.1016/j.copbio.2010.10.009 pmid: 21071202
31 Call H P, Mücke I (1997). History, overview and applications of mediated lignolytic systems, especially laccase-mediator-systems (Lignozym?-process). J Biotechnol, 53(2–3): 163–202
https://doi.org/10.1016/S0168-1656(97)01683-0
32 Camarero S, Ibarra D, Martínez M J, Martínez A T (2005). Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Appl Environ Microbiol, 71(4): 1775–1784
https://doi.org/10.1128/AEM.71.4.1775-1784.2005 pmid: 15812000
33 Ca?as A I, Camarero S (2010). Laccases and their natural mediators: biotechnological tools for sustainable eco-friendly processes. Biotechnol Adv, 28(6): 694–705
https://doi.org/10.1016/j.biotechadv.2010.05.002 pmid: 20471466
34 Canessa P, Alvarez J M, Polanco R, Bull P, Vicu?a R (2008). The copper-dependent ACE1 transcription factor activates the transcription of the mco1 gene from the basidiomycete Phanerochaete chrysosporium. Microbiology, 154(Pt 2): 491–499
https://doi.org/10.1099/mic.0.2007/013128-0 pmid: 18227253
35 Chen F, Dixon R A (2007). Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol, 25(7): 759–761
https://doi.org/10.1038/nbt1316 pmid: 17572667
36 Choinowski T, Blodig W, Winterhalter K H, Piontek K (1999). The crystal structure of lignin peroxidase at 1.70 A resolution reveals a hydroxy group on the cbeta of tryptophan 171: a novel radical site formed during the redox cycle. J Mol Biol, 286(3): 809–827
https://doi.org/10.1006/jmbi.1998.2507 pmid: 10024453
37 Claus H (2003). Laccases and their occurrence in prokaryotes. Arch Microbiol, 179(3): 145–150
pmid: 12610719
38 Claus H (2004). Laccases: structure, reactions, distribution. Micron, 35(1–2): 93–96
https://doi.org/10.1016/j.micron.2003.10.029 pmid: 15036303
39 Cohen R, Hadar Y, Yarden O (2001). Transcript and activity levels of different Pleurotus ostreatus peroxidases are differentially affected by Mn2+. Environ Microbiol, 3(5): 312–322
https://doi.org/10.1046/j.1462-2920.2001.00197.x pmid: 11422318
40 Cohen R, Yarden O, Hadar Y (2002). Lignocellulose affects Mn2+ regulation of peroxidase transcript levels in solid-state cultures of Pleurotus ostreatus. Appl Environ Microbiol, 68(6): 3156–3158
https://doi.org/10.1128/AEM.68.6.3156-3158.2002 pmid: 12039783
41 Colao M Ch, Garzillo A M, Buonocore V, Schiesser A, Ruzzi M (2003). Primary structure and transcription analysis of a laccase-encoding gene from the basidiomycete Trametes trogii. Appl Microbiol Biotechnol, 63(2): 153–158
https://doi.org/10.1007/s00253-003-1429-x pmid: 13680201
42 Collins P J, Dobson A (1997). Regulation of laccase gene transcription in trametes versicolor. Appl Environ Microbiol, 63(9): 3444–3450
pmid: 16535685
43 Collins P J, O’Brien M M, Dobson A D (1999). Cloning and characterization of a cDNA encoding a novel extracellular peroxidase from trametes versicolor. Appl Environ Microbiol, 65(3): 1343–1347
pmid: 10049906
44 Colpa D I, Fraaije M W, van Bloois E (2014). DyP-type peroxidases: a promising and versatile class of enzymes. J Ind Microbiol Biotechnol, 41(1): 1–7
https://doi.org/10.1007/s10295-013-1371-6 pmid: 24212472
45 Conesa A, Punt P J, van den Hondel C A (2002). Fungal peroxidases: molecular aspects and applications. J Biotechnol, 93(2): 143–158
https://doi.org/10.1016/S0168-1656(01)00394-7 pmid: 11738721
46 Crestini C, Crucianelli M, Orlandi M, Saladino R (2010). Oxidative strategies in lignin chemistry: A new environmental friendly approach for the functionalisation of lignin and lignocellulosic fibers. Catal Today, 156(1–2): 8–22
https://doi.org/10.1016/j.cattod.2010.03.057
47 Crestini C, Melone F, Sette M, Saladino R (2011). Milled wood lignin: a linear oligomer. Biomacromolecules, 12(11): 3928–3935
https://doi.org/10.1021/bm200948r pmid: 21928799
48 Cullen D (1997). Recent advances on the molecular genetics of ligninolytic fungi. J Biotechnol, 53(2-3): 273–289
https://doi.org/10.1016/S0168-1656(97)01684-2 pmid: 9177046
49 Dhawale S S, Lane A C (1993). Compilation of sequence-specific DNA-binding proteins implicated in transcriptional control in fungi. Nucleic Acids Res, 21(24): 5537–5546
https://doi.org/10.1093/nar/21.24.5537 pmid: 8284197
50 Doherty W O S, Mousavioun P, Fellows C M (2011). Value-adding to cellulosic ethanol: Lignin polymers. Ind Crops Prod, 33(2): 259–276
https://doi.org/10.1016/j.indcrop.2010.10.022
51 Dooley D M, Rawlings J, Dawson J H, Stephens P J, Andreasson L E, Malmstrom B G, Gray H B (1979). Spectroscopic studies of Rhus vernicifera and Polyporus versicolor laccase. Electronic structures of the copper sites. J Am Chem Soc, 101(17): 5038–5046
https://doi.org/10.1021/ja00511a039
52 Dowzer C E, Kelly J M (1991). Analysis of the creA gene, a regulator of carbon catabolite repression in Aspergillus nidulans. Mol Cell Biol, 11(11): 5701–5709
pmid: 1922072
53 Doyle W A, Blodig W, Veitch N C, Piontek K, Smith A T (1998). Two substrate interaction sites in lignin peroxidase revealed by site-directed mutagenesis. Biochemistry, 37(43): 15097–15105
https://doi.org/10.1021/bi981633h pmid: 9790672
54 Drysdale M R, Kolze S E, Kelly J M (1993). The Aspergillus niger carbon catabolite repressor encoding gene, creA. Gene, 130(2): 241–245
https://doi.org/10.1016/0378-1119(93)90425-3 pmid: 8359691
55 Dunford H B (1999). Heme peroxidases, New York, Wiley
56 Dusselier M, Mascal M, Sels B F (2014). Top chemical opportunities from carbohydrate biomass: A chemist’s view of the biorefinery. Top Curr Chem, 353: 1–40
57 Dwivedi U N, Singh P, Pandey V P, Kumar A (2011). Structure–function relationship among bacterial, fungal and plant laccases. J Mol Catal, B Enzym, 68: 117–128
58 Edwards S L, Raag R, Wariishi H, Gold M H, Poulos T L (1993). Crystal structure of lignin peroxidase. Proc Natl Acad Sci U S A, 90(2): 750–754
https://doi.org/10.1073/pnas.90.2.750 pmid: 11607355
59 Eggert C, Temp U, Dean J F D, Eriksson K E L (1996). A fungal metabolite mediates degradation of non-phenolic lignin structures and synthetic lignin by laccase. FEBS Lett, 391(1–2): 144–148
https://doi.org/10.1016/0014-5793(96)00719-3 pmid: 8706903
60 Eggert C, Temp U, Eriksson K E (1997). Laccase is essential for lignin degradation by the white-rot fungus Pycnoporus cinnabarinus. FEBS Lett, 407(1): 89–92
https://doi.org/10.1016/S0014-5793(97)00301-3 pmid: 9141487
61 Elisashvili V, Kachlishvili E (2009). Physiological regulation of laccase and manganese peroxidase production by white-rot Basidiomycetes. J Biotechnol, 144(1): 37–42
https://doi.org/10.1016/j.jbiotec.2009.06.020 pmid: 19559737
62 Enguita F J, Martins L O, Henriques A O, Carrondo M A (2003). Crystal structure of a bacterial endospore coat component. A laccase with enhanced thermostability properties. J Biol Chem, 278(21): 19416–19425
https://doi.org/10.1074/jbc.M301251200 pmid: 12637519
63 Eriksson K E L B R A, Ander P (1990). Microbial and Enzymatic Degradation of Wood and Wood Components. Berlin, Springer, 1–72
64 Ertan H, Siddiqui K S, Muenchhoff J, Charlton T, Cavicchioli R (2012). Kinetic and thermodynamic characterization of the functional properties of a hybrid versatile peroxidase using isothermal titration calorimetry: Insight into manganese peroxidase activation and lignin peroxidase inhibition. Biochimie, 94(5): 1221–1231
https://doi.org/10.1016/j.biochi.2012.02.012 pmid: 22586704
65 Fackler K, Gradinger C, Hinterstoisser B, Messner K, Schwanninger M (2006). Lignin degradation by white rot fungi on spruce wood shavings during short-time solid-state fermentations monitored by near infrared spectroscopy. Enzyme Microb Technol, 39(7): 1476–1483
https://doi.org/10.1016/j.enzmictec.2006.03.043
66 Faraco V, Giardina P, Sannia G (2003). Metal-responsive elements in Pleurotus ostreatus laccase gene promoters. Microbiology, 149(Pt 8): 2155–2162
https://doi.org/10.1099/mic.0.26360-0 pmid: 12904555
67 Faraco V, Piscitelli A, Sannia G, Giardina P (2006). Identification of a new member of the dye-decolorizing peroxidase family from Pleurotus ostreatus. World J Microb Biot, 23(6): 889–893
https://doi.org/10.1007/s11274-006-9303-5
68 Fernández-Fueyo E, Castanera R, Ruiz-Due?as F J, López-Lucendo M F, Ramírez L, Pisabarro A G, Martínez A T (2014a). Ligninolytic peroxidase gene expression by Pleurotus ostreatus: Differential regulation in lignocellulose medium and effect of temperature and pH. Fungal Genet Biol, (In press)
https://doi.org/10.1016/j.fgb.2014.02.003 pmid: 24560615
69 Fernandez-Fueyo E, Ruiz-Due?as F J, Ferreira P, Floudas D, Hibbett D S, Canessa P, Larrondo L F, James T Y, Seelenfreund D, Lobos S, Polanco R, Tello M, Honda Y, Watanabe T, Watanabe T, Ryu J S, Kubicek C P, Schmoll M, Gaskell J, Hammel K E, St John F J, Vanden Wymelenberg A, Sabat G, Splinter BonDurant S, Syed K, Yadav J S, Doddapaneni H, Subramanian V, Lavín J L, Oguiza J A, Perez G, Pisabarro A G, Ramirez L, Santoyo F, Master E, Coutinho P M, Henrissat B, Lombard V, Magnuson J K, Kües U, Hori C, Igarashi K, Samejima M, Held B W, Barry K W, LaButti K M, Lapidus A, Lindquist E A, Lucas S M, Riley R, Salamov A A, Hoffmeister D, Schwenk D, Hadar Y, Yarden O, de Vries R P, Wiebenga A, Stenlid J, Eastwood D, Grigoriev I V, Berka R M, Blanchette R A, Kersten P, Martinez A T, Vicuna R, Cullen D (2012). Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis. Proc Natl Acad Sci U S A, 109(14): 5458–5463
pmid: 22434909
70 Fernández-Fueyo E, Ruiz-Due?as F J, Martínez M J, Romero A, Hammel K E, Medrano F J, Martínez A T (2014b). Ligninolytic peroxidase genes in the oyster mushroom genome: heterologous expression, molecular structure, catalytic and stability properties, and lignin-degrading ability. Biotechnol Biofuels, 7(1): 2
https://doi.org/10.1186/1754-6834-7-2 pmid: 24387130
71 Fillat A, Colom J F, Vidal T (2010). A new approach to the biobleaching of flax pulp with laccase using natural mediators. Bioresour Technol, 101(11): 4104–4110
https://doi.org/10.1016/j.biortech.2010.01.057 pmid: 20138756
72 FitzPatrick M, Champagne P, Cunningham M F, Whitney R A (2010). A biorefinery processing perspective: treatment of lignocellulosic materials for the production of value-added products. Bioresour Technol, 101(23): 8915–8922
https://doi.org/10.1016/j.biortech.2010.06.125 pmid: 20667714
73 Floudas D, Binder M, Riley R, Barry K, Blanchette R A, Henrissat B, Martínez A T, Otillar R, Spatafora J W, Yadav J S, Aerts A, Benoit I, Boyd A, Carlson A, Copeland A, Coutinho P M, de Vries R P, Ferreira P, Findley K, Foster B, Gaskell J, Glotzer D, Górecki P, Heitman J, Hesse C, Hori C, Igarashi K, Jurgens J A, Kallen N, Kersten P, Kohler A, Kües U, Kumar T K, Kuo A, LaButti K, Larrondo L F, Lindquist E, Ling A, Lombard V, Lucas S, Lundell T, Martin R, McLaughlin D J, Morgenstern I, Morin E, Murat C, Nagy L G, Nolan M, Ohm R A, Patyshakuliyeva A, Rokas A, Ruiz-Due?as F J, Sabat G, Salamov A, Samejima M, Schmutz J, Slot J C, St John F, Stenlid J, Sun H, Sun S, Syed K, Tsang A, Wiebenga A, Young D, Pisabarro A, Eastwood D C, Martin F, Cullen D, Grigoriev I V, Hibbett D S (2012). The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science, 336(6089): 1715–1719
https://doi.org/10.1126/science.1221748 pmid: 22745431
74 Galhaup C, Goller S, Peterbauer C K, Strauss J, Haltrich D (2002). Characterization of the major laccase isoenzyme from Trametes pubescens and regulation of its synthesis by metal ions. Microbiology, 148(Pt 7): 2159–2169
pmid: 12101303
75 Galliano H, Gas G, Seris J L, Boudet A M (1991). Lignin degradation by Rigidoporus lignosus involves synergistic action of two oxidizing enzymes: Mn peroxidase and laccase. Enzyme Microb Technol, 13(6): 478–482
https://doi.org/10.1016/0141-0229(91)90005-U
76 Gardner K H, Blackwell J (1974). The structure of native cellulose. Biopolymers, 13(10): 1975–2001
https://doi.org/10.1002/bip.1974.360131005
77 Gaskell J, Stewart P, Kersten P J, Covert S F, Reiser J, Cullen D (1994). Establishment of genetic linkage by allele-specific polymerase chain reaction: application to the lignin peroxidase gene family of Phanerochaete chrysosporium. Biotechnology (N Y), 12(13): 1372–1375
https://doi.org/10.1038/nbt1294-1372 pmid: 7765568
78 Gasser C A, Hommes G, Sch?ffer A, Corvini P F (2012). Multi-catalysis reactions: new prospects and challenges of biotechnology to valorize lignin. Appl Microbiol Biotechnol, 95(5): 1115–1134
https://doi.org/10.1007/s00253-012-4178-x pmid: 22782247
79 Gianfreda L, Xu F, Bollag J M (1999). Laccases: A useful group of oxidoreductive enzymes. Bioremediat J, 3(1): 1–25
https://doi.org/10.1080/10889869991219163
80 Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, Sannia G (2010). Laccases: a never-ending story. Cell Mol Life Sci, 67(3): 369–385
https://doi.org/10.1007/s00018-009-0169-1 pmid: 19844659
81 Gilbertson R L (1980). Wood-rotting fungi of North-America. Mycologia, 72(1): 1–49
https://doi.org/10.2307/3759417
82 Glenn J K, Akileswaran L, Gold M H (1986). Mn(II) oxidation is the principal function of the extracellular Mn-peroxidase from Phanerochaete chrysosporium. Arch Biochem Biophys, 251(2): 688–696
https://doi.org/10.1016/0003-9861(86)90378-4 pmid: 3800395
83 Glenn J K, Gold M H (1985). Purification and characterization of an extracellular Mn(II)-dependent peroxidase from the lignin-degrading basidiomycete, Phanerochaete chrysosporium. Arch Biochem Biophys, 242(2): 329–341
https://doi.org/10.1016/0003-9861(85)90217-6 pmid: 4062285
84 Goblirsch B, Kurker R C, Streit B R, Wilmot C M, DuBois J L (2011). Chlorite dismutases, DyPs, and EfeB: 3 microbial heme enzyme families comprise the CDE structural superfamily. J Mol Biol, 408(3): 379–398
https://doi.org/10.1016/j.jmb.2011.02.047 pmid: 21354424
85 Godfrey B J, Mayfield M B, Brown J A, Gold M H (1990). Characterization of a gene encoding a manganese peroxidase from Phanerochaete chrysosporium. Gene, 93(1): 119–124
https://doi.org/10.1016/0378-1119(90)90144-G pmid: 2227420
86 Gold M H, Alic M (1993). Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Microbiol Rev, 57(3): 605–622
pmid: 8246842
87 Gold M H, Kuwahara M, Chiu A A, Glenn J K (1984). Purification and characterization of an extracellular H2O2-requiring diarylpropane oxygenase from the white rot basidiomycete, Phanerochaete chrysosporium. Arch Biochem Biophys, 234(2): 353–362
https://doi.org/10.1016/0003-9861(84)90280-7 pmid: 6497376
88 Golovleva L A, Leontievsky A A, Maltseva O V, Myasoedova N M (1993). Ligninolytic enzymes of the fungus Panus tigrinus 8?18: Biosynthesis, purification and properties. J Biotechnol, 30(1): 71–77
https://doi.org/10.1016/0168-1656(93)90028-L
89 Goodell B, Jellison J, Liu J, Daniel G, Paszczynski A, Fekete F, Krishnamurthy S, Jun L, Xu G (1997). Low molecular weight chelators and phenolic compounds isolated from wood decay fungi and their role in the fungal biodegradation of wood. J Biotechnol, 53(2–3): 133–162
https://doi.org/10.1016/S0168-1656(97)01681-7
90 Guillén F, Martínez A T, Martínez M J (1992). Substrate specificity and properties of the aryl-alcohol oxidase from the ligninolytic fungus Pleurotus eryngii. Eur J Biochem, 209(2): 603–611
https://doi.org/10.1111/j.1432-1033.1992.tb17326.x pmid: 1425667
91 Gupta R, Mehta G, Khasa Y P, Kuhad R C (2011). Fungal delignification of lignocellulosic biomass improves the saccharification of cellulosics. Biodegradation, 22(4): 797–804
https://doi.org/10.1007/s10532-010-9404-6 pmid: 20711746
92 Gutiérrez A, del Río J C, Martínez-I?igo M J, Martínez M J, Martínez A T (2002). Production of new unsaturated lipids during wood decay by ligninolytic basidiomycetes. Appl Environ Microbiol, 68(3): 1344–1350
https://doi.org/10.1128/AEM.68.3.1344-1350.2002 pmid: 11872486
93 Hahn-H?gerdal B, Galbe M, Gorwa-Grauslund M F, Lidén G, Zacchi G (2006). Bio-ethanol—the fuel of tomorrow from the residues of today. Trends Biotechnol, 24(12): 549–556
https://doi.org/10.1016/j.tibtech.2006.10.004 pmid: 17050014
94 Hakala T K, Hildén K, Maijala P, Olsson C, Hatakka A (2006). Differential regulation of manganese peroxidases and characterization of two variable MnP encoding genes in the white-rot fungus Physisporinus rivulosus. Appl Microbiol Biotechnol, 73(4): 839–849
https://doi.org/10.1007/s00253-006-0541-0 pmid: 17031639
95 Hamelinck C N, Hooijdonk G, Faaij A P C (2005). Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy, 28(4): 384–410
https://doi.org/10.1016/j.biombioe.2004.09.002
96 Hammel K E, Jensen K A Jr, Mozuch M D, Landucci L L, Tien M, Pease E A (1993). Ligninolysis by a purified lignin peroxidase. J Biol Chem, 268(17): 12274–12281
pmid: 8509364
97 Hatakka A (2001) Biodegradation of Lignin. In: Hofrichter M,Steinbuchel A (eds.). (ed) Biopolymers, Wiley-VCH Verlag GmbH & Co. KGaA
98 Hatti-Kaul R, T?rnvall U, Gustafsson L, B?rjesson P (2007). Industrial biotechnology for the production of bio-based chemicals—a cradle-to-grave perspective. Trends Biotechnol, 25(3): 119–124
https://doi.org/10.1016/j.tibtech.2007.01.001 pmid: 17234288
99 Heinfling A, Ruiz-Due?as F J, Martínez M J, Bergbauer M, Szewzyk U, Martínez A T (1998). A study on reducing substrates of manganese-oxidizing peroxidases from Pleurotus eryngii and Bjerkandera adusta. FEBS Lett, 428(3): 141–146
https://doi.org/10.1016/S0014-5793(98)00512-2 pmid: 9654123
100 Hildén K, M?kel? M R, Steffen K T, Hofrichter M, Hatakka A, Archer D B, Lundell T K (2014). Biochemical and molecular characterization of an atypical manganese peroxidase of the litter-decomposing fungus Agrocybe praecox. Fungal Genet Biol, (In press)
https://doi.org/10.1016/j.fgb.2014.03.002 pmid: 24657475
101 Hildén K, Martinez A T, Hatakka A, Lundell T (2005). The two manganese peroxidases Pr-MnP2 and Pr-MnP3 of Phlebia radiata, a lignin-degrading basidiomycete, are phylogenetically and structurally divergent. Fungal Genet Biol, 42(5): 403–419
https://doi.org/10.1016/j.fgb.2005.01.008 pmid: 15809005
102 Himmel M E, Ding S Y, Johnson D K, Adney W S, Nimlos M R, Brady J W, Foust T D (2007). Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science, 315(5813): 804–807
https://doi.org/10.1126/science.1137016 pmid: 17289988
103 Holzbaur E L, Andrawis A, Tien M (1988). Structure and regulation of a lignin peroxidase gene from Phanerochaete chrysosporium. Biochem Biophys Res Commun, 155(2): 626–633
https://doi.org/10.1016/S0006-291X(88)80541-2 pmid: 2844176
104 Hon D S (1994). Cellulose: a random walk along its historical path. Cellulose, 1(1): 1–25
https://doi.org/10.1007/BF00818796
105 Husain M, Husain Q (2007). Applications of redox mediators in the treatment of organic pollutants by using oxidoreductive enzymes: A Review. Crit Rev Environ Sci Technol, 38(1): 1–42
https://doi.org/10.1080/10643380701501213
106 Janusz G, Kucharzyk K H, Pawlik A, Staszczak M, Paszczynski A J (2013). Fungal laccase, manganese peroxidase and lignin peroxidase: gene expression and regulation. Enzyme Microb Technol, 52(1): 1–12
https://doi.org/10.1016/j.enzmictec.2012.10.003 pmid: 23199732
107 Jeffries T W, Choi S, Kirk T K (1981). Nutritional regulation of lignin degradation by Phanerochaete chrysosporium. Appl Environ Microbiol, 42(2): 290–296
pmid: 16345829
108 Johansson T, Nyman P O, Cullen D (2002). Differential regulation of mnp2, a new manganese peroxidase-encoding gene from the ligninolytic fungus Trametes versicolor PRL 572. Appl Environ Microbiol, 68(4): 2077–2080
https://doi.org/10.1128/AEM.68.4.2077-2080.2002 pmid: 11916737
109 Kamitsuji H, Honda Y, Watanabe T, Kuwahara M (2005). Mn(2+) is dispensable for the production of active MnP2 by Pleurotus ostreatus. Biochem Biophys Res Commun, 327(3): 871–876
https://doi.org/10.1016/j.bbrc.2004.12.084 pmid: 15649426
110 Kamm B, Kamm M (2004). Principles of biorefineries. Appl Microbiol Biotechnol, 64(2): 137–145
https://doi.org/10.1007/s00253-003-1537-7 pmid: 14749903
111 Kersten P, Cullen D (2007). Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium. Fungal Genet Biol, 44(2): 77–87
https://doi.org/10.1016/j.fgb.2006.07.007 pmid: 16971147
112 Kersten P, Cullen D (2014). Copper radical oxidases and related extracellular oxidoreductases of wood-decay Agaricomycetes. Fungal Genet Biol, (In press)
https://doi.org/10.1016/j.fgb.2014.05.011 pmid: 24915038
113 Kersten P J (1990). Glyoxal oxidase of Phanerochaete chrysosporium: its characterization and activation by lignin peroxidase. Proc Natl Acad Sci U S A, 87(8): 2936–2940
https://doi.org/10.1073/pnas.87.8.2936 pmid: 11607073
114 Kersten P J, Kirk T K (1987). Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium. J Bacteriol, 169(5): 2195–2201
pmid: 3553159
115 Kim S J, Ishikawa K, Hirai M, Shoda M (1995). Characteristics of a newly isolated fungus, Geotrichum candidum Dec 1, which decolorizes various dyes. J Ferment Bioeng, 79(6): 601–607
https://doi.org/10.1016/0922-338X(95)94755-G
116 Kim S J, Shoda M (1999). Purification and characterization of a novel peroxidase from Geotrichum candidum dec 1 involved in decolorization of dyes. Appl Environ Microbiol, 65(3): 1029–1035
pmid: 10049859
117 Kim Y, Yeo S, Kum J, Song H G, Choi H T (2005). Cloning of a manganese peroxidase cDNA gene repressed by manganese in Trametes versicolor. J Microbiol, 43(6): 569–571
pmid: 16410775
118 Kirk T K, Croan S, Tien M, Murtagh K E, Farrell R L (1986). Production of multiple ligninases by Phanerochaete chrysosporium: effect of selected growth conditions and use of a mutant strain. Enzyme Microb Technol, 8(1): 27–32
https://doi.org/10.1016/0141-0229(86)90006-2
119 Kirk T K, Farrell R L (1987). Enzymatic “combustion”: the microbial degradation of lignin. Annu Rev Microbiol, 41(1): 465–505
https://doi.org/10.1146/annurev.mi.41.100187.002341 pmid: 3318677
120 Kishi K, Kusters-van Someren M, Mayfield M B, Sun J, Loehr T M, Gold M H (1996). Characterization of manganese(II) binding site mutants of manganese peroxidase. Biochemistry, 35(27): 8986–8994
https://doi.org/10.1021/bi960679c pmid: 8688436
121 Kishi K, Wariishi H, Marquez L, Dunford H B, Gold M H (1994). Mechanism of manganese peroxidase compound II reduction. Effect of organic acid chelators and pH. Biochemistry, 33(29): 8694–8701
https://doi.org/10.1021/bi00195a010 pmid: 8038159
122 Kleinert M, Barth T (2008). Phenols from Lignin. Chem Eng Technol, 31(5): 736–745
https://doi.org/10.1002/ceat.200800073
123 Koenig A B, Sleighter R L, Salmon E, Hatcher P G (2010). NMR structural characterization of Quercus alba (White Oak) degraded by the brown rot fungus, Laetiporus sulphureus. J Wood Chem Technol, 30(1): 61–85
https://doi.org/10.1080/02773810903276668
124 Kolpak F J, Blackwell J (1976). Determination of the structure of cellulose II. Macromolecules, 9(2): 273–278
https://doi.org/10.1021/ma60050a019 pmid: 1263576
125 Kramer K J, Kanost M R, Hopkins T L, Jiang H, Zhu Y C, Xu R, Kerwin J L, Turecek F (2001). Oxidative conjugation of catechols with proteins in insect skeletal systems. Tetrahedron, 57(2): 385–392
https://doi.org/10.1016/S0040-4020(00)00949-2
126 Kuan I C, Johnson K A, Tien M (1993). Kinetic analysis of manganese peroxidase. The reaction with manganese complexes. J Biol Chem, 268(27): 20064–20070
pmid: 8376363
127 Kunamneni A, Camarero S, García-Burgos C, Plou F J, Ballesteros A, Alcalde M (2008). Engineering and applications of fungal laccases for organic synthesis. Microb Cell Fact, 7(1): 32
https://doi.org/10.1186/1475-2859-7-32 pmid: 19019256
128 Kuwahara M, Glenn J K, Morgan M A, Gold M H (1984). Separation and characterization of two extracelluar H2O2-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Lett, 169(2): 247–250
https://doi.org/10.1016/0014-5793(84)80327-0
129 Levasseur A, Lomascolo A, Chabrol O, Ruiz-Due?as F J, Boukhris-Uzan E, Piumi F, Kües U, Ram A F, Murat C, Haon M, Benoit I, Arfi Y, Chevret D, Drula E, Kwon M J, Gouret P, Lesage-Meessen L, Lombard V, Mariette J, Noirot C, Park J, Patyshakuliyeva A, Sigoillot J C, Wiebenga A, W?sten H A, Martin F, Coutinho P M, de Vries R P, Martinez A T, Klopp C, Pontarotti P, Henrissat B, Record E (2014). The genome of the white-rot fungus Pycnoporus cinnabarinus: a basidiomycete model with a versatile arsenal for lignocellulosic biomass breakdown. BMC Genomics, 15(1): 486
https://doi.org/10.1186/1471-2164-15-486 pmid: 24942338
130 Levin L, Forchiassin F, Ramos A M (2002). Copper induction of lignin-modifying enzymes in the white-rot fungus Trametes trogii. Mycologia, 94(3): 377–383
https://doi.org/10.2307/3761771 pmid: 21156508
131 Li D, Alic M, Brown J A, Gold M H (1995). Regulation of manganese peroxidase gene transcription by hydrogen peroxide, chemical stress, and molecular oxygen. Appl Environ Microbiol, 61(1): 341–345
pmid: 7887613
132 Li D, Li N, Ma B, Mayfield M B, Gold M H (1999). Characterization of genes encoding two manganese peroxidases from the lignin-degrading fungus Dichomitus squalens(1). Biochim Biophys Acta, 1434(2): 356–364
https://doi.org/10.1016/S0167-4838(99)00191-0 pmid: 10525153
133 Lieth H (1975) Primary Production of the Major Vegetation Units of the World. In: Lieth H, Whittaker R (eds.). Primary Productivity of the Biosphere (Ecological Studies), Springer Berlin Heidelberg, 203–215
134 Liu S, Lu H, Hu R, Shupe A, Lin L, Liang B (2012). A sustainable woody biomass biorefinery. Biotechnol Adv, 30(4): 785–810
https://doi.org/10.1016/j.biotechadv.2012.01.013 pmid: 22306164
135 Liu X, Du Q, Wang Z, Zhu D, Huang Y, Li N, Wei T, Xu S, Gu L (2011). Crystal structure and biochemical features of EfeB/YcdB from Escherichia coli O157: ASP235 plays divergent roles in different enzyme-catalyzed processes. J Biol Chem, 286(17): 14922–14931
https://doi.org/10.1074/jbc.M110.197780 pmid: 21324904
136 Lobos S, Larraín J, Salas L, Cullen D, Vicu?a R (1994). Isoenzymes of manganese-dependent peroxidase and laccase produced by the lignin-degrading basidiomycete Ceriporiopsis subvermispora. Microbiology, 140(Pt 10): 2691–2698
https://doi.org/10.1099/00221287-140-10-2691 pmid: 8000540
137 Lundell T K, M?kel? M R, Hildén K (2010). Lignin-modifying enzymes in filamentous basidiomycetes—ecological, functional and phylogenetic review. J Basic Microbiol, 50(1): 5–20
https://doi.org/10.1002/jobm.200900338 pmid: 20175122
138 Lynd L R, Weimer P J, van Zyl W H, Pretorius I S (2002). Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev, 66(3): 506–577
https://doi.org/10.1128/MMBR.66.3.506-577.2002 pmid: 12209002
139 Ma B, Mayfield M B, Godfrey B J, Gold M H (2004). Novel promoter sequence required for manganese regulation of manganese peroxidase isozyme 1 gene expression in Phanerochaete chrysosporium. Eukaryot Cell, 3(3): 579–588
https://doi.org/10.1128/EC.3.3.579-588.2004 pmid: 15189980
140 Ma B, Mayfield M B, Gold M H (2001). The green fluorescent protein gene functions as a reporter of gene expression in Phanerochaete chrysosporium. Appl Environ Microbiol, 67(2): 948–955
https://doi.org/10.1128/AEM.67.2.948-955.2001 pmid: 11157267
141 Malkin R, Malmstr?m B G (1970). The state and function of copper in biological systems. Adv Enzymol Relat Areas Mol Biol, 33: 177–244
pmid: 4318312
142 Mancilla R A, Canessa P, Manubens A, Vicu?a R (2010). Effect of manganese on the secretion of manganese-peroxidase by the basidiomycete Ceriporiopsis subvermispora. Fungal Genet Biol, 47(7): 656–661
https://doi.org/10.1016/j.fgb.2010.04.003 pmid: 20434578
143 Mansur M, Suárez T, González A E (1998). Differential gene expression in the laccase gene family from basidiomycete I-62 (CECT 20197). Appl Environ Microbiol, 64(2): 771–774
pmid: 16349507
144 Manubens A, Avila M, Canessa P, Vicu?a R (2003). Differential regulation of genes encoding manganese peroxidase (MnP) in the basidiomycete Ceriporiopsis subvermispora. Curr Genet, 43(6): 433–438
https://doi.org/10.1007/s00294-003-0410-7 pmid: 12802504
145 Manubens A, Canessa P, Folch C, Avila M, Salas L, Vicu?a R (2007). Manganese affects the production of laccase in the basidiomycete Ceriporiopsis subvermispora. FEMS Microbiol Lett, 275(1): 139–145
https://doi.org/10.1111/j.1574-6968.2007.00874.x pmid: 17711455
146 Martínez A T (2002). Molecular biology and structure-function of lignin-degrading heme peroxidases. Enzyme Microb Technol, 30(4): 425–444
https://doi.org/10.1016/S0141-0229(01)00521-X
147 Martínez A T, Rencoret J, Nieto L, Jiménez-Barbero J, Gutiérrez A, del Río J C (2011). Selective lignin and polysaccharide removal in natural fungal decay of wood as evidenced by in situ structural analyses. Environ Microbiol, 13(1): 96–107
https://doi.org/10.1111/j.1462-2920.2010.02312.x pmid: 21199251
148 Martínez A T, Speranza M, Ruiz-Due?as F J, Ferreira P, Camarero S, Guillén F, Martínez M J, Gutiérrez A, del Río J C (2005). Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol, 8(3): 195–204
pmid: 16200498
149 Martinez D, Larrondo L F, Putnam N, Gelpke M D, Huang K, Chapman J, Helfenbein K G, Ramaiya P, Detter J C, Larimer F, Coutinho P M, Henrissat B, Berka R, Cullen D, Rokhsar D (2004). Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol, 22(6): 695–700
https://doi.org/10.1038/nbt967 pmid: 15122302
150 Martinez M J, Ruiz-Due?as F J, Guillén F, Martínez A T (1996). Purification and catalytic properties of two manganese peroxidase isoenzymes from Pleurotus eryngii. Eur J Biochem, 237(2): 424–432
https://doi.org/10.1111/j.1432-1033.1996.0424k.x pmid: 8647081
151 Masai E, Katayama Y, Fukuda M (2007). Genetic and biochemical investigations on bacterial catabolic pathways for lignin-derived aromatic compounds. Biosci Biotechnol Biochem, 71(1): 1–15
https://doi.org/10.1271/bbb.60437 pmid: 17213657
152 Mayer A M, Staples R C (2002). Laccase: new functions for an old enzyme. Phytochemistry, 60(6): 551–565
https://doi.org/10.1016/S0031-9422(02)00171-1 pmid: 12126701
153 Menon V, Rao M (2012). Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept. Prog Energ Combust, 38(4): 522–550
https://doi.org/10.1016/j.pecs.2012.02.002
154 Mester T, de Jong E, Field J A (1995). Manganese regulation of veratryl alcohol in white rot fungi and its indirect effect on lignin peroxidase. Appl Environ Microbiol, 61(5): 1881–1887
pmid: 16535027
155 Mester T, Field J A (1998). Characterization of a novel manganese peroxidase-lignin peroxidase hybrid isozyme produced by Bjerkandera species strain BOS55 in the absence of manganese. J Biol Chem, 273(25): 15412–15417
https://doi.org/10.1074/jbc.273.25.15412 pmid: 9624124
156 Miyazaki K (2005). A hyperthermophilic laccase from Thermus thermophilus HB27. Extremophiles, 9(6): 415–425
https://doi.org/10.1007/s00792-005-0458-z pmid: 15999224
157 Morales M, Mate M J, Romero A, Martinez M J, Martínez A T, Ruiz-Due?as F J (2012). Two oxidation sites for low redox potential substrates: a directed mutagenesis, kinetic, and crystallographic study on Pleurotus eryngii versatile peroxidase. J Biol Chem, 287(49): 41053–41067
https://doi.org/10.1074/jbc.M112.405548 pmid: 23071108
158 Moreira P R, Duez C, Dehareng D, Antunes A, Almeida-Vara E, Frère J M, Malcata F X, Duarte J C (2005). Molecular characterisation of a versatile peroxidase from a Bjerkandera strain. J Biotechnol, 118(4): 339–352
https://doi.org/10.1016/j.jbiotec.2005.05.014 pmid: 16026883
159 Morozova O V, Shumakovich G P, Gorbacheva M A, Shleev S V, Yaropolov A I (2007). “Blue” laccases. Biochemistry (Mosc), 72(10): 1136–1150
https://doi.org/10.1134/S0006297907100112 pmid: 18021071
160 Mouso N, Papinutti L, Forchiassin F (2003). Combined effect of copper and initial pH of the culture on production of laccase and manganese peroxidase by Stereum hirsutum (Willd) Pers. Rev Iberoam Micol, 20(4): 176–178
pmid: 15456359
161 Octave S, Thomas D (2009). Biorefinery: Toward an industrial metabolism. Biochimie, 91(6): 659–664
https://doi.org/10.1016/j.biochi.2009.03.015 pmid: 19332104
162 Ogola H J, Kamiike T, Hashimoto N, Ashida H, Ishikawa T, Shibata H, Sawa Y (2009). Molecular characterization of a novel peroxidase from the cyanobacterium Anabaena sp. strain PCC 7120. Appl Environ Microbiol, 75(23): 7509–7518
https://doi.org/10.1128/AEM.01121-09 pmid: 19801472
163 Ohara H (2003). Biorefinery. Appl Microbiol Biotechnol, 62(5–6): 474–477
https://doi.org/10.1007/s00253-003-1383-7 pmid: 12845495
164 Osma J F, Toca-Herrera J L, Rodríguez-Couto S (2010). Uses of laccases in the food industry. Enzyme Res, 2010: 918761
https://doi.org/10.4061/2010/918761 pmid: 21048873
165 Otjen L, Blanchette R, Effland M, Leatham G (1987). Assessment of 30 White Rot Basidiomycetes for Selective Lignin Degradation Holzforschung- International Journal of the Biology, Chemistry, Physics and Technology of Wood, pp. 343
166 Paliwal R, Rawat A P, Rawat M, Rai J P (2012). Bioligninolysis: recent updates for biotechnological solution. Appl Biochem Biotechnol, 167(7): 1865–1889
https://doi.org/10.1007/s12010-012-9735-3 pmid: 22639362
167 Palmieri G, Giardina P, Bianco C, Fontanella B, Sannia G (2000). Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Appl Environ Microbiol, 66(3): 920–924
https://doi.org/10.1128/AEM.66.3.920-924.2000 pmid: 10698752
168 Paszczynski A, Huynh V B, Crawford R (1985). Enzymatic activities of an extracellular, manganese-dependent peroxidase from Phanerochaete chrysosporium. FEMS Microbiol Lett, 29: 37–41
https://doi.org/10.1111/j.1574-6968.1985.tb00831.x
169 Pauly M, Gille S, Liu L, Mansoori N, de Souza A, Schultink A, Xiong G (2013). Hemicellulose biosynthesis. Planta, 238(4): 627–642
https://doi.org/10.1007/s00425-013-1921-1 pmid: 23801299
170 Pauly M, Keegstra K (2008). Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J, 54(4): 559–568
https://doi.org/10.1111/j.1365-313X.2008.03463.x pmid: 18476863
171 Pérez J, Mu?oz-Dorado J, de la Rubia T, Martínez J (2002). Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol, 5(2): 53–63
https://doi.org/10.1007/s10123-002-0062-3 pmid: 12180781
172 Pérez-Boada M, Ruiz-Due?as F J, Pogni R, Basosi R, Choinowski T, Martínez M J, Piontek K, Martínez A T (2005). Versatile peroxidase oxidation of high redox potential aromatic compounds: site-directed mutagenesis, spectroscopic and crystallographic investigation of three long-range electron transfer pathways. J Mol Biol, 354(2): 385–402
https://doi.org/10.1016/j.jmb.2005.09.047 pmid: 16246366
173 Périé F H, Gold M H (1991). Manganese regulation of manganese peroxidase expression and lignin degradation by the white rot fungus Dichomitus squalens. Appl Environ Microbiol, 57(8): 2240–2245
pmid: 1768094
174 Peterson T W a G (2004). Top value added chemicals from biomass. no DOE/GO-102004–1992, US Department of Energy, Office of Scientific and Technical Information, Piontek K, Antorini M, Choinowski T (2002). Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-A resolution containing a full complement of coppers. J Biol Chem, 277: 37663–37669
175 Piscitelli A, Giardina P, Lettera V, Pezzella C, Sannia G, Faraco V (2011). Induction and transcriptional regulation of laccases in fungi. Curr Genomics, 12(2): 104–112
https://doi.org/10.2174/138920211795564331 pmid: 21966248
176 Pogni R, Baratto M C, Teutloff C, Giansanti S, Ruiz-Due?as F J, Choinowski T, Piontek K, Martínez A T, Lendzian F, Basosi R (2006). A tryptophan neutral radical in the oxidized state of versatile peroxidase from Pleurotus eryngii: a combined multifrequency EPR and density functional theory study. J Biol Chem, 281(14): 9517–9526
https://doi.org/10.1074/jbc.M510424200 pmid: 16443605
177 Poulos T L, Edwards S L, Wariishi H, Gold M H (1993). Crystallographic refinement of lignin peroxidase at 2 A. J Biol Chem, 268(6): 4429–4440
pmid: 8440725
178 Pozdnyakova N, Makarov O, Chernyshova M, Turkovskaya O, Jarosz-Wilkolazka A (2013). Versatile peroxidase of Bjerkandera fumosa: substrate and inhibitor specificity. Enzyme Microb Technol, 52(1): 44–53
https://doi.org/10.1016/j.enzmictec.2012.10.005 pmid: 23199738
179 Ragauskas A J, Beckham G T, Biddy M J, Chandra R, Chen F, Davis M F, Davison B H, Dixon R A, Gilna P, Keller M, Langan P, Naskar A K, Saddler J N, Tschaplinski T J, Tuskan G A, Wyman C E (2014). Lignin valorization: improving lignin processing in the biorefinery. Science, 344(6185): 1246843
https://doi.org/10.1126/science.1246843 pmid: 24833396
180 Ragauskas A J, Williams C K, Davison B H, Britovsek G, Cairney J, Eckert C A, Frederick W J Jr, Hallett J P, Leak D J, Liotta C L, Mielenz J R, Murphy R, Templer R, Tschaplinski T (2006). The path forward for biofuels and biomaterials. Science, 311(5760): 484–489
https://doi.org/10.1126/science.1114736 pmid: 16439654
181 Raj A, Reddy M M K, Chandra R (2007). Decolourisation and treatment of pulp and paper mill effluent by lignin-degrading Bacillus sp.. J Chem Tech Biot, 82(4): 399–406
https://doi.org/10.1002/jctb.1683
182 Ralph J, Lundquist K, Brunow G, Lu F, Kim H, Schatz P, Marita J, Hatfield R, Ralph S, Christensen J, Boerjan W (2004). Lignins: Natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids. Phytochem Rev, 3(1/2): 29–60
https://doi.org/10.1023/B:PHYT.0000047809.65444.a4
183 Ramachandra M, Crawford D L, Hertel G (1988). Characterization of an extracellular lignin peroxidase of the lignocellulolytic actinomycete Streptomyces viridosporus. Appl Environ Microbiol, 54(12): 3057–3063
pmid: 3223769
184 Ramírez D A, Mu?oz S V, Atehortua L, Michel F C Jr (2010). Effects of different wavelengths of light on lignin peroxidase production by the white-rot fungi Phanerochaete chrysosporium grown in submerged cultures. Bioresour Technol, 101(23): 9213–9220
https://doi.org/10.1016/j.biortech.2010.06.114 pmid: 20655205
185 Reddy G V B, Sridhar M, Gold M H (2003). Cleavage of nonphenolic β-1 diarylpropane lignin model dimers by manganese peroxidase from Phanerochaete chrysosporium. Eur J Biochem, 270(2): 284–292
https://doi.org/10.1046/j.1432-1033.2003.03386.x pmid: 12605679
186 Reiser J, Walther I S, Fraefel C, Fiechter A (1993). Methods to investigate the expression of lignin peroxidase genes by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol, 59(9): 2897–2903
pmid: 8215362
187 Rico A, Rencoret J, Del Río J C, Martínez A T, Gutiérrez A (2014). Pretreatment with laccase and a phenolic mediator degrades lignin and enhances saccharification of Eucalyptus feedstock. Biotechnol Biofuels, 7(1): 6
https://doi.org/10.1186/1754-6834-7-6 pmid: 24401177
188 Riley R, Salamov A A, Brown D W, Nagy L G, Floudas D, Held B W, Levasseur A, Lombard V, Morin E, Otillar R, Lindquist E A, Sun H, LaButti K M, Schmutz J, Jabbour D, Luo H, Baker S E, Pisabarro A G, Walton J D, Blanchette R A, Henrissat B, Martin F, Cullen D, Hibbett D S, Grigoriev I V (2014). Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proc Natl Acad Sci U S A, 111(27): 9923–9928
https://doi.org/10.1073/pnas.1400592111 pmid: 24958869
189 Roberts J N, Singh R, Grigg J C, Murphy M E, Bugg T D, Eltis L D (2011). Characterization of dye-decolorizing peroxidases from Rhodococcus jostii RHA1. Biochemistry, 50(23): 5108–5119
https://doi.org/10.1021/bi200427h pmid: 21534572
190 Roddy D J (2013). Biomass in a petrochemical world. Interface Focus, 3(1): 20120038
https://doi.org/10.1098/rsfs.2012.0038 pmid: 24427511
191 Rodríguez Couto S, Toca Herrera J L (2006). Industrial and biotechnological applications of laccases: a review. Biotechnol Adv, 24(5): 500–513
https://doi.org/10.1016/j.biotechadv.2006.04.003 pmid: 16716556
192 Ruiz-Due?as F J, Camarero S, Pérez-Boada M, Martínez M J, Martínez A T (2001). A new versatile peroxidase from Pleurotus. Biochem Soc Trans, 29(Pt 2): 116–122
https://doi.org/10.1042/BST0290116 pmid: 11356138
193 Ruiz-Due?as F J, Guillén F, Camarero S, Pérez-Boada M, Martínez M J, Martínez A T (1999). Regulation of peroxidase transcript levels in liquid cultures of the ligninolytic fungus Pleurotus eryngii. Appl Environ Microbiol, 65(10): 4458–4463
pmid: 10508075
194 Ruiz-Due?as F J, Martínez A T (2009). Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microb Biotechnol, 2(2): 164–177
https://doi.org/10.1111/j.1751-7915.2008.00078.x pmid: 21261911
195 Ruiz-Due?as F J, Martínez M J, Martínez A T (1999). Molecular characterization of a novel peroxidase isolated from the ligninolytic fungus Pleurotus eryngii. Mol Microbiol, 31(1): 223–235
https://doi.org/10.1046/j.1365-2958.1999.01164.x pmid: 9987124
196 Ruiz-Due?as F J, Morales M, García E, Miki Y, Martínez M J, Martínez A T (2009a). Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases. J Exp Bot, 60(2): 441–452
https://doi.org/10.1093/jxb/ern261 pmid: 18987391
197 Ruiz-Due?as F J, Morales M, Pérez-Boada M, Choinowski T, Martínez M J, Piontek K, Martínez A T (2007). Manganese oxidation site in Pleurotus eryngii versatile peroxidase: a site-directed mutagenesis, kinetic, and crystallographic study. Biochemistry, 46(1): 66–77
https://doi.org/10.1021/bi061542h pmid: 17198376
198 Ruiz-Due?as F J, Pogni R, Morales M, Giansanti S, Mate M J, Romero A, Martínez M J, Basosi R, Martínez A T (2009b). Protein radicals in fungal versatile peroxidase: catalytic tryptophan radical in both compound I and compound II and studies on W164Y, W164H, and W164S variants. J Biol Chem, 284(12): 7986–7994
https://doi.org/10.1074/jbc.M808069200 pmid: 19158088
199 Saha B C (2003). Hemicellulose bioconversion. J Ind Microbiol Biotechnol, 30(5): 279–291
https://doi.org/10.1007/s10295-003-0049-x pmid: 12698321
200 Salame T M, Knop D, Levinson D, Mabjeesh S J, Yarden O, Hadar Y (2012a). Release of Pleurotus ostreatus versatile-peroxidase from Mn2+ repression enhances anthropogenic and natural substrate degradation. PLoS One, 7(12): e52446
https://doi.org/10.1371/journal.pone.0052446 pmid: 23285046
201 Salame T M, Knop D, Tal D, Levinson D, Yarden O, Hadar Y (2012b). Predominance of a versatile-peroxidase-encoding gene, mnp4, as demonstrated by gene replacement via a gene targeting system for Pleurotus ostreatus. Appl Environ Microbiol, 78(15): 5341–5352
https://doi.org/10.1128/AEM.01234-12 pmid: 22636004
202 Salvachúa D, Prieto A, Martínez A T, Martínez M J (2013). Characterization of a novel dye-decolorizing peroxidase (DyP)-type enzyme from Irpex lacteus and its application in enzymatic hydrolysis of wheat straw. Appl Environ Microbiol, 79(14): 4316–4324
https://doi.org/10.1128/AEM.00699-13 pmid: 23666335
203 Santhanam N, Vivanco J M, Decker S R, Reardon K F (2011). Expression of industrially relevant laccases: prokaryotic style. Trends Biotechnol, 29(10): 480–489
https://doi.org/10.1016/j.tibtech.2011.04.005 pmid: 21640417
204 Schwarze F W M R, Engels J, Mattheck C (2000) Fungal strategies of wood decay in trees, New York, Berlin, Springer
205 Sharma P, Goel R, Capalash N (2007). Bacterial laccases. World J Microbiol Biotechnol, 23(6): 823–832
https://doi.org/10.1007/s11274-006-9305-3
206 Shraddha S R, Shekher R, Sehgal S, Kamthania M, Kumar A (2011). Laccase: microbial sources, production, purification, and potential biotechnological applications. Enzyme Res, 2011: 217861
pmid: 21755038
207 Singh D, Chen S (2008). The white-rot fungus Phanerochaete chrysosporium: conditions for the production of lignin-degrading enzymes. Appl Microbiol Biotechnol, 81(3): 399–417
https://doi.org/10.1007/s00253-008-1706-9 pmid: 18810426
208 Singh R, Grigg J C, Armstrong Z, Murphy M E, Eltis L D (2012). Distal heme pocket residues of B-type dye-decolorizing peroxidase: arginine but not aspartate is essential for peroxidase activity. J Biol Chem, 287(13): 10623–10630
https://doi.org/10.1074/jbc.M111.332171 pmid: 22308037
209 Soden D M, Dobson A D (2001). Differential regulation of laccase gene expression in Pleurotus sajor-caju. Microbiology, 147(Pt 7): 1755–1763
pmid: 11429453
210 Soden D M, Dobson A D (2003). The use of amplified flanking region-PCR in the isolation of laccase promoter sequences from the edible fungus Pleurotus sajor-caju. J Appl Microbiol, 95(3): 553–562
https://doi.org/10.1046/j.1365-2672.2003.02012.x pmid: 12911704
211 Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson S, Raab T, Vorwerk S, Youngs H (2004). Toward a systems approach to understanding plant cell walls. Science, 306(5705): 2206–2211
https://doi.org/10.1126/science.1102765 pmid: 15618507
212 Stewart P, Cullen D (1999). Organization and differential regulation of a cluster of lignin peroxidase genes of Phanerochaete chrysosporium. J Bacteriol, 181(11): 3427–3432
pmid: 10348854
213 Stewart P, Kersten P, Vanden Wymelenberg A, Gaskell J, Cullen D (1992). Lignin peroxidase gene family of Phanerochaete chrysosporium: complex regulation by carbon and nitrogen limitation and identification of a second dimorphic chromosome. J Bacteriol, 174(15): 5036–5042
pmid: 1629160
214 Stoj C, Kosman D J (2003). Cuprous oxidase activity of yeast Fet3p and human ceruloplasmin: implication for function. FEBS Lett, 554(3): 422–426
https://doi.org/10.1016/S0014-5793(03)01218-3 pmid: 14623105
215 Strittmatter E, Wachter S, Liers C, Ullrich R, Hofrichter M, Plattner D A, Piontek K (2013). Radical formation on a conserved tyrosine residue is crucial for DyP activity. Arch Biochem Biophys, 537(2): 161–167
https://doi.org/10.1016/j.abb.2013.07.007 pmid: 23876237
216 Sugano Y (2009). DyP-type peroxidases comprise a novel heme peroxidase family. Cell Mol Life Sci, 66(8): 1387–1403
https://doi.org/10.1007/s00018-008-8651-8 pmid: 19099183
217 Sugano Y, Muramatsu R, Ichiyanagi A, Sato T, Shoda M (2007). DyP, a unique dye-decolorizing peroxidase, represents a novel heme peroxidase family: ASP171 replaces the distal histidine of classical peroxidases. J Biol Chem, 282(50): 36652–36658
https://doi.org/10.1074/jbc.M706996200 pmid: 17928290
218 Sundaramoorthy M, Gold M H, Poulos T L (2010). Ultrahigh (0.93A) resolution structure of manganese peroxidase from Phanerochaete chrysosporium: implications for the catalytic mechanism. J Inorg Biochem, 104(6): 683–690
https://doi.org/10.1016/j.jinorgbio.2010.02.011 pmid: 20356630
219 Sundaramoorthy M, Kishi K, Gold M H, Poulos T L (1994). The crystal structure of manganese peroxidase from Phanerochaete chrysosporium at 2.06-A resolution. J Biol Chem, 269(52): 32759–32767
pmid: 7806497
220 Sundaramoorthy M, Kishi K, Gold M H, Poulos T L (1997). Crystal structures of substrate binding site mutants of manganese peroxidase. J Biol Chem, 272(28): 17574–17580
https://doi.org/10.1074/jbc.272.28.17574 pmid: 9211904
221 Taylor C R, Hardiman E M, Ahmad M, Sainsbury P D, Norris P R, Bugg T D (2012). Isolation of bacterial strains able to metabolize lignin from screening of environmental samples. J Appl Microbiol, 113(3): 521–530
https://doi.org/10.1111/j.1365-2672.2012.05352.x pmid: 22642383
222 Tello M, Corsini G, Larrondo L F, Salas L, Lobos S, Vicu?a R (2000). Characterization of three new manganese peroxidase genes from the ligninolytic basidiomycete Ceriporiopsis subvermispora. Biochim Biophys Acta, 1490(1–2): 137–144
https://doi.org/10.1016/S0167-4781(99)00227-4 pmid: 10786628
223 Thiele D J (1988). ACE1 regulates expression of the Saccharomyces cerevisiae metallothionein gene. Mol Cell Biol, 8(7): 2745–2752
pmid: 3043194
224 Tien M, Kirk T K (1983). Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium Burds. Science, 221(4611): 661–663
https://doi.org/10.1126/science.221.4611.661 pmid: 17787736
225 Tien M, Kirk T K (1988) Lignin peroxidase of Phanerochaete chrysosporium. In: Willis A. Wood S T K (ed.). Methods in Enzymology, Academic Press, 238–249
226 Tuck C O, Pérez E, Horváth I T, Sheldon R A, Poliakoff M (2012). Valorization of biomass: deriving more value from waste. Science, 337(6095): 695–699
https://doi.org/10.1126/science.1218930 pmid: 22879509
227 Valli K, Wariishi H, Gold M H (1990). Oxidation of monomethoxylated aromatic compounds by lignin peroxidase: role of veratryl alcohol in lignin biodegradation. Biochemistry, 29(37): 8535–8539
https://doi.org/10.1021/bi00489a005 pmid: 2271536
228 Vanden Wymelenberg A, Gaskell J, Mozuch M, Kersten P, Sabat G, Martinez D, Cullen D (2009). Transcriptome and secretome analyses of Phanerochaete chrysosporium reveal complex patterns of gene expression. Appl Environ Microbiol, 75(12): 4058–4068
https://doi.org/10.1128/AEM.00314-09 pmid: 19376920
229 Vanden Wymelenberg A, Gaskell J, Mozuch M, Sabat G, Ralph J, Skyba O, Mansfield S D, Blanchette R A, Martinez D, Grigoriev I, Kersten P J, Cullen D (2010). Comparative transcriptome and secretome analysis of wood decay fungi Postia placenta and Phanerochaete chrysosporium. Appl Environ Microbiol, 76(11): 3599–3610
https://doi.org/10.1128/AEM.00058-10 pmid: 20400566
230 Wan C, Li Y (2012). Fungal pretreatment of lignocellulosic biomass. Biotechnol Adv, 30(6): 1447–1457
https://doi.org/10.1016/j.biotechadv.2012.03.003 pmid: 22433674
231 Wariishi H, Akileswaran L, Gold M H (1988). Manganese peroxidase from the basidiomycete Phanerochaete chrysosporium: spectral characterization of the oxidized states and the catalytic cycle. Biochemistry, 27(14): 5365–5370
https://doi.org/10.1021/bi00414a061 pmid: 3167051
232 Wariishi H, Gold M H (1990). Lignin peroxidase compound III. Mechanism of formation and decomposition. J Biol Chem, 265(4): 2070–2077
pmid: 2298739
233 Wariishi H, Valli K, Renganathan V, Gold M H (1989). Thiol-mediated oxidation of nonphenolic lignin model compounds by manganese peroxidase of Phanerochaete chrysosporium. J Biol Chem, 264(24): 14185–14191
pmid: 2760063
234 Welinder K G, Mauro J M, N?rskov-Lauritsen L (1992). Structure of plant and fungal peroxidases. Biochem Soc Trans, 20(2): 337–340
pmid: 1397625
235 Wesenberg D, Kyriakides I, Agathos S N (2003). White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv, 22(1-2): 161–187
https://doi.org/10.1016/j.biotechadv.2003.08.011 pmid: 14623049
236 Whitwam R E, Brown K R, Musick M, Natan M J, Tien M (1997). Mutagenesis of the Mn2+-binding site of manganese peroxidase affects oxidation of Mn2+ by both compound I and compound II. Biochemistry, 36(32): 9766–9773
https://doi.org/10.1021/bi9708794 pmid: 9245408
237 Williamson P R, Wakamatsu K, Ito S (1998). Melanin biosynthesis in Cryptococcus neoformans. J Bacteriol, 180(6): 1570–1572
pmid: 9515929
238 Wong D W (2009). Structure and action mechanism of ligninolytic enzymes. Appl Biochem Biotechnol, 157(2): 174–209
https://doi.org/10.1007/s12010-008-8279-z pmid: 18581264
239 Xiao X, Marzluf G A (1996). Identification of the native NIT2 major nitrogen regulatory protein in nuclear extracts of Neurospora crassa. Genetica, 97(2): 153–163
https://doi.org/10.1007/BF00054622 pmid: 8901135
240 Xiao Y Z, Hong Y Z, Li J F, Hang J, Tong P G, Fang W, Zhou C Z (2006). Cloning of novel laccase isozyme genes from Trametes sp. AH28-2 and analyses of their differential expression. Appl Microbiol Biotechnol, 71(4): 493–501
https://doi.org/10.1007/s00253-005-0188-2 pmid: 16283298
241 Yaropolov A I, Skorobogat’ko O V, Vartanov S S, Varfolomeyev S D (1994). Laccase. Appl Biochem Biotechnol, 49(3): 257–280
https://doi.org/10.1007/BF02783061
242 Yelle D J, Ralph J, Lu F, Hammel K E (2008). Evidence for cleavage of lignin by a brown rot basidiomycete. Environ Microbiol, 10(7): 1844–1849
https://doi.org/10.1111/j.1462-2920.2008.01605.x pmid: 18363712
243 Yoshida H, the Communication from the Chemical Society of Tokio (1883). Yoshida: Chemistry of lacquer (Urushi). J Chem Soc Trans, 43: 472–486
https://doi.org/10.1039/ct8834300472
244 Yoshida T, Tsuge H, Konno H, Hisabori T, Sugano Y (2011). The catalytic mechanism of dye-decolorizing peroxidase DyP may require the swinging movement of an aspartic acid residue. FEBS J, 278(13): 2387–2394
https://doi.org/10.1111/j.1742-4658.2011.08161.x pmid: 21569205
245 Zeng Y, Zhao S, Yang S, Ding S Y (2014). Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels. Curr Opin Biotechnol, 27: 38–45
https://doi.org/10.1016/j.copbio.2013.09.008 pmid: 24863895
246 Zhang Y H (2008). Reviving the carbohydrate economy via multi-product lignocellulose biorefineries. J Ind Microbiol Biotechnol, 35(5): 367–375
https://doi.org/10.1007/s10295-007-0293-6 pmid: 18180967
247 Zimmermann W (1990). Degradation of lignin by bacteria. J Biotechnol, 13(2–3): 119–130
https://doi.org/10.1016/0168-1656(90)90098-V
248 Zubieta C, Joseph R, Krishna S S, McMullan D, Kapoor M, Axelrod H L, Miller M D, Abdubek P, Acosta C, Astakhova T, Carlton D, Chiu H J, Clayton T, Deller M C, Duan L, Elias Y, Elsliger M A, Feuerhelm J, Grzechnik S K, Hale J, Han G W, Jaroszewski L, Jin K K, Klock H E, Knuth M W, Kozbial P, Kumar A, Marciano D, Morse A T, Murphy K D, Nigoghossian E, Okach L, Oommachen S, Reyes R, Rife C L, Schimmel P, Trout C V, van den Bedem H, Weekes D, White A, Xu Q, Hodgson K O, Wooley J, Deacon A M, Godzik A, Lesley S A, Wilson I A (2007). Identification and structural characterization of heme binding in a novel dye-decolorizing peroxidase, TyrA. Proteins: Struct, Funct. Bioinf, 69: 234–243
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed