Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2015, Vol. 10 Issue (4) : 358-376    https://doi.org/10.1007/s11515-015-1342-6
REVIEW
Fern spore germination in response to environmental factors
Jinwei Suo1,2,Sixue Chen3,Qi Zhao1,Lei SHI4,*(),Shaojun Dai1,*()
1. Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
2. Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, China
3. Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA
4. Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
 Download: PDF(1594 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Fern spore germination gives rise to the rhizoid and protonemal cell through asymmetric cell division, and then develops into a gametophyte. Spore germination is also a representative single-cell model for the investigation of nuclear polar movement, asymmetrical cell division, polarity establishment and rhizoid tip-growth. These processes are affected by various environmental factors, such as light, gravity, phytohormones, metal ions, and temperature. Here, we present a catalog of spore germination in response to different environmental factors. They are as follows: (1) Representative modes of light affecting spore germination from different fern species include red light-stimulated and far red light-inhibited spore germination, far red light-uninhibited spore germination, blue light-inhibited spore germination, and spore germination in the dark. The optimal light intensity and illumination time for spore germination are different among various fern species. Light response upon spore germination is initiated from the cell mitosis that regulated by phytochromes (PHYs) and cryptochromes (CRYs). AcPHY2, AcCRY3 and/or AcCRY4 are hypothesized to be involved in spore germination; (2) Gravity and calcium are crucial to early nuclear movement and polarity establishment of spores; (3) Gibberellin and antheridiogen can initiate and promote spore germination in many species, but abscisic acid, jasmonic acid, and ethylene pose only minor effects; (4) Spores can obtain the maximal germination rate in their favorable growth medium. Moreover, metal ions, pH, and spore density in the culture medium also affect spore germination; (5) Most fern spores germinate at 25°C, and an optimal CO2 concentration is necessary for spore germination of certain fern plants. These provide valuable information for understanding fern spore germination in response to environmental factors.

Keywords fern      spore      germination      environmental factors     
Corresponding Author(s): Lei SHI,Shaojun Dai   
Just Accepted Date: 26 December 2014   Online First Date: 28 January 2015    Issue Date: 14 August 2015
 Cite this article:   
Qi Zhao,Lei SHI,Shaojun Dai, et al. Fern spore germination in response to environmental factors[J]. Front. Biol., 2015, 10(4): 358-376.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-015-1342-6
https://academic.hep.com.cn/fib/EN/Y2015/V10/I4/358
Fig.1  Phylogeny depicting relationships of fern species whose spore germination is affected by various environmental factors. The effects of environmental factor on spore germination were shown in red (promotion), green (inhibition) and blue (no influence). ABA: Abscisic acid; An: Antheridiogen; B: Blue light; B-R: Blue light followed by red light; CO2a: CO2 treatment concentration for the spores of P. piloselloides (219–3360 cm3·m-3) and O. sensibilis (0–2%); CO2b: CO2 treatment concentration for O. sensibilis spores (5%–15%); D: Darkness; E: Ethylene (≥1μL·L-1); E-im: The treatment of ethylene on the immature fern spores; E-m: The treatment of ethylene on the mature spores; FR: Far red light; FR>24h-R: 24h far red light treatment followed by red light; FR(B)-B(FR): Far red light followed by blue light or blue light followed by far red light; FR-R: Far red light followed by red light; G: Green light; GA: Gibberellin acid; GA4+7: A kind of gibberellin acid; Gr: Gravity; I1: Ca2+, Mg2+, or Mn2+; I2: La3+ or Cd2+; ID1: Inoculation density, 50 spores·mL-1; ID2: Inoculation density, 3000 spores/cm2; JA: Jasmonic acid; LD1: Long time of light irradiation (≥24 h); LD2: Short time irradiation (<24 h); LI-h: High light intensity; LI-l: Low light intensity; LI-s: Leaf shade; LI-w: White light; MS1: Medium with lower concentration (<1/2MS: 1/4MS, 1/5MS, 1/10MS etc.); MS2:1/2 MS; MS3: MS or≤1/2MS; MS4: The liquid and solid medium; N1: Other nutrition in the medium: such as, sulphite, oxybarbiturates, lipophilic solvents, and the leachates of Eupatorium adenophorum; N2: Other nutrition in the medium: such as, thiamine, pyridoxine, glycine, glutamate, kinetin, and extract of P. aquilinum leave; pH1: A wide pH range (3.7 to 9.7 or 4.5 to 8.5); pH2: 3.7 to 6.7; pH3: 7 to 8; R: Red light; R-B: Red light followed by blue light; R/FR-B6-72h: Red or far red light followed by blue light for 6–72 h; R-D3-5h-B/FR: Red light followed by blue or far red light after an intervening dark period (3–5 h); R-FR: Red light followed by far red light; R-FR-Rs: Red light followed by far red light, and then red light for short time (5 min); R-FR-Rl: Red light followed by far red light, and then red light for 8 h; R38h-B/FR-X : 38 h red light treatment followed by blue or far red light, and then a series of brief red, far red, and blue light irradiation; (R-)B-Rh/l: (Red light-) Blue light followed by red light of high intensity (1–2 min) or long time (1h); (R-)B-Rh-Bs: (Red light-) Blue light followed by red light with high intensity (2 min), and then blue light for short time (1–2 min); (R-)B-Rh- Bl/FR: (Red light-)Blue light followed by red light with high intensity (2 min), and then blue light for long time (1–2 h) or far red light; S-L: Low concentration of sucrose in MS; S-H: High concentration of sucrose in MS; T<15: The optimum germination temperature less than 15 °C; Top-20: The maximum germination rate occurred at 20 °C; Top-25: The optimum germination temperature is 25 °C; Top-30: The maximum germination rate occurred at 30 °C. W: White light; Y: Yellow light.
Environmental factors Plant species Treatment condition(concentration, time) Effects on spore germination References
Red light Adiantum capillus-veneris 5 min (followed in darkness for 168 h) P (58.3%) Furuya et al., 1997
38 h (followed in darkness for 38 h) P (78.3%±2.6%)
Alsophila metteniana 12 h daily P (65.66%±4.04%) Du et al., 2009a
Asplenium nidus ≥72 h P (initiated both rhizoid and protonema) Raghavan, 1971
12 h Only formed rhizoids
Cheilanthes farinosa 30 s P (80%) Raghavan, 1973
Cheilanthes feei P (88%) Nondorf et al., 2003
Lycopodium clavatum 30 min daily I (5.9%) Whittier, 2008
Lygodium japonicum P Sugai et al., 1977
Mohria caffrorum 144 h or 12 h or 24 h 86.2%±2.7% or 42.3%±3.3% or 79.1%±3.9% Reynolds and Raghavan., 1982
5 min/h (during a 24 h period) SI (77.6%±1.3%)
5 min/4 h (during a 24 h period) I (39.4%±2.8%)
5 min/8 h (during a 24 h period) I (15.4%±0.7%)
Onoclea sensibilis 5 min P (63.2%±2.5%) Towill et al., 1973
Ophioglossum crotalophoroides 20 min daily I (0%) Whittier, 2006
Polypodium aureum 1 d, 3 d, 5 d 33%, 61%, 79% Spiess et al., 1977
Pteris vittata P Sugai et al., 1967
Thelypteris kunthii 8 h or 18 h P (34.8% and 46.5%±2.05%) Huckaby and Raghavan, 1981
5 min/1 h for 18 h I (37.2%±2.63%)
5 min/3 h for 18 h I (32.9%±2.17%)
R 8 h, D 24 h P (34.6%±4.45%)
Far-red light Adiantum capillus-veneris 5 min (followed in darkness for 168 h) I (1.2%) Furuya et al., 1997
Cheilanthes feei P Nondorf et al., 2003
Lycopodium clavatum 30 min daily P (95.8%) Whittier, 2008
Lygodium heterodoxum 12 h daily P (74%) Pérez-García et al., 1994
Mohria caffrorum 144 h P (84.0%±3.1%) Reynolds and Raghavan, 1982
12 h P
24 h P (80.6%±1.2%)
5 min/h (during a 24 h period) P (78.8%±1.9%)
5 min/4 h (during a 24 h period) I (35.2%±3.3%)
5 min/8 h (during a 24 h period) I (9.0%±2.6%)
Onoclea sensibilis 5 min P (75.2%±3.1%) Towill et al., 1973
Ophioglossum crotalophoroides 20 min daily P (25.3%) Whittier, 2006
Darkness Adiantum capillus-veneris 168 h or 38 h I (0%) Furuya et al., 1997
Alsophila metteniana I (0%) Du et al., 2009a
Thelypteris kunthii 18 h or 24 h I (0%) Huckaby and Raghavan, 1981
Cheilanthes farinosa 4 weeks I (8%) Raghavan, 1973
Cheilanthes feei I (7.7%) Nondorf et al., 2003
Lycopodium clavatum 24 h daily P (98.7%) Whittier, 2008
Mohria caffrorum 144 h I (0%) Reynolds and Raghavan, 1982
Onoclea sensibilis 6 d I (12.0%±3.9%) Towill et al., 1973
Ophioglossum crotalophoroides 24 h daily P (36.2%) Whittier, 2006
Psilotum complanatumPsilotum nudum Several months (cultured on nutrient medium, PH= 5.4) P (52.0% – 98.3%) Whittier and Braggins, 1994
Tmesipteris lanceolata,Tmesipteris sigrnatifolia P
Tmesipteris elongata I (0%)
Tmesipteris tannensis I (<0.1%)
White light Adiantum reniforme var. sinense 16 h daily P (maximum germination rate, 50.1%) Wu et al., 2010
Alsophila metteniana 12 h daily P (68.78%±1.81%) Du et al., 2009a
Cheilanthes feei P (98%) Nondorf et al., 2003
Lycopodium clavatum 30 min daily or 12 h daily I (2.2% or 0%) Whittier, 2008
Lygodium heterodoxum 12 h daily P (90%) Pérez-García et al., 1994
Ophioglossum crotalophoroides 20 min daily I (0%) Whittier, 2006
Green light Cheilanthes feei P Nondorf et al., 2003
Yellow light Alsophila metteniana 12 h daily P (63.74%±3.06%) Du et al., 2009a
Blue light Adiantum capillus-veneris 5 min (followed in darkness for 168 h ) I (0%) Furuya et al., 1997
Alsophila metteniana 12 h daily I (7.51%±0.44%) Du et al., 2009a
Cheilanthes feei P (68%) Nondorf et al., 2003
Mohria caffrorum 144 h I (15.7%±3.5%) Reynolds and Raghavan, 1982
78 h I (16%)
Onoclea sensibilis 5 min P (51.7%±3.0%) Towill et al., 1973
Polypodium aureum 1 d, 3 d, 5 d I (0%) Spiess et al., 1977
Thelypteris kunthii 24 h (followed in drakness for 24 h) I (0%) Huckaby and Raghavan, 1981
Tab.1  Effects of different light source on fern spore germination
Environmental factors Plant species Treatment condition (concentration, time) Effects on spore germination References
R-FR Adiantum capillus-veneris R 5 min-FR 5 min (followed in darkness for 168 h) I (0.4%) Furuya et al., 1997
R 38 h-FR 10 min (followed in darkness for 38 h) P (83.0%±2.2%)
Asplenium nidus R 12 h-FR 48 h I Raghavan, 1971
Cheilanthes farinosa R 30 s-FR 30 s –1 h N Raghavan, 1973
Lycopodium clavatum R 30 min-FR 30 min daily P (96.8%) Whittier, 2008
Mohria caffrorum R 12 h-FR 5 min N (41.1%±2.1%) Reynolds and Raghavan, 1982
R 12 h-FR 1 h N (39.7%±4.4%)
Ophioglossum crotalophoroides R 20 min-FR 20 min daily P (28.4%) Whittier, 2006
Thelypteris kunthii R 8 h-FR 5 min I (0%) Huckaby and Raghavan, 1981
FR-R Adiantum capillus-veneris FR 5 min-R 5 min (incubated in darkness for 168 h) P (58.3%) Furuya et al., 1997
Asplenium nidus FR 24–48 h-R 1–2 min P Raghavan, 1971
FR>72 h-R 0–10 min P
Lycopodium clavatum FR 30 min daily-R 30 min daily I (6.4%) Whittier, 2008
Ophioglossum crotalophoroides FR 20 min daily-R 20 min daily I (0%) Whittier, 2006
R-FR-R Adiantum capillus-veneris R 5 min-FR 5 min-R 5 min(followed in darkness for 168 h) P (54.9%) Furuya et al., 1997
R 38 h-FR 10 min-R 5 min(followed in darkness for 38 h) P (72.0%±2.6%)
Asplenium nidus R 12 h-FR 48 h-R 10 min P Raghavan, 1971
Thelypteris kunthii R 8 h-FR 5 min-R 8 h P (48.2%±4.91%) Huckaby and Raghavan, 1981
R 8 h-FR 5 min-R 5 min I (6.8%±2.69%)
FR-R-FR Adiantum capillus-veneris FR 5 min-R 5 min-FR 5 min(followed in darkness for 168 h) I (0%) Furuya et al., 1997
R-D-B Adiantum capillus-veneris R 5 min-B 5 min (followed in darkness for 168 h) I (2.6%) Furuya et al., 1997
R 38 h-B 5 min (followed in darkness for 38 h) P (87.3%±1.9%)
Cheilanthes farinosa R 30 s-B 30 s I (0%) Raghavan, 1973
R 30 s-D 3 h-B 30 s SI (50%)
R 30 s-D 5 h-B 30 s N
Mohria caffrorum R 12 h-B 1 h I (0.5%±1.6%) Reynolds and Raghavan, 1982
R 12 h-B 1–6 h I
R 12 h-B 6–72 h P
Polypodium aureum R 1 d-B 1 d; R 1 d-B 3 d; R 1 d-B 5 d I (11%, 12%, 15%) Spiess et al., 1977
R 3 d-B 1 d; R 3 d-B 3 d; R 3 d-B 5 d SI (49%, 59%, 57%)
R 5 d-B 1 d; R 5 d-B 3 d; R 5 d-B 5 d SI (64%, 66%, 76%)
Thelypteris kunthii R 8 h-B 24 h I (17.4%±1.09%) Huckaby and Raghavan, 1981
B-R Adiantum capillus-veneris B 5 min-R 5 min (incubated in darkness for 168 h) I (2.4%) Furuya et al., 1997
Cheilanthes farinosa B 30 s-R 30 s I Raghavan, 1973
B 30 s-R 1 h P
B 30 s-R (high intensity) 1–2 min
Mohria caffrorum B 1 h-R 12 h I (0.3%±1.1%) Reynolds and Raghavan, 1982
Polypodium aureum B 1 d-R 1 d; B 3 d-R 1 d; B 5 d-R 1 d P (53%; 63%; 63%) Spiess et al, 1977
B 1 d-R 3 d; B 3 d-R 3 d; B 5 d-R 3 d P (68%; 71%; 63%)
B 1 d-R 5 d; B 3 d-R 5 d; B 5 d-R 5 d P (52%; 68%; 65%)
Thelypteris kunthii B 24 h-R 8 h I (19.1%±1.47%) Huckaby and Raghavan, 1981
FR-B Mohria caffrorum FR 12 h-B 1 h I (0%) Reynolds and Raghavan, 1982
FR 12 h-B 1–6 h I
FR 12 h-B 6–72 h P
B-FR Mohria caffrorum B 1 h, FR 12 h I (0%) Reynolds and Raghavan, 1982
R-B-R Adiantum capillus-veneris R 5 min-B 5 min-R 5 min(followed in darkness for 168 h) I (5.4%) Furuya et al., 1997
R 38 h-B 5 min-R 5 min(followed in darkness for 38 h) P (73.9%±3.1%)
Cheilanthes farinosa R 30 s-B 30 s-R 1 h P Raghavan, 1973
R 30 s-B 30 s-R (high intensity) 1–2 min P
R-FR-R-FR Adiantum capillus-veneris R 38 h-FR 10 min-R 5 min-FR 10 min(followed in darkness for 38 h) P (82.6%±2.2%) Furuya et al., 1997
Asplenium nidus R 12 h-FR 48 h-R10 min-FR 8 h I Raghavan, 1971
Thelypteris kunthii R 8 h-FR 5 min-R 8 h-FR 5 min P (36.7%±1.83%) Huckaby and Raghavan, 1981
R 8 h-FR 5 min-R 5 min-FR 5 min I (0%)
R 8 h-FR 5 min-R 8 h-FR 5 min-R 8vh P (55.2%±4.83%)
R 8 h-FR 5 min-R 5 min-FR 5 min-R 5 min I (5.2%±0.92%)
D-R Asplenium nidus D 24–72 h-R 1–10 min I Raghavan, 1971
Thelypteris kunthii D 24 h-R 8 h P (33.0%±3.04%) Huckaby and Raghavan, 1981
B-R-D-FR Cheilanthes farinosa B 30 s-R (high intensity) 2 min-FR 1–2 min I Raghavan, 1973
B 30 s-R (high intensity) 2 min-D 5 h-FR 1–2 min N
B-R-B Cheilanthes farinosa B 30 s-R (high intensity) 2 min-B 1–2 min N Raghavan, 1973
B 30 s-R (high intensity) 2 min-B 1–2 h I
R-B-R-D-FR Cheilanthes farinosa R 30 s-B 30 s-R (high intensity) 2 min-FR 1–2 min I Raghavan, 1973
R 30 s-B 30 s-R (high intensity) 2 min-D 5 h-FR 1–2 min N
R-B-R-B Cheilanthes farinosa R 30 s-B 30 s-R (high intensity) 2 min, B 1–2 min N Raghavan, 1973
R 30 s-B 30 s-R (high intensity) 2 min-B 1–2 h I
Adiantum capillus-veneris R 38 h-B 5 min-R 5 min-B 5 min (incubated in darkness for 38 h) P (67.9%±3.3%) Furuya et al., 1997
Tab.2  Effects of multi-light quality interaction on fern spore germination
Fig.2  Effects of light intensity and illumination time on fern spore germination. The red solid lines represent ‘promotion’ and the ‘inhibition’ is shown in green dashed lines. LD1: Long time of light irradiation (≥24 h); LD2: Short time irradiation (<24 h); LI-h: High light intensity; LI-l: Low light intensity; LI-s: Leaf shade; LI-w: White light.
Fig.3  Effects of phytohormones on fern spore germination. The red solid lines represent ‘promotion’ and the ‘inhibition’ is shown in green dashed lines, whereas the blue dashed lines indicate no influence on the fern spore germination of current environmental factor. ABA: Abscisic acid; An: Antheridiogen; E: Ethylene (≥1mL·L-1); E-im: The treatment of ethylene on the immature fern spores; E-m: The treatment of ethylene on the mature spore; GA: Gibberellin acid; GA4+7: A kind of gibberellin acid; JA: Jasmonic acid.
Environmentalfactors Plant spices Treatment condition(concentration, time) Effects on spore germination(germination rate or time) References
Mineral content in medium and type of Medium Adiantum raddianum Knop’s or MS or 1/2 MS 42% or 32% or 48% Tian et al., 2008
Knop’s, activated charcoal 0–1.5 g·L-1 42%–80%
Knop’s, GA 0–3 mg·L-1 42%–80%
Adiantumreniforme var. sinense 1/4 MS, sucrose 0–60 g·L-1 Maximum germination 61.2%±16.2% Wu et al., 2010
1/2 MS, sucrose 0–60 g·L-1 Maximum germination 41.5%±7.9%
MS, sucrose 0–60 g·L-1 Maximum germination 29.8%±6.6%
Alsophila podophylla 1/2 MS or MS 60.2% or 58.7% Zhang et al., 2007
1/10 MS or 1/5 MS 67.5% or 66.9%
Anemia phyllitidis Liquid medium P Douglas, 1994
Dryopteris varia Ms or 1/2 MS or 1/4 MS 33% or 38% or<5% Ouyang et al., 2008
Osmunda japonica 1/2 MS or MS 50.3% or 80.2% Yuan et al., 2002
1/8 MS 95.3%
Platycerium bifurcatum Solid media, 3 d or 6 d 53.5%±5.5% or 67.6%±6.0% Camloh, 1993
Liquid media, 3 d or 6 d 50.3%±3.6% or 68.8%±1.4%
Pteridium aquilinum Solid media, 14 d 85.2% Sheffield et al., 2001
Liquid media, 14 d 60.0%
Pteris cretica Knop’s or MS 80.6% or 77.2% Xu et al., 2005
1/2 MS 82.3%
1/5 MS or 1/10 MS 64.7% or 62.5%
Pteris tripartita Sw MS 70.66%±1.45% Baskaran et al., 2012
1/2 MS 80.00%±1.15%
1/4 MS or 1/8 MS 59.00%±1.15% or 56.00%±2.51%
Pteris wallichiana MS 78.2%±2.1% Zhang et al., 2008c
1/2 MS 83.3%±2.3%
1/5 MS or 1/10 MS 66.7%±2.5% or 62.9%±0.9%
Pyrrosia lingua MS 59.5%/9 d Du et al., 2009b
1/2 MS or 1/4 MS 82.3%/7d or 82.7%/7d
1/8 MS or Knop’s 83.2%/6d or 84.1%/6 d
Schizaea dichotoma 1/4 MS 34% Cox et al., 2003
1/2 MS 12%
Sucrose and other contents in culture medium Athyrium filix-femina Liquid medium, sucrose 0 M 87.2% Sheffield et al., 2001
Liquid medium, sucrose 0.05 M or 0.2 M 91.2% or 94.7%
Cibotium barometz leachates of Eupatorium adenophorum(0%, 5%, 10%, 20%, 30%, 40%, 50%) 98% to 18% Zhang et al., 2008b
Colysis latiloba 0% Sucrose 15% Parajuli et al., 2013
1% Sucrose 86%
2%–5% Sucrose 75%–54%
Dryopteris expansa Liquid medium, sucrose 0 M 57.8% Sheffield et al., 2001
Liquid medium, sucrose 0.05 M or 0.2 M 61.1% or 66.0%
Dryopteris varia Sucrose 0% or 1% or 2% 37% or 39% or 38% Ouyang et al., 2008
Sucrose 3% or 4% or 5% <5% or <1%
Macrothelypteris torresiana leachates of Ageratina adenophora(0%, 5%, 10%, 20%, 30%, 40%, 50%) nearly 100% to 0% Zhang et al., 2008a
Neocheiropteris palmatopedata leachates of Ageratina adenophora(0%, 5%, 10%, 20%, 30%, 40%, 50%) nearly 100% to 0% Zhang et al., 2012
Osmunda japonica 1/8 MS sucrose 0% 34.8% Yuan et al., 2002
1/8 MS, sucrose 2% or 3% 90.2% or 95.1%
1/8 MS, sucrose 1% or 4% or 5% 80.1% or 83.3% or 64.5%
Pteridium aquilinum Liquid medium, sucrose 0 M 30.4% Sheffield et al., 2001
Liquid medium, sucrose 0.05 M or 0.2 M 39.3% or 43.3%
Pteridiumaquilinum var. latiusculum Sucrose 50000 mg·L-1 , Vitamin 8.0% Bao et al., 2000
Sucrose 50000 mg·L-1 , Amino acid 9.8%
Sucrose 50000 mg·L-1 ,extract of Pteridium aquilinum leaves 20%
Sucrose 50000 mg·L-1 , IAA, KN 6.8%
Sucrose 50000 mg·L-1 ,(did not add any growth-assisted substance) 6.7%
Pteris cretica Sucrose 0% or 1% or 2% 82.3% or 83.0% or 82.6% Xu et al., 2005
Sucrose 3% or 4% or 5% 60.5% or 54.7% or 50.1%
Pyrrosia lingua Sucrose 0% or 1% or 2% 82.4% or 81.3% or 80.6% Du et al., 2009b
Sucrose 3% or 4% or 5% 62.5% or 68.2% or 53.6%
pH Alsophila metteniana 3.7 or 5.7 or 6.7 65.6%–40% Du et al., 2009a
4.7 65.6%
≥7.7 0%
Anemia mexicana pH 5.0–6.5 Maximum germination Nester and Coolbaugh, 1986
pH≤4.5 I
Anemia phyllitidis pH 5.0–6.5 Maximum germination
pH≤4.5 I
Cheilanthes feei 4.5 or 5.5 or 6.5 or 8.5 Nearly 95% or 75% or 55% or 50% Nondorf et al., 2003
Cyathea atrovirens pH 4.0–6.5, 6 d–12 d 78%–93% Rechenmacher et al., 2010
pH 7.0, 6 d–12 d 40%–80%
Drynaria fortunei 7.7 63.3% Chang et al., 2007
9.7 0.8%
3.7 1%
Gleichenella pectinata pH 4.0 0.8%±0.4% Santos et al., 2010
pH 4.5–5.0 1.2%±0.8%-2.2%±0.8%
pH 5.5–6.0 0.8%±0.4%-0.5%±0.5%
Marsilea vestita pH 7 to 8 78% Mahlberg and Yarus, 1977
Ophioglossum palmatum pH 3.4 14% Whittier and Moyroud, 1993
pH 4.0 55%
pH 4.6–6.2 48%–0%
Polypodium lepidopteris pH 4.0–6.7 32%–38% Viviani and Randi, 2008
Cd2+ Ceratopteris thalictroides 0.1 mg·L-1 or 1.0 mg·L-1 N Gupta et al., 1992
2.5 mg·L-1or 5.0 mg·L-1 14% or 36%
La3+ Dryopteris paleacea 10-2 M or 10-4 M or 10-6 M or 10-8 M,R 1 min 2.0%±0.7% or 46.4%±2.2%or 58.0%±2.6% or 60.0%±2.4% Scheuerlein et al., 1989
0 M, R 1 min 60.2%±1.0%
Ca2+ Dryopteris paleacea ≤10-7 M I (5%) Scheuerlein et al., 1989
10-4 M Maximum germination
≥10-1 M I
Tab.3  Effect of medium, sucrose and other environmental factors on the germination of fern spores
Fig.4  Effects of temperature and the other environmental factors on fern spore germination. The red solid lines represent ‘promotion’ and the ‘inhibition’ is shown in green dashed lines. CO2a: CO2 treatment concentration for the spores of P. piloselloides (219–3360 cm3·m-3) and O. sensibilis (0–2%); CO2b: CO2 treatment concentration for O. sensibilis spores (5%–15%); ID1: Inoculation density, 50 spores·mL-1; ID2: Inoculation density, 3000 spores·cm-2; T<15: the optimal germination temperature less than 15 °C; Top-20: The maximal germination rate occurred at 20 °C; Top-25: The optimal germination temperature is 25 °C; Top-30: The maximal germination rate occurred at 30 °C.
1 Ashcroft C J, Sheffield E (2000). The effect of spore density on germination and development in Pteridium, monitored using a novel culture technique. Am Fern J, 90(3): 91–99
https://doi.org/10.2307/1547324
2 Bannon M E, Kordan H A, Sheffield E (1991). Effects of oxybarbiturates on fern spore germination and gametophyte development. Atla-Altern Lab Anim, 19(3): 308–315
3 Bao M, Wu X M, Ding L (2000). Effect of sucrose and the growth of auxiliary substances on spore artificial propagation of Pteridium aquilinum. J Qinghai Norm Univ, 3: 39–43 (Nat Sci Ed)
4 Baskaran X, Jeyachandran R (2012).In vitro spore germination and gametophyte growth assessment of a critically endangered fern: Pteris tripartita Sw. Pteridol Res, 1(1): 4–9
5 Brum F R, Randi A M (2002). High irradiance and temperature inhibit the germination of spores of the fern Rumohra adiantiformis (Forst.) Ching (Dryopteridaceae). Braz J Bot, 25(4): 391–396
https://doi.org/10.1590/S0100-84042002012000002
6 Camloh M (1993). Spore germination and early gametophyte development of Platycerium bifurcatum. Am Fern J, 83(3): 79–85
https://doi.org/10.2307/1547456
7 Camloh M, Ravnikar M, Zel J (1996). Jasmonic acid promotes division of fern protoplasts, elongation of rhizoids and early development of gametophytes. Physiol Plant, 97(4): 659–664
https://doi.org/10.1111/j.1399-3054.1996.tb00529.x
8 Chang H C, Agrawal D C, Kuo C L, Wen J L, Chen C C, Tsay H S (2007). In vitro culture of Drynaria fortunei, a fern species source of Chinese medicine “Gu-Sui-Bu”. In Vitro Cell Dev-Pl, 43(2): 133–139
9 Chatterjee A, Porterfield D M, Smith P S, Roux S J (2000). Gravity-directed calcium current in germinating spores of Ceratopteris richardii. Planta, 210(4): 607–610
https://doi.org/10.1007/s004250050050
10 Chiou W L, Farrar D R (1997). Antheridiogen production and response in Polypodiaceae species. Am J Bot, 84(5): 633–640
https://doi.org/10.2307/2445900
11 Cox J, Bhatia P, Ashwath N (2003). In vitro spore germination of the fern Schizaea dichotoma. Sci Hortic (Amsterdam), 97(3–4): 369–378
https://doi.org/10.1016/S0304-4238(02)00152-8
12 Dai S J, Gao J, Mu H F, Song Y Y (2008). Comparison of germination between fern spores and spermatophyte pollen. Chin Bull Bot, 25(2): 139–148
13 Dai S J, Li L, Chen T T, Chong K, Xue Y B, Wang T (2006). Proteomic analysis of Oryza sativa mature pollen reveal novel proteins associated with pollen germination and tube growth. Proteomics, 6(8): 2504–2529
https://doi.org/10.1002/pmic.200401351
14 Douglas G E (1994). An investigation into the growth, development and ultrastructure of fern gametophytes in existing and novel culture systems. PhD Thesis, University of Manchester, UK
15 Du H H, Li Y, Li D, Dai S J, Jiang C D, Shi L (2009a). Effects of light, temperature and pH on spore germination and early gametophytic development of Alsophila metteniana. Biodiv Sci, 17(2): 182–187
16 Du J Z, Li L H, Li Y Q, Yin X H, Huang R S, Chen R (2009b). Effects of different factors on the germination and growth of Pyrrosia lingua spores. Guangxi Agric Sci, 40: 120–123
17 Edwards E S, Roux S J (1998). Influence of gravity and light on the developmental polarity of Ceratopteris richardii fern spores. Planta, 205(4): 553–560
https://doi.org/10.1007/s004250050355
18 Franklin K A (2009). Light and temperature signal crosstalk in plant development. Curr Opin Plant Biol, 12(1): 63–68
https://doi.org/10.1016/j.pbi.2008.09.007
19 Furuya M, Kanno M, Okamoto H, Fukuda S, Wada M (1997). Control of mitosis by phytochrome and a blue-light receptor in fern spores. Plant Physiol, 113(3): 677–683
20 Guiragossian H A, Koning R E (1986). Induction of spore germination in Schizaea pusilla (Schizaeaceae). Am J Bot, 73(11): 1588–1594
https://doi.org/10.2307/2443926
21 Guo L L, Chen W B, Jiang N, Li X G, Dai X L (2010). The effect of culture density on spore germination and sex differentiation of Ceratopteris thalictroides (L.) Brongn. J Shanghai Norm Univ, 39(2): 210–212 (Nat Sci)
22 Guo Q X, Shen Y X, Song X H, Zhao H T (2007). The effects of spores germination and planting rate of Athyrium multidentatum. Chin Agric Sci Bull, 23: 343–345
23 Gupta M, Devi S, Singh J (1992). Effects of long-term low-dose exposure to cadmium during the entire life cycle of Ceratopteris thalictroides, a water fern. Arch Environ Contam Toxicol, 23(2): 184–189
https://doi.org/10.1007/BF00212273
24 Hayami J, Kadota A, Wada M (1992). Intracellular dichroic orientation of the blue light-absorbing pigment and the blue-absorption band of the red-absorbing form of phytochrome responsible for phototropism of the fern Adiantum protonemata. Photochem Photobiol, 56(5): 661–666
https://doi.org/10.1111/j.1751-1097.1992.tb02219.x
25 Heschel M S, Selby J, Butler C, Whitelam G C, Sharrock R A, Donohue K (2007). A new role for phytochromes in temperature-dependent germination. New Phytol, 174(4): 735–741
https://doi.org/10.1111/j.1469-8137.2007.02044.x
26 Hiendlmeyer R, Randi A M (2007). Response of spores and young gametophytes of Cyathea delgadii Sternb. (Cyatheaceae) and Blechnum brasiliense Desv. (Blechnaceae) to different light levels. Acta Bot Bras, 21(4): 909–915
https://doi.org/10.1590/S0102-33062007000400015
27 Huckaby C S, Raghavan V (1981). Photocontrol of spore germination in the fern Thelypteris kunthii. Physiol Plant, 51(1): 19–22
https://doi.org/10.1111/j.1399-3054.1981.tb00872.x
28 Imaizumi T, Kanegae T, Wada M (2000). Cryptochrome nucleocytoplasmic distribution and gene expression are regulated by light quality in the fern Adiantum capillus-veneris. Plant Cell, 12(1): 81–95
https://doi.org/10.1105/tpc.12.1.81
29 Jiang S J, Zeng X, Wang S P, Zhuang N S (2002). Study of tissue culture of Sphaeropteris hainanensis. Trop Agric Sci, 22: 9–12
30 Juárez-Orozco S, Orozco-Segovia A, Mendoza-Ruiz A, Pérez-García B (2013). Spore germination of eight homosporous ferns in a temperature gradient. S Afr J Bot, 87: 112–117
https://doi.org/10.1016/j.sajb.2013.04.005
31 Kagawa T, Sugai M (1991). Involvement of gibberellic acid in phytochrome-mediated spore germination of the fern Lygodium japonicum. J Plant Physiol, 138(3): 299–303
https://doi.org/10.1016/S0176-1617(11)80291-9
32 Kami C, Lorrain S, Hornitschek P, Fankhauser C (2010). Chapter two-light-regulated plant growth and development. Curr Top Dev Biol, 91: 29–66
https://doi.org/10.1016/S0070-2153(10)91002-8
33 Kanegae T, Wada M (1998). Isolation and characterization of homologues of plant blue-light photoreceptor (cryptochrome) genes from the fern Adiantum capillus-veneris. Mol Gen Genet, 259(4): 345–353
https://doi.org/10.1007/s004380050821
34 Li J L, Yuan Y B, Cao Z X (1995). View of the cytology and biochemistry of sexual reproduction of algae and pteridophyta. Chin Bull Bot, 12(2): 1–8
35 Li M L, Han Y F (2000). Effect of ethylene on the growth and development of plants and inhibition of its biosynthesis by antisense RNA. Scient Silv Sin, 36(4): 77–84
36 Merkys A J, Laurinavichius R S, Rupainene O Y, Shvegzhdene D V, Yaroshius A V (1981). Gravity as an obligatory factor in normal higher plant growth and development. Adv Space Res, 1(14): 109–116
https://doi.org/10.1016/0273-1177(81)90251-9
37 Nester J E, Coolbaugh R C (1986). Factors influencing spore germination and early gametophyte development in Anemia mexicana and Anemia phyllitidis. Plant Physiol, 82(1): 230–235
https://doi.org/10.1104/pp.82.1.230
38 Niu J Y, Li S, Xu Z M, Qin S H, Lian R F (2002). Effect of illumination and exogenous substance on spore germination and seedling survival of Pteridium aquilinum. Acta Hortic Sin, 29(6): 584–586
39 Nondorf S L, Dooley M A, Palmieri M, Swatzell L J (2003). The effects of pH, temperature, light intensity, light quality, and moisture levels on spore germination in Cheilanthes feei of southeast Missouri. Am Fern J, 93(2): 56–69
https://doi.org/10.1640/0002-8444(2003)093[0056:TEOPTL]2.0.CO;2
40 Nozue K, Fukuda S, Kanegae T, Wada M (1998a). Isolation of a second phytochrome cDNA from Adiantum capillus-veneris. Plant Physiol, 118: 712
41 Nozue K, Kanegae T, Imaizumi T, Fukuda S, Okamoto H, Yeh K C, Lagarias J C, Wada M (1998b). A phytochrome from the fern Adiantum with features of the putative photoreceptor NPH1. Proc Natl Acad Sci USA, 95(26): 15826–15830
https://doi.org/10.1073/pnas.95.26.15826
42 Nozue K, Kanegae T, Wada M (1997). A full length Ty3/gypsy-type retrotransposon in the fern Adiantum. J Plant Res, 110(4): 495–499
https://doi.org/10.1007/BF02506811
43 Ong B L, Koh C K K, Wee Y C (1998). Effects of CO2 on growth and photosynthesis of Pyrrosia piloselloides (L.) Price gametophytes. Photosynthetica, 35(1): 21–27
https://doi.org/10.1023/A:1006805427943
44 Ouyang C J, Tang Y J, Wang R J (2008). Spore culture and gametophyte development of Dryopteris varia (L.) Ktunze. J Trop Subtrop Bot, 16(4): 344–349
45 Pangua E, Lindsay S, Dyer A (1994). Spore germination and gametophyte development in three species of Asplenium. Ann Bot (Lond), 73(6): 587–593
https://doi.org/10.1006/anbo.1994.1073
46 Parajuli J, Joshi S D, Nepal W W F (2013). In vitro morphogenesis of colysis latiloba (Ching.). Ching. Magnesium Res, 4: 1–6
47 Pérez-García B, Mendoza-Ruiz A, Sánchez-Coronado M E, Orozco-Segovia A (2007). Effect of light and temperature on germination of spores of four tropical fern species. Acta Oecol, 32(2): 172–179
https://doi.org/10.1016/j.actao.2007.03.012
48 Pérez-García B, Orozco-Segovia A, Riba R (1994). The effects of white fluorescent light, far-red light, darkness, and moisture on spore germination of Lygodium heterodoxum (Schizaeaceae). Am J Bot, 81(11): 1367–1369
https://doi.org/10.2307/2445306
49 Quintanilla L G, Pajaron S, Pangua E, Amigo J (2000). Effect of temperature on germination in northernmost populations of Culcita macrocarpa and Woodwardia radicans. Plant Biol, 2(6): 612–617
https://doi.org/10.1055/s-2000-16638
50 Raghavan V (1992). Germination of fern spores. Am Sci, 80: 176–185
51 Ranal M A (1999). Effects of temperature on spore germination in some fern species from semideciduous mesophytic forest. Am Fern J, 89(2): 149–158
https://doi.org/10.2307/1547349
52 Rechenmacher C, Schmitt J L, Droste A (2010). Spore germination and gametophyte development of Cyathea atrovirens (Langsd. & Fisch.) Domin (Cyatheaceae) under different pH conditions. Braz J Biol, 70(4): 1155–1160
https://doi.org/10.1590/S1519-69842010000600004
53 Ren B R, Xia B, Li W L, Wu J L, Zhao Y Y (2008). Investigation on spore germination of Sphenomeris chinensis (Lindsaeaceae). Acta Bot Yunnanica, 30(6): 713–717
54 Renner G D R, Randi A M (2004). Effects of sucrose and irradiance on germination and early gametophyte growth of the endangered tree fern Dicksonia sellowiana Hook (Dicksoniaceae). Acta Bot Bras, 18(2): 375–380
https://doi.org/10.1590/S0102-33062004000200017
55 Reynolds T L, Raghavan V (1982). Photoinduction of spore germination in a fern, Mohria caffrorum. Ann Bot (Lond), 49: 227–233
56 Roux S J, Chatterjee A, Hillier S, Cannon T (2003). Early development of fern gametophytes in microgravity. Adv Space Res, 31(1): 215–220
https://doi.org/10.1016/S0273-1177(02)00749-4
57 Sahi A N, Singh S K (1994). Effect of sulphite on spore germination and rhizoid development in the tropical fern Lygodium japonicum (Filicales: Lygodiaceae). Rev Biol Trop, 42(1–2): 53–57
58 Salmi M L, ul Haque A, Bushart T J, Stout S C, Roux S J, Porterfield D M (2011). Changes in gravity rapidly alter the magnitude and direction of a cellular calcium current. Planta, 233(5): 911–920
https://doi.org/10.1007/s00425-010-1343-2
59 Santos E P G D, Lehmann D R M, Santos M, Randi A M (2010). Spore germination of Gleichenella pectinata (Willd.) Ching (Polypodiopsida-Gleicheniaceae) at different temperatures, levels of light and pH. Braz Arch Biol Techn, 53(6): 1309–1318
https://doi.org/10.1590/S1516-89132010000600007
60 Scheuerlein R, Wayne R, Roux S J (1989). Calcium requirement of phytochrome-mediated fern-spore germination: No direct phytochrome-calcium interaction in the phytochrome-initiated transduction chain. Planta, 178(1): 25–30
https://doi.org/10.1007/BF00392523
61 Sheffield E, Douglas G E, Hearne S J, Huxham S, Wynn J M (2001). Enhancement of fern spore germination and gametophyte growth in artificial media. Am Fern J, 91(4): 179–186
https://doi.org/10.1640/0002-8444(2001)091[0179:EOFSGA]2.0.CO;2
62 Song Y Y, Gao J, Dai S J (2009). Sex differentiation in ferns response to environmental factors. Acta Ecol Sin, 29(9): 5030–5038
63 Suetsugu N, Wada M (2003). Cryptogam blue-light photoreceptors. Curr Opin Plant Biol, 6(1): 91–96
https://doi.org/10.1016/S1369526602000067
64 Tian X Y, Liu Y J, Wang S (2008). The fast establishment of micropropagation system on Adiantum raddianum using spore as explants. J Food Sci Biotech, 27(4): 103–106
65 Tsuboi H, Nakamura S, Sch?fer E, Wada M (2012). Red Light-induced phytochrome relocation into the nucleus in Adiantum capillus-veneris. Mol Plant, 5(3): 611–618
https://doi.org/10.1093/mp/ssr119
66 Viviani D, Randi A M (2008). Effects of pH, temperature and light intensity on spore germination and growth analysis of young sporophytes of Polypodium lepidopteris (Pteridophyta, Polypodiaceae). Rodriguésia, 59(4): 751–761
67 Wang Y H, Irving H R (2011). Developing a model of plant hormone interactions. Plant Signal Behav, 6(4): 494–500
https://doi.org/10.4161/psb.6.4.14558
68 Warne T R, Hickok L G (1987). (2-Chloroethyl) phosphonic acid promotes germination of immature spores of Ceratopteris richardii Brongn. Plant Physiol, 83(4): 723–725
https://doi.org/10.1104/pp.83.4.723
69 White P J, Broadley M R (2003). Calcium in plants. Ann Bot (Lond), 92(4): 487–511
https://doi.org/10.1093/aob/mcg164
70 Whittier D P (2006). Red light inhibition of spore germination in Ophioglossum crotalophoroides. Am Fern J, 84(7): 1156–1158
71 Whittier D P (2008). Red light inhibition of spore germination in Lycopodium clavatum. Am Fern J, 98(4): 194–198
https://doi.org/10.1640/0002-8444-98.4.194
72 Whittier D P, Braggins J E (1994). Spore germination in the Psilotaceae. Can J Bot, 72(5): 688–692
https://doi.org/10.1139/b94-089
73 Whittier D P, Moyroud R (1993). The promotion of spore germination and gametophyte development in Ophioglossum palmatum by low pH. Am Fern J, 83(2): 41–46
https://doi.org/10.2307/1547564
74 Wu H, Liu X Q, Ji H, Chen L Q (2010). Effects of light, macronutrients, and sucrose on germination and development of the endangered fern Adiantum reniforme var. sinense (Adiantaceae). Sci Hortic (Amsterdam), 125(3): 417–421
https://doi.org/10.1016/j.scienta.2010.03.004
75 Xu Y, Shi L, Liu Y, Li D (2005). Studies on spore propagation of Pteris cretica ‘Albo-lineata’. Acta Hortic Sin, 32(4): 658–662
76 Xue C L, Wang W J, Gao Y H (2008). Artificial culture of spore of Microsorium pteropus. Yunnan Agric Sci Tech, 5: 16–17
77 Yuan Y, Tian S N, Ye A H, Lu P L (2002). Studies on the rapid propagate of the Osmunda japonica Thund. Acta Hortic Sin, 29(3): 247–250
78 Zhai G Y, Bian K, Jia K G, Zhu L X (2007). Effect of GA3 and MS medium ratio treatments on spore germination of wild Brake. China Veget, 8: 21–23
79 Zhang J W, Niu J Y (1999). The effects of culture ground substances, GA3 and B, on spores germination and planting rate of Pteridium aquilinum. Acta Pratac Sin, 8(1): 62–68
80 Zhang K M, Liu J H, Cheng X, Zhang G F, Fang Y M, Zhang H J (2012). Effects of Ageratina adenophora on spore germination and gametophyte development of Neocheiropteris palmatopedata. Am Fern J, 102(3): 208–215
https://doi.org/10.1640/0002-8444-102.3.208
81 Zhang K M, Shi L, Jiang C D, Li Z Y (2008a). Inhibition of Ageratina adenophora on spore germination and gametophyte development of Macrothelypteris torresiana. J Integr Plant Biol, 50(5): 559–564
https://doi.org/10.1111/j.1744-7909.2008.00648.x
82 Zhang K M, Shi L, Jiang C D, Li Z Y (2008b). Allelopathic effects of Eupatorium adenophorum on spore germination and gametophyte development in Cibotium barometz. Acta Pratac Sin, 17(2): 19–25
83 Zhang K M, Shi L, Li D, Zhang X C (2008c). Development process and spore sterile culture of Pteris wallichiana Agardh. Acta Hortic Sin, 35(1): 94–98
84 Zhang Y L, Li Y, Ji M C, Li D, Shi L (2007). Spore sterile culture in Alsophila podophylla Hook. Plant Physiol Comm, 43(6): 1139–1140
[1] Feng C. ZHOU. DNA methylation program during development[J]. Front Biol, 2012, 7(6): 485-494.
[2] Zhimin LIU, Xiumei WANG, . Functions of canopy-stored seeds in the dune ecosystem: conclusions from Agriophyllum squarrosum and Artemisia wudanica[J]. Front. Biol., 2009, 4(4): 486-490.
[3] Mingguang LI, Haiyang LIU, Fenglan LI, Xiuyuan CHENG, Bin GUO, Zhiwei FAN. Seed, cutting and air-layering reproductive inefficiency of noxious woody vine Merremia boisiana and its implications for management strategy[J]. Front Biol Chin, 2009, 4(3): 342-349.
[4] Bianfang HU, Shulian XIE, Jia FENG, Meng ZHANG. Study on the phenology of Chara vulgaris in Xin’an Spring, north China[J]. Front Biol Chin, 2009, 4(2): 207-213.
[5] LI Xuehua, LI Xiaolan, JIANG Deming, LIU Zhimin, YU Qinghe. Annual plants in arid and semi-arid desert regions[J]. Front. Biol., 2008, 3(3): 259-264.
[6] Bu Haiyan, Xu Xiuli, Liu Kun, Jia Peng, Wen Shujun, Sun Dashuai, Du Guozhen, Ren Qingji. Seed germinating characteristics of 54 gramineous species in the alpine meadow on the eastern Qinghai-Tibet plateau[J]. Front. Biol., 2008, 3(2): 187-193.
[7] HUANG Hua, CHEN Guoqi, GUO Shuiliang. Reproductive biology in an invasive plant Solidago canadensis[J]. Front. Biol., 2007, 2(2): 196-204.
[8] CHEN Jinming, LIU Xing, WANG Qingfeng, Wahiti R. Gituru. Genetic diversity in Isoetes yunguiensis, a rare and endangered endemic fern in China[J]. Front. Biol., 2007, 2(1): 46-49.
[9] XU Lingling, ZHANG Xianzhou, SHI Peili, YU Guirui, SUN Xiaomin. Characteristics of net ecosystem carbon dioxide exchange (NEE) from August to October of Alpine meadow on the Tibetan Plateau, China[J]. Front. Biol., 2006, 1(4): 418-422.
[10] HUANG Shiliang, LI Min, ZHAO Jiancheng, WANG Zhenjie, ZHANG Yuanming. Characteristics of spore germination and protonemal development in Hypnum pacleseens[J]. Front. Biol., 2006, 1(3): 225-229.
[11] LIU Peng, YANG Y. S., XU Gendi, GUO Shuiliang, ZHENG Xiaobin, WANG Min. Physiological responses of four herbaceous plants to aluminum stress in South China[J]. Front. Biol., 2006, 1(3): 295-302.
[12] Jin Zexin, Li Junmin. Genetic diversity analysis of Hepatacodium miconioides at different altitude in Tiantai Mountain, Zhejiang Province, China and its relationship with environmental factors[J]. Front. Biol., 2006, 1(2): 151-157.
[13] Li Chongwei, Lin Yong, Ge Jianping, Liu Lijuan. A study on the relationship between vegetation pattern and environment in the upstream of Minjiang River, China[J]. Front. Biol., 2006, 1(2): 187-194.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed