|
|
Csk-homologous kinase (Chk/Matk): a molecular policeman suppressing cancer formation and progression |
Gahana Advani1,Anderly C. Chueh2,Ya Chee Lim1,Amardeep Dhillon3,Heung-Chin Cheng1,*( ) |
1. Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia 2. ACRF Chemical Biology Division, The Walter and Eliza Hall Institute for Medical Research, Royal Melbourne Hospital, and Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia 3. Peter MacCallum Cancer Research Institute, St. Andrews Place, East Melbourne, Victoria, Australia |
|
|
Abstract Aberrant activation of Src-family tyrosine kinases (SFKs) directs initiation of metastasis and development of drug resistance in multiple solid tumors and hematological cancers. Since oncogenic mutations of SFKs are rare events, aberrant activation of SFKs in cancer is likely due to dysregulation of the two major upstream inhibitors: C-terminal Src kinase (Csk) and its homolog Csk-homologous kinase (Chk/Matk). Csk and Chk/Matk inhibit SFKs by selectively phosphorylating the inhibitory tyrosine residue at their C-terminal tail. Additionally, Chk/Matk can also employ a non-catalytic inhibitory mechanism to inhibit multiple active forms of SFKs, suggesting that Chk/Matk is a versatile inhibitor capable of constraining the activity of multiple active forms of SFKs. Mounting evidence suggests that Chk/Matk is a potential tumor suppressor downregulated by epigenetic silencing and/or missense mutations in several cancers such as colorectal and lung carcinoma. In spite of the potential significance of Chk/Matk in cancer, little is known about its structure and regulation. This review focuses on the mechanisms by which Chk/Matk expression and activity is downregulated in cancers. Specifically, we assessed the evidence demonstrating downregulation of Chk/Matk by epigenetic silencing and missense mutations in cancers. The other focus is the tumor suppressive mechanism of Chk/Matk. The final focus of the review is on the clinical applications of the investigations into the mechanism of epigenetic silencing of Chk/Matk expression and the tumor suppressive mechanism of Chk/Matk; specifically we discussed how they can benefit the development of biomarkers for early diagnosis of cancers and specific SFK inhibitors for use as cancer therapeutics.
|
Keywords
tumour suppressor
protein tyrosine kinase
Src-family kinases
CSK
CHK/Matk
colon cancer
|
Corresponding Author(s):
Heung-Chin Cheng
|
Just Accepted Date: 15 February 2015
Online First Date: 30 March 2015
Issue Date: 23 June 2015
|
|
1 |
Avraham S, Jiang S, Ota S, Fu Y, Deng B, Dowler L L, White R A, Avraham H (1995). Structural and functional studies of the intracellular tyrosine kinase MATK gene and its translated product. J Biol Chem, 270(4): 1833–1842
https://doi.org/10.1074/jbc.270.4.1833
pmid: 7530249
|
2 |
Barkho S, Pierce L C, McGlone M L, Li S, Woods V L Jr, Walker R C, Adams J A, Jennings P A (2013). Distal loop flexibility of a regulatory domain modulates dynamics and activity of C-terminal SRC kinase (csk). PLOS Comput Biol, 9(9): e1003188
https://doi.org/10.1371/journal.pcbi.1003188
pmid: 24039559
|
3 |
Bennett B D, Cowley S, Jiang S, London R, Deng B, Grabarek J, Groopman J E, Goeddel D V, Avraham H (1994). Identification and characterization of a novel tyrosine kinase from megakaryocytes. J Biol Chem, 269(2): 1068–1074
pmid: 8288563
|
4 |
Bhattacharjee A, Richards W G, Staunton J, Li C, Monti S, Vasa P, Ladd C, Beheshti J, Bueno R, Gillette M, Loda M, Weber G, Mark E J, Lander E S, Wong W, Johnson B E, Golub T R, Sugarbaker D J, Meyerson M (2001). Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci USA, 98(24): 13790–13795
https://doi.org/10.1073/pnas.191502998
pmid: 11707567
|
5 |
Bjorge J D, Jakymiw A, Fujita D J (2000). Selected glimpses into the activation and function of Src kinase. Oncogene, 19(49): 5620–5635
https://doi.org/10.1038/sj.onc.1203923
pmid: 11114743
|
6 |
Cance W G, Craven R J, Bergman M, Xu L, Alitalo K, Liu E T (1994). Rak, a novel nuclear tyrosine kinase expressed in epithelial cells. Cell Growth Differ, 5(12): 1347–1355
pmid: 7696183
|
7 |
Chan K C, Lio D S, Dobson R C, Jarasrassamee B, Hossain M I, Roslee A K, Ia K K, Perugini M A, Cheng H C (2010). Development of the procedures for high-yield expression and rapid purification of active recombinant Csk-homologous kinase (CHK): comparison of the catalytic activities of CHK and CSK. Protein Expr Purif, 74(2): 139–147
https://doi.org/10.1016/j.pep.2010.07.007
pmid: 20667476
|
8 |
Cho J Y, Lim J Y, Cheong J H, Park Y Y, Yoon S L, Kim S M, Kim S B, Kim H, Hong S W, Park Y N, Noh S H, Park E S, Chu I S, Hong W K, Ajani J A, Lee J S(2011). Gene expression signature-based prognostic risk score in gastric cancer, Clin Cancer Res, 17: 1850–1857
|
9 |
Chong Y P, Chan A S, Chan K C, Williamson N A, Lerner E C, Smithgall T E, Bjorge J D, Fujita D J, Purcell A W, Scholz G, Mulhern T D, Cheng H C (2006). C-terminal Src kinase-homologous kinase (CHK), a unique inhibitor inactivating multiple active conformations of Src family tyrosine kinases. J Biol Chem, 281(44): 32988–32999
https://doi.org/10.1074/jbc.M602951200
pmid: 16959780
|
10 |
Chong Y P, Mulhern T D, Cheng H C (2005). C-terminal Src kinase (CSK) and CSK-homologous kinase (CHK)—endogenous negative regulators of Src-family protein kinases. Growth Factors, 23(3): 233–244
https://doi.org/10.1080/08977190500178877
pmid: 16243715
|
11 |
Chong Y P, Mulhern T D, Zhu H J, Fujita D J, Bjorge J D, Tantiongco J P, Sotirellis N, Lio D S, Scholz G, Cheng H C (2004). A novel non-catalytic mechanism employed by the C-terminal Src-homologous kinase to inhibit Src-family kinase activity. J Biol Chem, 279(20): 20752–20766
https://doi.org/10.1074/jbc.M309865200
pmid: 14985335
|
12 |
Chow L M, Davidson D, Fournel M, Gosselin P, Lemieux S, Lyu M S, Kozak C A, Matis L A, Veillette A (1994). Two distinct protein isoforms are encoded by ntk, a csk-related tyrosine protein kinase gene. Oncogene, 9(12): 3437–3448
pmid: 7970703
|
13 |
Cordero J B, Ridgway R A, Valeri N, Nixon C, Frame M C, Muller W J, Vidal M, Sansom O J (2014). c-Src drives intestinal regeneration and transformation. EMBO J, 33(13): 1474–1491
pmid: 24788409
|
14 |
Davidson D, Chow L M, Veillette A (1997). Chk, a Csk family tyrosine protein kinase, exhibits Csk-like activity in fibroblasts, but not in an antigen-specific T-cell line. J Biol Chem, 272(2): 1355–1362
https://doi.org/10.1074/jbc.272.2.1355
pmid: 8995444
|
15 |
Han N M, Curley S A, Gallick G E(1996). Differential activation of pp60(c-src) and pp62(c-yes) in human colorectal carcinoma liver metastases, Clin Cancer Res, 2 (8): 1397–1404
|
16 |
Hinoue T, Weisenberger D J, Lange C P, Shen H, Byun H M, Van Den Berg D, Malik S, Pan F, Noushmehr H, van Dijk C M, Tollenaar R A, Laird P W (2012). Genome-scale analysis of aberrant DNA methylation in colorectal cancer. Genome Res, 22(2): 271–282
https://doi.org/10.1101/gr.117523.110
pmid: 21659424
|
17 |
Hirao A, Huang X L, Suda T, Yamaguchi N (1998). Overexpression of C-terminal Src kinase homologous kinase suppresses activation of Lyn tyrosine kinase required for VLA5-mediated Dami cell spreading. J Biol Chem, 273(16): 10004–10010
https://doi.org/10.1074/jbc.273.16.10004
pmid: 9545346
|
18 |
Huang H, Li L, Wu C, Schibli D, Colwill K, Ma S, Li C, Roy P, Ho K, Songyang Z, Pawson T, Gao Y, Li S S (2008). Defining the specificity space of the human SRC homology 2 domain. Mol Cell Proteomics, 7(4): 768–784
https://doi.org/10.1074/mcp.M700312-MCP200
pmid: 17956856
|
19 |
Huang K, Wang Y H, Brown A, Sun G (2009). Identification of N-terminal lobe motifs that determine the kinase activity of the catalytic domains and regulatory strategies of Src and Csk protein tyrosine kinases. J Mol Biol, 386(4): 1066–1077
https://doi.org/10.1016/j.jmb.2009.01.012
pmid: 19244618
|
20 |
Ia K K, Jeschke G R, Deng Y, Kamaruddin M A, Williamson N A, Scanlon D B, Culvenor J G, Hossain M I, Purcell A W, Liu S, Zhu H J, Catimel B, Turk B E, Cheng H C (2011). Defining the substrate specificity determinants recognized by the active site of C-terminal Src kinase-homologous kinase (CHK) and identification of β-synuclein as a potential CHK physiological substrate. Biochemistry, 50(31): 6667–6677
https://doi.org/10.1021/bi2001938
pmid: 21699177
|
21 |
Ia K K, Mills R D, Hossain M I, Chan K C, Jarasrassamee B, Jorissen R N, Cheng H C (2010). Structural elements and allosteric mechanisms governing regulation and catalysis of CSK-family kinases and their inhibition of Src-family kinases. Growth Factors, 28(5): 329–350
https://doi.org/10.3109/08977194.2010.484424
pmid: 20476842
|
22 |
Jamros M A, Oliveira L C, Whitford P C, Onuchic J N, Adams J A, Jennings P A (2012). Substrate-specific reorganization of the conformational ensemble of CSK implicates novel modes of kinase function. PLOS Comput Biol, 8(9): e1002695
https://doi.org/10.1371/journal.pcbi.1002695
pmid: 23028292
|
23 |
Kim S O, Avraham S, Jiang S, Zagozdzon R, Fu Y, Avraham H K (2004). Differential expression of Csk homologous kinase (CHK) in normal brain and brain tumors. Cancer, 101(5): 1018–1027
https://doi.org/10.1002/cncr.20442
pmid: 15329911
|
24 |
Klages S, Adam D, Class K, Fargnoli J, Bolen J B, Penhallow R C (1994). Ctk: a protein-tyrosine kinase related to Csk that defines an enzyme family. Proc Natl Acad Sci USA, 91(7): 2597–2601
https://doi.org/10.1073/pnas.91.7.2597
pmid: 7511815
|
25 |
Kuang S Q, Tong W G, Yang H, Lin W, Lee M K, Fang Z H, Wei Y, Jelinek J, Issa J P, Garcia-Manero G (2008). Genome-wide identification of aberrantly methylated promoter associated CpG islands in acute lymphocytic leukemia. Leukemia, 22(8): 1529–1538
https://doi.org/10.1038/leu.2008.130
pmid: 18528427
|
26 |
Kuo S S, Armanini M P, Phillips H S, Caras I W (1997). Csk and BatK show opposite temporal expression in the rat CNS: consistent with its late expression in development, BatK induces differentiation of PC12 cells. Eur J Neurosci, 9(11): 2383–2393
https://doi.org/10.1111/j.1460-9568.1997.tb01655.x
pmid: 9464932
|
27 |
Kuo S S, Moran P, Gripp J, Armanini M, Phillips H S, Goddard A, Caras I W (1994). Identification and characterization of Batk, a predominantly brain-specific non-receptor protein tyrosine kinase related to Csk. J Neurosci Res, 38(6): 705–715
https://doi.org/10.1002/jnr.490380613
pmid: 7807586
|
28 |
Laffaire J, Everhard S, Idbaih A, Crinière E, Marie Y, de Reyniès A, Schiappa R, Mokhtari K, Hoang-Xuan K, Sanson M, Delattre J Y, Thillet J, Ducray F (2011). Methylation profiling identifies 2 groups of gliomas according to their tumorigenesis. Neuro-oncol, 13(1): 84–98
https://doi.org/10.1093/neuonc/noq110
pmid: 20926426
|
29 |
Le X F, Bast R C Jr (2011). Src family kinases and paclitaxel sensitivity. Cancer Biol Ther, 12(4): 260–269
https://doi.org/10.4161/cbt.12.4.16430
pmid: 21646863
|
30 |
Lee S, Ayrapetov M K, Kemble D J, Parang K, Sun G (2006). Docking-based substrate recognition by the catalytic domain of a protein tyrosine kinase, C-terminal Src kinase (Csk). J Biol Chem, 281(12): 8183–8189
https://doi.org/10.1074/jbc.M508120200
pmid: 16439366
|
31 |
Lerner E C, Smithgall T E (2002). SH3-dependent stimulation of Src-family kinase autophosphorylation without tail release from the SH2 domain in vivo. Nat Struct Biol, 9(5): 365–369
pmid: 11976726
|
32 |
Lerner E C, Trible R P, Schiavone A P, Hochrein J M, Engen J R, Smithgall T E (2005). Activation of the Src family kinase Hck without SH3-linker release. J Biol Chem, 280(49): 40832–40837
https://doi.org/10.1074/jbc.M508782200
pmid: 16210316
|
33 |
Levinson N M, Seeliger M A, Cole P A, Kuriyan J (2008). Structural basis for the recognition of c-Src by its inactivator Csk. Cell, 134(1): 124–134
https://doi.org/10.1016/j.cell.2008.05.051
pmid: 18614016
|
34 |
Lieser S A, Shaffer J, Adams J A (2006). SRC tail phosphorylation is limited by structural changes in the regulatory tyrosine kinase Csk. J Biol Chem, 281(49): 38004–38012
https://doi.org/10.1074/jbc.M607824200
pmid: 17018524
|
35 |
Matsuoka H, Nada S, Okada M (2004). Mechanism of Csk-mediated down-regulation of Src family tyrosine kinases in epidermal growth factor signaling. J Biol Chem, 279(7): 5975–5983
https://doi.org/10.1074/jbc.M311278200
pmid: 14613929
|
36 |
Moarefi I, LaFevre-Bernt M, Sicheri F, Huse M, Lee C H, Kuriyan J, Miller W T (1997). Activation of the Src-family tyrosine kinase Hck by SH3 domain displacement. Nature, 385(6617): 650–653
https://doi.org/10.1038/385650a0
pmid: 9024665
|
37 |
Nakayama Y, Kawana A, Igarashi A, Yamaguchi N (2006). Involvement of the N-terminal unique domain of Chk tyrosine kinase in Chk-induced tyrosine phosphorylation in the nucleus. Exp Cell Res, 312(12): 2252–2263
https://doi.org/10.1016/j.yexcr.2006.03.021
pmid: 16707123
|
38 |
Ogawa A, Takayama Y, Sakai H, Chong K T, Takeuchi S, Nakagawa A, Nada S, Okada M, Tsukihara T (2002). Structure of the carboxyl-terminal Src kinase, Csk. J Biol Chem, 277(17): 14351–14354
https://doi.org/10.1074/jbc.C200086200
pmid: 11884384
|
39 |
Okada M (2012). Regulation of the SRC family kinases by Csk. Int J Biol Sci, 8(10): 1385–1397
https://doi.org/10.7150/ijbs.5141
pmid: 23139636
|
40 |
Rosenbluh J, Nijhawan D, Cox A G, Li X, Neal J T, Schafer E J, Zack T I, Wang X, Tsherniak A, Schinzel A C, Shao D D, Schumacher S E, Weir B A, Vazquez F, Cowley G S, Root D E, Mesirov J P, Beroukhim R, Kuo C J, Goessling W, Hahn W C (2012). β-Catenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis. Cell, 151(7): 1457–1473
https://doi.org/10.1016/j.cell.2012.11.026
pmid: 23245941
|
41 |
Sicheri F, Moarefi I, Kuriyan J (1997). Crystal structure of the Src family tyrosine kinase Hck. Nature, 385(6617): 602–609
https://doi.org/10.1038/385602a0
pmid: 9024658
|
42 |
Sirvent A, Benistant C, Roche S (2012a). Oncogenic signaling by tyrosine kinases of the SRC family in advanced colorectal cancer, Am J Cancer Res, 2(4): 357–371
|
43 |
Sirvent A, Vigy O, Orsetti B, Urbach S, Roche S (2012b). Analysis of SRC oncogenic signaling in colorectal cancer by stable isotope labeling with heavy amino acids in mouse xenografts. Mol Cell Proteomics, 11(12): 1937–1950
https://doi.org/10.1074/mcp.M112.018168
pmid: 23023324
|
44 |
Summy J M, Gallick G E (2003). Src family kinases in tumor progression and metastasis. Cancer Metastasis Rev, 22(4): 337–358
https://doi.org/10.1023/A:1023772912750
pmid: 12884910
|
45 |
Sun L, Hui A M, Su Q, Vortmeyer A, Kotliarov Y, Pastorino S, Passaniti A, Menon J, Walling J, Bailey R, Rosenblum M, Mikkelsen T, Fine H A (2006). Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. Cancer Cell, 9(4): 287–300
https://doi.org/10.1016/j.ccr.2006.03.003
pmid: 16616334
|
46 |
Takeuchi S, Takayama Y, Ogawa A, Tamura K, Okada M (2000). Transmembrane phosphoprotein Cbp positively regulates the activity of the carboxyl-terminal Src kinase, Csk. J Biol Chem, 275(38): 29183–29186
https://doi.org/10.1074/jbc.C000326200
pmid: 10918051
|
47 |
Tan S Y, Chuang S S, Tang T, Tan L, Ko Y H, Chuah K L, Ng S B, Chng W J, Gatter K, Loong F, Liu Y H, Hosking P, Cheah P L, Teh B T, Tay K, Koh M, Lim S T (2013). Type II EATL (epitheliotropic intestinal T-cell lymphoma): a neoplasm of intra-epithelial T-cells with predominant CD8αα phenotype. Leukemia, 27(8): 1688– 1696
https://doi.org/10.1038/leu.2013.41
pmid: 23399895
|
48 |
Tan S Y, Ooi A S, Ang M K, Koh M, Wong J C, Dykema K, Ngeow J, Loong S, Gatter K, Tan L, Lim L C, Furge K, Tao M, Lim S T, Loong F, Cheah P L, Teh B T (2011). Nuclear expression of MATK is a novel marker of type II enteropathy-associated T-cell lymphoma. Leukemia, 25(3): 555–557
https://doi.org/10.1038/leu.2010.295
pmid: 21233830
|
49 |
Touil Y, Igoudjil W, Corvaisier M, Dessein A F, Vandomme J, Monte D, Stechly L, Skrypek N, Langlois C, Grard G, Millet G, Leteurtre E, Dumont P, Truant S, Pruvot F R, Hebbar M, Fan F, Ellis L M, Formstecher P, van Seuningen I, Gespach C, Polakowska R, Huet G (2014). Colon cancer cells escape 5FU chemotherapy-induced cell death by entering stemness and quiescence associated with the c-Yes/YAP axis, Clin Cancer Res, 20 (4): 837–846
|
50 |
Wong L, Lieser S A, Miyashita O, Miller M, Tasken K, Onuchic J N, Adams J A, Woods V L Jr, Jennings P A (2005). Coupled motions in the SH2 and kinase domains of Csk control Src phosphorylation. J Mol Biol, 351(1): 131–143
https://doi.org/10.1016/j.jmb.2005.05.042
pmid: 16002086
|
51 |
Xu W, Harrison S C, Eck M J (1997). Three-dimensional structure of the tyrosine kinase c-Src. Nature, 385(6617): 595–602
https://doi.org/10.1038/385595a0
pmid: 9024657
|
52 |
Zhu S, Bjorge J D, Cheng H C, Fujita D J (2008). Decreased CHK protein levels are associated with Src activation in colon cancer cells. Oncogene, 27(14): 2027–2034
https://doi.org/10.1038/sj.onc.1210838
pmid: 17934522
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|