Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2015, Vol. 10 Issue (3) : 195-202    https://doi.org/10.1007/s11515-015-1352-4
REVIEW
Csk-homologous kinase (Chk/Matk): a molecular policeman suppressing cancer formation and progression
Gahana Advani1,Anderly C. Chueh2,Ya Chee Lim1,Amardeep Dhillon3,Heung-Chin Cheng1,*()
1. Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
2. ACRF Chemical Biology Division, The Walter and Eliza Hall Institute for Medical Research, Royal Melbourne Hospital, and Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
3. Peter MacCallum Cancer Research Institute, St. Andrews Place, East Melbourne, Victoria, Australia
 Download: PDF(925 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Aberrant activation of Src-family tyrosine kinases (SFKs) directs initiation of metastasis and development of drug resistance in multiple solid tumors and hematological cancers. Since oncogenic mutations of SFKs are rare events, aberrant activation of SFKs in cancer is likely due to dysregulation of the two major upstream inhibitors: C-terminal Src kinase (Csk) and its homolog Csk-homologous kinase (Chk/Matk). Csk and Chk/Matk inhibit SFKs by selectively phosphorylating the inhibitory tyrosine residue at their C-terminal tail. Additionally, Chk/Matk can also employ a non-catalytic inhibitory mechanism to inhibit multiple active forms of SFKs, suggesting that Chk/Matk is a versatile inhibitor capable of constraining the activity of multiple active forms of SFKs. Mounting evidence suggests that Chk/Matk is a potential tumor suppressor downregulated by epigenetic silencing and/or missense mutations in several cancers such as colorectal and lung carcinoma. In spite of the potential significance of Chk/Matk in cancer, little is known about its structure and regulation. This review focuses on the mechanisms by which Chk/Matk expression and activity is downregulated in cancers. Specifically, we assessed the evidence demonstrating downregulation of Chk/Matk by epigenetic silencing and missense mutations in cancers. The other focus is the tumor suppressive mechanism of Chk/Matk. The final focus of the review is on the clinical applications of the investigations into the mechanism of epigenetic silencing of Chk/Matk expression and the tumor suppressive mechanism of Chk/Matk; specifically we discussed how they can benefit the development of biomarkers for early diagnosis of cancers and specific SFK inhibitors for use as cancer therapeutics.

Keywords tumour suppressor      protein tyrosine kinase      Src-family kinases      CSK      CHK/Matk      colon cancer     
Corresponding Author(s): Heung-Chin Cheng   
Just Accepted Date: 15 February 2015   Online First Date: 30 March 2015    Issue Date: 23 June 2015
 Cite this article:   
Gahana Advani,Anderly C. Chueh,Ya Chee Lim, et al. Csk-homologous kinase (Chk/Matk): a molecular policeman suppressing cancer formation and progression[J]. Front. Biol., 2015, 10(3): 195-202.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-015-1352-4
https://academic.hep.com.cn/fib/EN/Y2015/V10/I3/195
Fig.1  The human Chk/Matk gene. (A) Structure of the Chk/Matk gene. The Chk/Matk gene contains 14 exons of which 13 are protein coding. The transcription initiation site is located 360 bp upstream of the translation initiation site. Shaded boxes are exons which are transcribed but not translated. (B) The three transcripts encoded by the Chk/Matk gene. (C) Sequences of the N-terminal segment of the three Chk/Matk isoforms. Among them, isoform two does not contain the first exon and isoform three has a different promoter and a different N-terminal region coded for by exon 1. The sequences in the three putative isoforms (panel C) and the exons from which these sequences are derived (panel B) are presented in the same colors.
Fig.2  The non-catalytic inhibitory mechanism of Chk/Matk and a model of Chk/Matk structure showing the locations of cancer-associated missense mutations. (A) A schematic diagram depicting how SFKs are activated to form multiple active forms by binding to the ligands of the SH2 and SH3 domains and by autophosphorylation. Biochemical analysis demonstrated that Chk/Matk but not Csk can employ the non-catalytic inhibitory mechanism to bind and inhibit all the active forms of SFKs. Dephosphorylation by specific phosphatases and dissociation of the ligands covert these active forms of SFKs to the unphosphorylated/unliganded form. Csk and Chk/Matk can induce this form of SFKs to adopt the stable inactive conformation by phosphorylation of the C-terminal tail tyrosine. (B) A schematic diagram showing the similarities and differences of CSK and the two isoforms of Chk/Matk p52Chk/Matk and p56Chk/Matk. (C). Using the Csk structure as the model, the locations of key residues found to undergo missense mutation in cancers are shown.
1 Avraham S, Jiang S, Ota S, Fu Y, Deng B, Dowler L L, White R A, Avraham H (1995). Structural and functional studies of the intracellular tyrosine kinase MATK gene and its translated product. J Biol Chem, 270(4): 1833–1842
https://doi.org/10.1074/jbc.270.4.1833 pmid: 7530249
2 Barkho S, Pierce L C, McGlone M L, Li S, Woods V L Jr, Walker R C, Adams J A, Jennings P A (2013). Distal loop flexibility of a regulatory domain modulates dynamics and activity of C-terminal SRC kinase (csk). PLOS Comput Biol, 9(9): e1003188
https://doi.org/10.1371/journal.pcbi.1003188 pmid: 24039559
3 Bennett B D, Cowley S, Jiang S, London R, Deng B, Grabarek J, Groopman J E, Goeddel D V, Avraham H (1994). Identification and characterization of a novel tyrosine kinase from megakaryocytes. J Biol Chem, 269(2): 1068–1074
pmid: 8288563
4 Bhattacharjee A, Richards W G, Staunton J, Li C, Monti S, Vasa P, Ladd C, Beheshti J, Bueno R, Gillette M, Loda M, Weber G, Mark E J, Lander E S, Wong W, Johnson B E, Golub T R, Sugarbaker D J, Meyerson M (2001). Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci USA, 98(24): 13790–13795
https://doi.org/10.1073/pnas.191502998 pmid: 11707567
5 Bjorge J D, Jakymiw A, Fujita D J (2000). Selected glimpses into the activation and function of Src kinase. Oncogene, 19(49): 5620–5635
https://doi.org/10.1038/sj.onc.1203923 pmid: 11114743
6 Cance W G, Craven R J, Bergman M, Xu L, Alitalo K, Liu E T (1994). Rak, a novel nuclear tyrosine kinase expressed in epithelial cells. Cell Growth Differ, 5(12): 1347–1355
pmid: 7696183
7 Chan K C, Lio D S, Dobson R C, Jarasrassamee B, Hossain M I, Roslee A K, Ia K K, Perugini M A, Cheng H C (2010). Development of the procedures for high-yield expression and rapid purification of active recombinant Csk-homologous kinase (CHK): comparison of the catalytic activities of CHK and CSK. Protein Expr Purif, 74(2): 139–147
https://doi.org/10.1016/j.pep.2010.07.007 pmid: 20667476
8 Cho J Y, Lim J Y, Cheong J H, Park Y Y, Yoon S L, Kim S M, Kim S B, Kim H, Hong S W, Park Y N, Noh S H, Park E S, Chu I S, Hong W K, Ajani J A, Lee J S(2011). Gene expression signature-based prognostic risk score in gastric cancer, Clin Cancer Res, 17: 1850–1857
9 Chong Y P, Chan A S, Chan K C, Williamson N A, Lerner E C, Smithgall T E, Bjorge J D, Fujita D J, Purcell A W, Scholz G, Mulhern T D, Cheng H C (2006). C-terminal Src kinase-homologous kinase (CHK), a unique inhibitor inactivating multiple active conformations of Src family tyrosine kinases. J Biol Chem, 281(44): 32988–32999
https://doi.org/10.1074/jbc.M602951200 pmid: 16959780
10 Chong Y P, Mulhern T D, Cheng H C (2005). C-terminal Src kinase (CSK) and CSK-homologous kinase (CHK)—endogenous negative regulators of Src-family protein kinases. Growth Factors, 23(3): 233–244
https://doi.org/10.1080/08977190500178877 pmid: 16243715
11 Chong Y P, Mulhern T D, Zhu H J, Fujita D J, Bjorge J D, Tantiongco J P, Sotirellis N, Lio D S, Scholz G, Cheng H C (2004). A novel non-catalytic mechanism employed by the C-terminal Src-homologous kinase to inhibit Src-family kinase activity. J Biol Chem, 279(20): 20752–20766
https://doi.org/10.1074/jbc.M309865200 pmid: 14985335
12 Chow L M, Davidson D, Fournel M, Gosselin P, Lemieux S, Lyu M S, Kozak C A, Matis L A, Veillette A (1994). Two distinct protein isoforms are encoded by ntk, a csk-related tyrosine protein kinase gene. Oncogene, 9(12): 3437–3448
pmid: 7970703
13 Cordero J B, Ridgway R A, Valeri N, Nixon C, Frame M C, Muller W J, Vidal M, Sansom O J (2014). c-Src drives intestinal regeneration and transformation. EMBO J, 33(13): 1474–1491
pmid: 24788409
14 Davidson D, Chow L M, Veillette A (1997). Chk, a Csk family tyrosine protein kinase, exhibits Csk-like activity in fibroblasts, but not in an antigen-specific T-cell line. J Biol Chem, 272(2): 1355–1362
https://doi.org/10.1074/jbc.272.2.1355 pmid: 8995444
15 Han N M, Curley S A, Gallick G E(1996). Differential activation of pp60(c-src) and pp62(c-yes) in human colorectal carcinoma liver metastases, Clin Cancer Res, 2 (8): 1397–1404
16 Hinoue T, Weisenberger D J, Lange C P, Shen H, Byun H M, Van Den Berg D, Malik S, Pan F, Noushmehr H, van Dijk C M, Tollenaar R A, Laird P W (2012). Genome-scale analysis of aberrant DNA methylation in colorectal cancer. Genome Res, 22(2): 271–282
https://doi.org/10.1101/gr.117523.110 pmid: 21659424
17 Hirao A, Huang X L, Suda T, Yamaguchi N (1998). Overexpression of C-terminal Src kinase homologous kinase suppresses activation of Lyn tyrosine kinase required for VLA5-mediated Dami cell spreading. J Biol Chem, 273(16): 10004–10010
https://doi.org/10.1074/jbc.273.16.10004 pmid: 9545346
18 Huang H, Li L, Wu C, Schibli D, Colwill K, Ma S, Li C, Roy P, Ho K, Songyang Z, Pawson T, Gao Y, Li S S (2008). Defining the specificity space of the human SRC homology 2 domain. Mol Cell Proteomics, 7(4): 768–784
https://doi.org/10.1074/mcp.M700312-MCP200 pmid: 17956856
19 Huang K, Wang Y H, Brown A, Sun G (2009). Identification of N-terminal lobe motifs that determine the kinase activity of the catalytic domains and regulatory strategies of Src and Csk protein tyrosine kinases. J Mol Biol, 386(4): 1066–1077
https://doi.org/10.1016/j.jmb.2009.01.012 pmid: 19244618
20 Ia K K, Jeschke G R, Deng Y, Kamaruddin M A, Williamson N A, Scanlon D B, Culvenor J G, Hossain M I, Purcell A W, Liu S, Zhu H J, Catimel B, Turk B E, Cheng H C (2011). Defining the substrate specificity determinants recognized by the active site of C-terminal Src kinase-homologous kinase (CHK) and identification of β-synuclein as a potential CHK physiological substrate. Biochemistry, 50(31): 6667–6677
https://doi.org/10.1021/bi2001938 pmid: 21699177
21 Ia K K, Mills R D, Hossain M I, Chan K C, Jarasrassamee B, Jorissen R N, Cheng H C (2010). Structural elements and allosteric mechanisms governing regulation and catalysis of CSK-family kinases and their inhibition of Src-family kinases. Growth Factors, 28(5): 329–350
https://doi.org/10.3109/08977194.2010.484424 pmid: 20476842
22 Jamros M A, Oliveira L C, Whitford P C, Onuchic J N, Adams J A, Jennings P A (2012). Substrate-specific reorganization of the conformational ensemble of CSK implicates novel modes of kinase function. PLOS Comput Biol, 8(9): e1002695
https://doi.org/10.1371/journal.pcbi.1002695 pmid: 23028292
23 Kim S O, Avraham S, Jiang S, Zagozdzon R, Fu Y, Avraham H K (2004). Differential expression of Csk homologous kinase (CHK) in normal brain and brain tumors. Cancer, 101(5): 1018–1027
https://doi.org/10.1002/cncr.20442 pmid: 15329911
24 Klages S, Adam D, Class K, Fargnoli J, Bolen J B, Penhallow R C (1994). Ctk: a protein-tyrosine kinase related to Csk that defines an enzyme family. Proc Natl Acad Sci USA, 91(7): 2597–2601
https://doi.org/10.1073/pnas.91.7.2597 pmid: 7511815
25 Kuang S Q, Tong W G, Yang H, Lin W, Lee M K, Fang Z H, Wei Y, Jelinek J, Issa J P, Garcia-Manero G (2008). Genome-wide identification of aberrantly methylated promoter associated CpG islands in acute lymphocytic leukemia. Leukemia, 22(8): 1529–1538
https://doi.org/10.1038/leu.2008.130 pmid: 18528427
26 Kuo S S, Armanini M P, Phillips H S, Caras I W (1997). Csk and BatK show opposite temporal expression in the rat CNS: consistent with its late expression in development, BatK induces differentiation of PC12 cells. Eur J Neurosci, 9(11): 2383–2393
https://doi.org/10.1111/j.1460-9568.1997.tb01655.x pmid: 9464932
27 Kuo S S, Moran P, Gripp J, Armanini M, Phillips H S, Goddard A, Caras I W (1994). Identification and characterization of Batk, a predominantly brain-specific non-receptor protein tyrosine kinase related to Csk. J Neurosci Res, 38(6): 705–715
https://doi.org/10.1002/jnr.490380613 pmid: 7807586
28 Laffaire J, Everhard S, Idbaih A, Crinière E, Marie Y, de Reyniès A, Schiappa R, Mokhtari K, Hoang-Xuan K, Sanson M, Delattre J Y, Thillet J, Ducray F (2011). Methylation profiling identifies 2 groups of gliomas according to their tumorigenesis. Neuro-oncol, 13(1): 84–98
https://doi.org/10.1093/neuonc/noq110 pmid: 20926426
29 Le X F, Bast R C Jr (2011). Src family kinases and paclitaxel sensitivity. Cancer Biol Ther, 12(4): 260–269
https://doi.org/10.4161/cbt.12.4.16430 pmid: 21646863
30 Lee S, Ayrapetov M K, Kemble D J, Parang K, Sun G (2006). Docking-based substrate recognition by the catalytic domain of a protein tyrosine kinase, C-terminal Src kinase (Csk). J Biol Chem, 281(12): 8183–8189
https://doi.org/10.1074/jbc.M508120200 pmid: 16439366
31 Lerner E C, Smithgall T E (2002). SH3-dependent stimulation of Src-family kinase autophosphorylation without tail release from the SH2 domain in vivo. Nat Struct Biol, 9(5): 365–369
pmid: 11976726
32 Lerner E C, Trible R P, Schiavone A P, Hochrein J M, Engen J R, Smithgall T E (2005). Activation of the Src family kinase Hck without SH3-linker release. J Biol Chem, 280(49): 40832–40837
https://doi.org/10.1074/jbc.M508782200 pmid: 16210316
33 Levinson N M, Seeliger M A, Cole P A, Kuriyan J (2008). Structural basis for the recognition of c-Src by its inactivator Csk. Cell, 134(1): 124–134
https://doi.org/10.1016/j.cell.2008.05.051 pmid: 18614016
34 Lieser S A, Shaffer J, Adams J A (2006). SRC tail phosphorylation is limited by structural changes in the regulatory tyrosine kinase Csk. J Biol Chem, 281(49): 38004–38012
https://doi.org/10.1074/jbc.M607824200 pmid: 17018524
35 Matsuoka H, Nada S, Okada M (2004). Mechanism of Csk-mediated down-regulation of Src family tyrosine kinases in epidermal growth factor signaling. J Biol Chem, 279(7): 5975–5983
https://doi.org/10.1074/jbc.M311278200 pmid: 14613929
36 Moarefi I, LaFevre-Bernt M, Sicheri F, Huse M, Lee C H, Kuriyan J, Miller W T (1997). Activation of the Src-family tyrosine kinase Hck by SH3 domain displacement. Nature, 385(6617): 650–653
https://doi.org/10.1038/385650a0 pmid: 9024665
37 Nakayama Y, Kawana A, Igarashi A, Yamaguchi N (2006). Involvement of the N-terminal unique domain of Chk tyrosine kinase in Chk-induced tyrosine phosphorylation in the nucleus. Exp Cell Res, 312(12): 2252–2263
https://doi.org/10.1016/j.yexcr.2006.03.021 pmid: 16707123
38 Ogawa A, Takayama Y, Sakai H, Chong K T, Takeuchi S, Nakagawa A, Nada S, Okada M, Tsukihara T (2002). Structure of the carboxyl-terminal Src kinase, Csk. J Biol Chem, 277(17): 14351–14354
https://doi.org/10.1074/jbc.C200086200 pmid: 11884384
39 Okada M (2012). Regulation of the SRC family kinases by Csk. Int J Biol Sci, 8(10): 1385–1397
https://doi.org/10.7150/ijbs.5141 pmid: 23139636
40 Rosenbluh J, Nijhawan D, Cox A G, Li X, Neal J T, Schafer E J, Zack T I, Wang X, Tsherniak A, Schinzel A C, Shao D D, Schumacher S E, Weir B A, Vazquez F, Cowley G S, Root D E, Mesirov J P, Beroukhim R, Kuo C J, Goessling W, Hahn W C (2012). β-Catenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis. Cell, 151(7): 1457–1473
https://doi.org/10.1016/j.cell.2012.11.026 pmid: 23245941
41 Sicheri F, Moarefi I, Kuriyan J (1997). Crystal structure of the Src family tyrosine kinase Hck. Nature, 385(6617): 602–609
https://doi.org/10.1038/385602a0 pmid: 9024658
42 Sirvent A, Benistant C, Roche S (2012a). Oncogenic signaling by tyrosine kinases of the SRC family in advanced colorectal cancer, Am J Cancer Res, 2(4): 357–371
43 Sirvent A, Vigy O, Orsetti B, Urbach S, Roche S (2012b). Analysis of SRC oncogenic signaling in colorectal cancer by stable isotope labeling with heavy amino acids in mouse xenografts. Mol Cell Proteomics, 11(12): 1937–1950
https://doi.org/10.1074/mcp.M112.018168 pmid: 23023324
44 Summy J M, Gallick G E (2003). Src family kinases in tumor progression and metastasis. Cancer Metastasis Rev, 22(4): 337–358
https://doi.org/10.1023/A:1023772912750 pmid: 12884910
45 Sun L, Hui A M, Su Q, Vortmeyer A, Kotliarov Y, Pastorino S, Passaniti A, Menon J, Walling J, Bailey R, Rosenblum M, Mikkelsen T, Fine H A (2006). Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. Cancer Cell, 9(4): 287–300
https://doi.org/10.1016/j.ccr.2006.03.003 pmid: 16616334
46 Takeuchi S, Takayama Y, Ogawa A, Tamura K, Okada M (2000). Transmembrane phosphoprotein Cbp positively regulates the activity of the carboxyl-terminal Src kinase, Csk. J Biol Chem, 275(38): 29183–29186
https://doi.org/10.1074/jbc.C000326200 pmid: 10918051
47 Tan S Y, Chuang S S, Tang T, Tan L, Ko Y H, Chuah K L, Ng S B, Chng W J, Gatter K, Loong F, Liu Y H, Hosking P, Cheah P L, Teh B T, Tay K, Koh M, Lim S T (2013). Type II EATL (epitheliotropic intestinal T-cell lymphoma): a neoplasm of intra-epithelial T-cells with predominant CD8αα phenotype. Leukemia, 27(8): 1688– 1696
https://doi.org/10.1038/leu.2013.41 pmid: 23399895
48 Tan S Y, Ooi A S, Ang M K, Koh M, Wong J C, Dykema K, Ngeow J, Loong S, Gatter K, Tan L, Lim L C, Furge K, Tao M, Lim S T, Loong F, Cheah P L, Teh B T (2011). Nuclear expression of MATK is a novel marker of type II enteropathy-associated T-cell lymphoma. Leukemia, 25(3): 555–557
https://doi.org/10.1038/leu.2010.295 pmid: 21233830
49 Touil Y, Igoudjil W, Corvaisier M, Dessein A F, Vandomme J, Monte D, Stechly L, Skrypek N, Langlois C, Grard G, Millet G, Leteurtre E, Dumont P, Truant S, Pruvot F R, Hebbar M, Fan F, Ellis L M, Formstecher P, van Seuningen I, Gespach C, Polakowska R, Huet G (2014). Colon cancer cells escape 5FU chemotherapy-induced cell death by entering stemness and quiescence associated with the c-Yes/YAP axis, Clin Cancer Res, 20 (4): 837–846
50 Wong L, Lieser S A, Miyashita O, Miller M, Tasken K, Onuchic J N, Adams J A, Woods V L Jr, Jennings P A (2005). Coupled motions in the SH2 and kinase domains of Csk control Src phosphorylation. J Mol Biol, 351(1): 131–143
https://doi.org/10.1016/j.jmb.2005.05.042 pmid: 16002086
51 Xu W, Harrison S C, Eck M J (1997). Three-dimensional structure of the tyrosine kinase c-Src. Nature, 385(6617): 595–602
https://doi.org/10.1038/385595a0 pmid: 9024657
52 Zhu S, Bjorge J D, Cheng H C, Fujita D J (2008). Decreased CHK protein levels are associated with Src activation in colon cancer cells. Oncogene, 27(14): 2027–2034
https://doi.org/10.1038/sj.onc.1210838 pmid: 17934522
[1] Supplementary Material Download
[1] Yasemin G. ISGOR, Belgin S. ISGOR. Kinases and glutathione transferases: selective and sensitive targeting[J]. Front Biol, 2011, 6(2): 156-169.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed