Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2015, Vol. 10 Issue (3) : 252-261    https://doi.org/10.1007/s11515-015-1358-y
REVIEW
The bacterial and host factors associated with extrapulmonary dissemination of Mycobacterium tuberculosis
Dong Yang,Ying Kong()
The Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
 Download: PDF(191 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

With high morbidity and mortality worldwide, tuberculosis (TB) is still an important public health threat. The majority of human TB cases are caused by Mycobacterium tuberculosis. Although pulmonary TB is the most common presentation, M. tuberculosis can disseminate into other organs and causes extrapulmonary TB (EPTB). The dissemination of bacteria from the initial site of infection to other organs can lead to fatal diseases, such as miliary and meningeal TB. Thoroughly understanding the mechanisms and pathways of dissemination would develop therapies to prevent the lethal prognosis of EPTB (miliary and meningeal TB) and vaccines to promote the development of adaptive immunity. This review focuses on risk factors of EPTB, bacterial and host genes involved in EPTB, and potential mechanisms of M. tuberculosis extrapulmonary dissemination.

Keywords host genes      Mycobacterium tuberculosis      extrapulmonary      dissemination      risk factors      bacterial genes     
Corresponding Author(s): Ying Kong   
Just Accepted Date: 26 March 2015   Online First Date: 28 April 2015    Issue Date: 23 June 2015
 Cite this article:   
Dong Yang,Ying Kong. The bacterial and host factors associated with extrapulmonary dissemination of Mycobacterium tuberculosis[J]. Front. Biol., 2015, 10(3): 252-261.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-015-1358-y
https://academic.hep.com.cn/fib/EN/Y2015/V10/I3/252
1 Adams D O (1976). The granulomatous inflammatory response. A review. Am J Pathol, 84(1): 164–192
pmid: 937513
2 Alvarado-Esquivel C, García-Corral N, Carrero-Dominguez D, Enciso-Moreno J A, Gurrola-Morales T, Portillo-Gómez L, Rossau R, Mijs W (2009). Molecular analysis of Mycobacterium isolates from extrapulmonary specimens obtained from patients in Mexico. BMC Clin Pathol, 9(1): 1
https://doi.org/10.1186/1472-6890-9-1 pmid: 19272158
3 American Thoracic Society, Infectious Diseases Society of America (2000). Diagnostic standards and classification of tuberculosis in adults and children. Am J Respir Crit Care Med, 161(4 Pt 1): 1376–1395
4 Antonucci G, Girardi E, Raviglione M C, Ippolito G (1995). Risk factors for tuberculosis in HIV-infected persons. A prospective cohort study. The Gruppo Italiano di Studio Tubercolosi e AIDS (GISTA). JAMA, 274(2): 143–148
https://doi.org/10.1001/jama.1995.03530020061033 pmid: 7596002
5 Arias M, Zabaleta J, Rodríguez J I, Rojas M, París S C, García L F (1997). Failure to induce nitric oxide production by human monocyte-derived macrophages. Manipulation of biochemical pathways. Allergol Immunopathol (Madr), 25(6): 280–288
pmid: 9469204
6 Arruda S, Bomfim G, Knights R, Huima-Byron T, Riley L W (1993). Cloning of an M. tuberculosis DNA fragment associated with entry and survival inside cells. Science, 261(5127): 1454–1457
https://doi.org/10.1126/science.8367727 pmid: 8367727
7 Asghar R J, Pratt R H, Kammerer J S, Navin T R (2008). Tuberculosis in South Asians living in the United States, 1993–2004. Arch Intern Med, 168(9): 936–942
https://doi.org/10.1001/archinte.168.9.936 pmid: 18474757
8 Barnes P F, Barrows S A (1993). Tuberculosis in the 1990s. Ann Intern Med, 119(5): 400–410
https://doi.org/10.7326/0003-4819-119-5-199309010-00009 pmid: 8338294
9 Barrios-Payán J, Saqui-Salces M, Jeyanathan M, Alcántara-Vazquez A, Casta?on-Arreola M, Rook G, Hernandez-Pando R (2012). Extrapulmonary locations of Mycobacterium tuberculosis DNA during latent infection. J Infect Dis, 206(8): 1194–1205
https://doi.org/10.1093/infdis/jis381 pmid: 22732919
10 Bates M N, Khalakdina A, Pai M, Chang L, Lessa F, Smith K R (2007). Risk of tuberculosis from exposure to tobacco smoke: a systematic review and meta-analysis. Arch Intern Med, 167(4): 335–342
https://doi.org/10.1001/archinte.167.4.335 pmid: 17325294
11 Be N A, Lamichhane G, Grosset J, Tyagi S, Cheng Q J, Kim K S, Bishai W R, Jain S K (2008). Murine model to study the invasion and survival of Mycobacterium tuberculosis in the central nervous system. J Infect Dis, 198(10): 1520–1528
https://doi.org/10.1086/592447 pmid: 18956986
12 Bekker L G, Moreira A L, Bergtold A, Freeman S, Ryffel B, Kaplan G (2000). Immunopathologic effects of tumor necrosis factor alpha in murine mycobacterial infection are dose dependent. Infect Immun, 68(12): 6954–6961
https://doi.org/10.1128/IAI.68.12.6954-6961.2000 pmid: 11083819
13 Boom W H, Canaday D H, Fulton S A, Gehring A J, Rojas R E, Torres M (2003). Human immunity to M. tuberculosis: T cell subsets and antigen processing. Tuberculosis (Edinb), 83(1-3): 98–106
https://doi.org/10.1016/S1472-9792(02)00054-9 pmid: 12758197
14 Bouley D M, Ghori N, Mercer K L, Falkow S, Ramakrishnan L (2001). Dynamic nature of host-pathogen interactions in Mycobacterium marinum granulomas. Infect Immun, 69(12): 7820–7831
https://doi.org/10.1128/IAI.69.12.7820-7831.2001 pmid: 11705964
15 Brewer T F, Heymann S J (2005). Long time due: reducing tuberculosis mortality in the 21st century. Arch Med Res, 36(6): 617–621
https://doi.org/10.1016/j.arcmed.2005.06.002 pmid: 16216642
16 Cailhol J, Decludt B, Che D (2005). Sociodemographic factors that contribute to the development of extrapulmonary tuberculosis were identified. J Clin Epidemiol, 58(10): 1066–1071
https://doi.org/10.1016/j.jclinepi.2005.02.023 pmid: 16168353
17 Campbell G R, Spector S A (2012). Vitamin D inhibits human immunodeficiency virus type 1 and Mycobacterium tuberculosis infection in macrophages through the induction of autophagy. PLoS Pathog, 8(5): e1002689
https://doi.org/10.1371/journal.ppat.1002689 pmid: 22589721
18 Camus J C, Pryor M J, Médigue C, Cole S T (2002). Re-annotation of the genome sequence of Mycobacterium tuberculosis H37Rv. Microbiology, 148(Pt 10): 2967–2973
pmid: 12368430
19 Caruso A M, Serbina N, Klein E, Triebold K, Bloom B R, Flynn J L (1999). Mice deficient in CD4 T cells have only transiently diminished levels of IFN-gamma, yet succumb to tuberculosis. J Immunol, 162(9): 5407–5416
pmid: 10228018
20 Casali N, Riley L W (2007). A phylogenomic analysis of the Actinomycetales mce operons. BMC Genomics, 8(1): 60
https://doi.org/10.1186/1471-2164-8-60 pmid: 17324287
21 Castro-Garza J, King C H, Swords W E, Quinn F D (2002). Demonstration of spread by Mycobacterium tuberculosis bacilli in A549 epithelial cell monolayers. FEMS Microbiol Lett, 212(2): 145–149
https://doi.org/10.1111/j.1574-6968.2002.tb11258.x pmid: 12113926
22 Centers for Disease Control and Prevention (CDC) (2008). Trends in tuberculosis—United States, 2007. MMWR Morb Mortal Wkly Rep, 57(11): 281–285
pmid: 18354371
23 Chan-Yeung M, Noertjojo K, Chan S L, Tam C M (2002). Sex differences in tuberculosis in Hong Kong. Int J Tuberc Lung Dis, 6(1): 11–18
pmid: 11931395
24 Chang J C, Harik N S, Liao R P, Sherman D R (2007). Identification of Mycobacterial genes that alter growth and pathology in macrophages and in mice. J Infect Dis, 196(5): 788–795
https://doi.org/10.1086/520089 pmid: 17674323
25 Chawla M, Parikh P, Saxena A, Munshi M, Mehta M, Mai D, Srivastava A K, Narasimhulu K V, Redding K E, Vashi N, Kumar D, Steyn A J, Singh A (2012). Mycobacterium tuberculosis WhiB4 regulates oxidative stress response to modulate survival and dissemination in vivo. Mol Microbiol, 85(6): 1148–1165
https://doi.org/10.1111/j.1365-2958.2012.08165.x pmid: 22780904
26 Chiang C Y, Slama K, Enarson D A (2007). Associations between tobacco and tuberculosis. Int J Tuberc Lung Dis, 11(3): 258–262
pmid: 17352089
27 Cirillo S L, Subbian S, Chen B, Weisbrod T R, Jacobs W R Jr, Cirillo J D (2009). Protection of Mycobacterium tuberculosis from reactive oxygen species conferred by the mel2 locus impacts persistence and dissemination. Infect Immun, 77(6): 2557–2567
https://doi.org/10.1128/IAI.01481-08 pmid: 19349422
28 Clay H, Davis J M, Beery D, Huttenlocher A, Lyons S E, Ramakrishnan L (2007). Dichotomous role of the macrophage in early Mycobacterium marinum infection of the zebrafish. Cell Host Microbe, 2(1): 29–39
https://doi.org/10.1016/j.chom.2007.06.004 pmid: 18005715
29 Cole S T (2002). Comparative and functional genomics of the Mycobacterium tuberculosis complex. Microbiology, 148(Pt 10): 2919–2928
pmid: 12368425
30 Cole S T, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon S V, Eiglmeier K, Gas S, Barry C E 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail M A, Rajandream M A, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston J E, Taylor K, Whitehead S, Barrell B G (1998). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 393(6685): 537–544
https://doi.org/10.1038/31159 pmid: 9634230
31 Cooper A M, Dalton D K, Stewart T A, Griffin J P, Russell D G, Orme I M (1993). Disseminated tuberculosis in interferon gamma gene-disrupted mice. J Exp Med, 178(6): 2243–2247
https://doi.org/10.1084/jem.178.6.2243 pmid: 8245795
32 Dannenberg A M Jr (1989). Immune mechanisms in the pathogenesis of pulmonary tuberculosis. Rev Infect Dis, 11(Suppl 2): S369–S378
https://doi.org/10.1093/clinids/11.Supplement_2.S369 pmid: 2496453
33 Davis J M, Ramakrishnan L (2009). The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell, 136(1): 37–49
https://doi.org/10.1016/j.cell.2008.11.014 pmid: 19135887
34 Davis N K, Chater K F (1992). The Streptomyces coelicolor whiB gene encodes a small transcription factor-like protein dispensable for growth but essential for sporulation. Mol Gen Genet, 232(3): 351–358
https://doi.org/10.1007/BF00266237 pmid: 1316997
35 de Jong R, Altare F, Haagen I A, Elferink D G, Boer T, van Breda Vriesman P J, Kabel P J, Draaisma J M, van Dissel J T, Kroon F P, Casanova J L, Ottenhoff T H (1998). Severe mycobacterial and Salmonella infections in interleukin-12 receptor-deficient patients. Science, 280(5368): 1435–1438
https://doi.org/10.1126/science.280.5368.1435 pmid: 9603733
36 Dobos K M, Spotts E A, Quinn F D, King C H (2000). Necrosis of lung epithelial cells during infection with Mycobacterium tuberculosis is preceded by cell permeation. Infect Immun, 68(11): 6300–6310
https://doi.org/10.1128/IAI.68.11.6300-6310.2000 pmid: 11035739
37 Edwards D, Kirkpatrick C H (1986). The immunology of mycobacterial diseases. Am Rev Respir Dis, 134(5): 1062–1071
pmid: 3535595
38 Farer L S, Lowell A M, Meador M P (1979). Extrapulmonary tuberculosis in the United States. Am J Epidemiol, 109(2): 205–217
pmid: 425959
39 Fenton M J, Vermeulen M W (1996). Immunopathology of tuberculosis: roles of macrophages and monocytes. Infect Immun, 64(3): 683–690
pmid: 8641767
40 Fernando S L, Saunders B M, Sluyter R, Skarratt K K, Goldberg H, Marks G B, Wiley J S, Britton W J (2007). A polymorphism in the P2X7 gene increases susceptibility to extrapulmonary tuberculosis. Am J Respir Crit Care Med, 175(4): 360–366
https://doi.org/10.1164/rccm.200607-970OC pmid: 17095747
41 Fiske C T, Griffin M R, Erin H, Warkentin J, Lisa K, Arbogast P G, Sterling T R (2010). Black race, sex, and extrapulmonary tuberculosis risk: an observational study. BMC Infect Dis, 10(1): 16
https://doi.org/10.1186/1471-2334-10-16 pmid: 20096113
42 Flynn J L, Chan J (2001). Immunology of tuberculosis. Annu Rev Immunol, 19(1): 93–129
https://doi.org/10.1146/annurev.immunol.19.1.93 pmid: 11244032
43 Forssbohm M, Zwahlen M, Loddenkemper R, Rieder H L (2008). Demographic characteristics of patients with extrapulmonary tuberculosis in Germany. Eur Respir J, 31(1): 99–105
https://doi.org/10.1183/09031936.00020607 pmid: 17804450
44 Fortune S M, Solache A, Jaeger A, Hill P J, Belisle J T, Bloom B R, Rubin E J, Ernst J D (2004). Mycobacterium tuberculosis inhibits macrophage responses to IFN-gamma through myeloid differentiation factor 88-dependent and-independent mechanisms. J Immunol, 172(10): 6272–6280
https://doi.org/10.4049/jimmunol.172.10.6272 pmid: 15128816
45 Gioffré A, Infante E, Aguilar D, Santangelo M P, Klepp L, Amadio A, Meikle V, Etchechoury I, Romano M I, Cataldi A, Hernández R P, Bigi F (2005). Mutation in mce operons attenuates Mycobacterium tuberculosis virulence. Microbes Infect, 7(3): 325–334
https://doi.org/10.1016/j.micinf.2004.11.007 pmid: 15804490
46 Gombart A F, Borregaard N, Koeffler H P (2005). Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25-dihydroxyvitamin D3. FASEB J, 19(9): 1067–1077
https://doi.org/10.1096/fj.04-3284com pmid: 15985530
47 Gonzalez O Y, Adams G, Teeter L D, Bui T T, Musser J M, Graviss E A (2003). Extra-pulmonary manifestations in a large metropolitan area with a low incidence of tuberculosis. Int J Tuberc Lung Dis, 7(12): 1178–1185
pmid: 14677893
48 Gordon A H, Hart P D, Young M R (1980). Ammonia inhibits phagosome-lysosome fusion in macrophages. Nature, 286(5768): 79–80
https://doi.org/10.1038/286079a0 pmid: 6993961
49 Goren M B, D’Arcy Hart P, Young M R, Armstrong J A (1976). Prevention of phagosome-lysosome fusion in cultured macrophages by sulfatides of Mycobacterium tuberculosis. Proc Natl Acad Sci USA, 73(7): 2510–2514
https://doi.org/10.1073/pnas.73.7.2510 pmid: 821057
50 Haas D W, Des Prez R M (1994). Tuberculosis and acquired immunodeficiency syndrome: a historical perspective on recent developments. Am J Med, 96(5): 439–450
https://doi.org/10.1016/0002-9343(94)90171-6 pmid: 8192176
51 Harris S S (2006). Vitamin D and African Americans. J Nutr, 136(4): 1126–1129
pmid: 16549493
52 Hart P D, Young M R, Jordan M M, Perkins W J, Geisow M J (1983). Chemical inhibitors of phagosome-lysosome fusion in cultured macrophages also inhibit saltatory lysosomal movements. A combined microscopic and computer study. J Exp Med, 158(2): 477–492
https://doi.org/10.1084/jem.158.2.477 pmid: 6193224
53 Henao M I, Montes C, París S C, García L F (2006). Cytokine gene polymorphisms in Colombian patients with different clinical presentations of tuberculosis. Tuberculosis (Edinb), 86(1): 11–19
https://doi.org/10.1016/j.tube.2005.03.001 pmid: 15925543
54 Henkle E, Winthrop K L (2015). Nontuberculous mycobacteria infections in immunosuppressed hosts. Clin Chest Med, 36(1): 91–99
https://doi.org/10.1016/j.ccm.2014.11.002 pmid: 25676522
55 Hoal-Van Helden E G, Epstein J, Victor T C, Hon D, Lewis L A, Beyers N, Zurakowski D, Ezekowitz A B, Van Helden P D (1999). Mannose-binding protein B allele confers protection against tuberculous meningitis. Pediatr Res, 45(4 Pt 1): 459–464
https://doi.org/10.1203/00006450-199904010-00002 pmid: 10203135
56 Holmes C B, Hausler H, Nunn P (1998). A review of sex differences in the epidemiology of tuberculosis. Int J Tuberc Lung Dis, 2(2): 96–104
pmid: 9562118
57 Hopewell P (1994). Overview of Clinical Tuberculosis. In: Barry B(ed.). Tuberculosis: Pathogenesis, Protection and Control. ASM Press, Washington, DC. pp. 25–46
58 Hsu T, Hingley-Wilson S M, Chen B, Chen M, Dai A Z, Morin P M, Marks C B, Padiyar J, Goulding C, Gingery M, Eisenberg D, Russell R G, Derrick S C, Collins F M, Morris S L, King C H, Jacobs W R Jr (2003). The primary mechanism of attenuation of bacillus Calmette-Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue. Proc Natl Acad Sci USA, 100(21): 12420–12425
https://doi.org/10.1073/pnas.1635213100 pmid: 14557547
59 Hudelson P (1996). Gender differentials in tuberculosis: the role of socio-economic and cultural factors. Tuber Lung Dis, 77(5): 391–400
https://doi.org/10.1016/S0962-8479(96)90110-0 pmid: 8959141
60 Jones B E, Young S M, Antoniskis D, Davidson P T, Kramer F, Barnes P F (1993). Relationship of the manifestations of tuberculosis to CD4 cell counts in patients with human immunodeficiency virus infection. Am Rev Respir Dis, 148(5): 1292–1297
https://doi.org/10.1164/ajrccm/148.5.1292 pmid: 7902049
61 Jouanguy E, Altare F, Lamhamedi S, Revy P, Emile J F, Newport M, Levin M, Blanche S, Seboun E, Fischer A, Casanova J L (1996). Interferon-gamma-receptor deficiency in an infant with fatal bacille Calmette-Guérin infection. N Engl J Med, 335(26): 1956–1961
https://doi.org/10.1056/NEJM199612263352604 pmid: 8960475
62 Kapur V, Whittam T S, Musser J M (1994). Is Mycobacterium tuberculosis 15,000 years old? J Infect Dis, 170(5): 1348–1349
https://doi.org/10.1093/infdis/170.5.1348 pmid: 7963745
63 Kaufmann S H (2002). Protection against tuberculosis: cytokines, T cells, and macrophages. Ann Rheum Dis, 61(Suppl 2): ii54–ii58
https://doi.org/10.1136/ard.61.suppl_2.ii54 pmid: 12379623
64 Keane J, Gershon S, Wise R P, Mirabile-Levens E, Kasznica J, Schwieterman W D, Siegel J N, Braun M M (2001). Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N Engl J Med, 345(15): 1098–1104
https://doi.org/10.1056/NEJMoa011110 pmid: 11596589
65 Kim J H, Lee S Y, Lee S H, Sin C, Shim J J, In K H, Yoo S H, Kang K H (2003). NRAMP1 genetic polymorphisms as a risk factor of tuberculous pleurisy. Int J Tuberc Lung Dis, 7(4): 370–375
pmid: 12729343
66 Kinhikar A G, Verma I, Chandra D, Singh K K, Weldingh K, Andersen P, Hsu T, Jacobs W R Jr, Laal S (2010). Potential role for ESAT6 in dissemination of M. tuberculosis via human lung epithelial cells. Mol Microbiol, 75(1): 92–106
https://doi.org/10.1111/j.1365-2958.2009.06959.x pmid: 19906174
67 Kumar A, Bose M, Brahmachari V (2003). Analysis of expression profile of mammalian cell entry (mce) operons of Mycobacterium tuberculosis. Infect Immun, 71(10): 6083–6087
https://doi.org/10.1128/IAI.71.10.6083-6087.2003 pmid: 14500535
68 Lado Lado F L, Barrio Gómez E, Carballo Arceo E, Cabarcos Ortíz de Barrón A, LadoF L, Barrio Gómez E (1999). Clinical presentation of tuberculosis and the degree of immunodeficiency in patients with HIV infection. Scand J Infect Dis, 31(4): 387–391
https://doi.org/10.1080/00365549950163842 pmid: 10528879
69 Lebrun P, Raze D, Fritzinger B, Wieruszeski J M, Biet F, Dose A, Carpentier M, Schwarzer D, Allain F, Lippens G, Locht C (2012). Differential contribution of the repeats to heparin binding of HBHA, a major adhesin of Mycobacterium tuberculosis. PLoS ONE, 7(3): e32421
https://doi.org/10.1371/journal.pone.0032421 pmid: 22403657
70 Lee M P, Chan J W, Ng K K, Li P C (2000). Clinical manifestations of tuberculosis in HIV-infected patients. Respirology, 5(4): 423–426
https://doi.org/10.1046/j.1440-1843.2000.00287.x pmid: 11192558
71 Levin M, Newport M J, D’Souza S, Kalabalikis P, Brown I N, Lenicker H M, Agius P V, Davies E G, Thrasher A, Klein N, (1995). Familial disseminated atypical mycobacterial infection in childhood: a human mycobacterial susceptibility gene? Lancet, 345(8942): 79–83
https://doi.org/10.1016/S0140-6736(95)90059-4 pmid: 7815885
72 Lin C Y, Chen T C, Lu P L, Lai C C, Yang Y H, Lin W R, Huang P M, Chen Y H (2013). Effects of gender and age on development of concurrent extrapulmonary tuberculosis in patients with pulmonary tuberculosis: a population based study. PLoS ONE, 8(5): e63936
https://doi.org/10.1371/journal.pone.0063936 pmid: 23717513
73 Lin P L, Myers A, Smith L, Bigbee C, Bigbee M, Fuhrman C, Grieser H, Chiosea I, Voitenek N N, Capuano S V, Klein E, Flynn J L (2010). Tumor necrosis factor neutralization results in disseminated disease in acute and latent Mycobacterium tuberculosis infection with normal granuloma structure in a cynomolgus macaque model. Arthritis Rheum, 62(2): 340–350
pmid: 20112395
74 Liu P T, Stenger S, Li H, Wenzel L, Tan B H, Krutzik S R, Ochoa M T, Schauber J, Wu K, Meinken C, Kamen D L, Wagner M, Bals R, Steinmeyer A, Zügel U, Gallo R L, Eisenberg D, Hewison M, Hollis B W, Adams J S, Bloom B R, Modlin R L (2006). Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science, 311(5768): 1770–1773
https://doi.org/10.1126/science.1123933 pmid: 16497887
75 MacMicking J D, Taylor G A, McKinney J D (2003). Immune control of tuberculosis by IFN-gamma-inducible LRG-47. Science, 302(5645): 654–659
https://doi.org/10.1126/science.1088063 pmid: 14576437
76 Malik Z A, Iyer S S, Kusner D J (2001). Mycobacterium tuberculosis phagosomes exhibit altered calmodulin-dependent signal transduction: contribution to inhibition of phagosome-lysosome fusion and intracellular survival in human macrophages. J Immunol, 166(5): 3392–3401
https://doi.org/10.4049/jimmunol.166.5.3392 pmid: 11207296
77 Manca C, Tsenova L, Bergtold A, Freeman S, Tovey M, Musser J M, Barry C E 3rd, Freedman V H, Kaplan G (2001). Virulence of a Mycobacterium tuberculosis clinical isolate in mice is determined by failure to induce Th1 type immunity and is associated with induction of IFN-alpha /beta. Proc Natl Acad Sci USA, 98(10): 5752–5757
https://doi.org/10.1073/pnas.091096998 pmid: 11320211
78 Martineau A R, Wilkinson R J, Wilkinson K A, Newton S M, Kampmann B, Hall B M, Packe G E, Davidson R N, Eldridge S M, Maunsell Z J, Rainbow S J, Berry J L, Griffiths C J (2007). A single dose of vitamin D enhances immunity to mycobacteria. Am J Respir Crit Care Med, 176(2): 208–213
https://doi.org/10.1164/rccm.200701-007OC pmid: 17463418
79 Martinez A N, Rhee J T, Small P M, Behr M A (2000). Sex differences in the epidemiology of tuberculosis in San Francisco. Int J Tuberc Lung Dis, 4(1): 26–31
pmid: 10654640
80 McDonough K A, Kress Y (1995). Cytotoxicity for lung epithelial cells is a virulence-associated phenotype of Mycobacterium tuberculosis. Infect Immun, 63(12): 4802–4811
pmid: 7591139
81 McDonough K A, Kress Y, Bloom B R (1993). Pathogenesis of tuberculosis: interaction of Mycobacterium tuberculosis with macrophages. Infect Immun, 61(7): 2763–2773
pmid: 8514378
82 McKinney J D, H?ner zu Bentrup K, Mu?oz-Elías E J, Miczak A, Chen B, Chan W T, Swenson D, Sacchettini J C, Jacobs W R Jr, Russell D G (2000). Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature, 406(6797): 735–738
https://doi.org/10.1038/35021074 pmid: 10963599
83 Menozzi F D, Bischoff R, Fort E, Brennan M J, Locht C (1998). Molecular characterization of the mycobacterial heparin-binding hemagglutinin, a mycobacterial adhesin. Proc Natl Acad Sci USA, 95(21): 12625–12630
https://doi.org/10.1073/pnas.95.21.12625 pmid: 9770536
84 Menozzi F D, Rouse J H, Alavi M, Laude-Sharp M, Muller J, Bischoff R, Brennan M J, Locht C (1996). Identification of a heparin-binding hemagglutinin present in mycobacteria. J Exp Med, 184(3): 993–1001
https://doi.org/10.1084/jem.184.3.993 pmid: 9064359
85 Musellim B, Erturan S, Sonmez Duman E, Ongen G (2005). Comparison of extra-pulmonary and pulmonary tuberculosis cases: factors influencing the site of reactivation. Int J Tuberc Lung Dis, 9(11): 1220–1223
pmid: 16333928
86 Nathan C, Shiloh M U (2000). Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci USA, 97(16): 8841–8848
https://doi.org/10.1073/pnas.97.16.8841 pmid: 10922044
87 Nursyam E W, Amin Z, Rumende C M (2006). The effect of vitamin D as supplementary treatment in patients with moderately advanced pulmonary tuberculous lesion. Acta Med Indones, 38(1): 3–5
pmid: 16479024
88 Peters W, Ernst J D (2003). Mechanisms of cell recruitment in the immune response to Mycobacterium tuberculosis. Microbes Infect, 5(2): 151–158
https://doi.org/10.1016/S1286-4579(02)00082-5 pmid: 12650773
89 Pethe K, Alonso S, Biet F, Delogu G, Brennan M J, Locht C, Menozzi F D (2001). The heparin-binding haemagglutinin of M. tuberculosis is required for extrapulmonary dissemination. Nature, 412(6843): 190–194
https://doi.org/10.1038/35084083 pmid: 11449276
90 Pitchenik A E, Fertel D, Bloch A B (1988). Mycobacterial disease: epidemiology, diagnosis, treatment, and prevention. Clin Chest Med, 9(3): 425–441
pmid: 3044679
91 Raviglione M C, Narain J P, Kochi A (1992). HIV-associated tuberculosis in developing countries: clinical features, diagnosis, and treatment. Bull World Health Organ, 70(4): 515–526
pmid: 1394786
92 Reed M B, Domenech P, Manca C, Su H, Barczak A K, Kreiswirth B N, Kaplan G, Barry C E 3rd (2004). A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response. Nature, 431(7004): 84–87
https://doi.org/10.1038/nature02837 pmid: 15343336
93 Rengarajan J, Bloom B R, Rubin E J (2005). Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. Proc Natl Acad Sci USA, 102(23): 8327–8332
https://doi.org/10.1073/pnas.0503272102 pmid: 15928073
94 Rieder H L, Snider D E Jr, Cauthen G M (1990). Extrapulmonary tuberculosis in the United States. Am Rev Respir Dis, 141(2): 347–351
https://doi.org/10.1164/ajrccm/141.2.347 pmid: 2301852
95 Rook G A, Hernandez-Pando R (1996). The pathogenesis of tuberculosis. Annu Rev Microbiol, 50(1): 259–284
https://doi.org/10.1146/annurev.micro.50.1.259 pmid: 8905081
96 Sassetti C M, Rubin E J (2003). Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci USA, 100(22): 12989–12994
https://doi.org/10.1073/pnas.2134250100 pmid: 14569030
97 Schnappinger D, Ehrt S, Voskuil M I, Liu Y, Mangan J A, Monahan I M, Dolganov G, Efron B, Butcher P D, Nathan C, Schoolnik G K (2003). Transcriptional adaptation of Mycobacterium tuberculosis within Macrophages: Insights into the phagosomal environment. J Exp Med, 198(5): 693–704
https://doi.org/10.1084/jem.20030846 pmid: 12953091
98 Shafer R W, Kim D S, Weiss J P, Quale J M (1991). Extrapulmonary tuberculosis in patients with human immunodeficiency virus infection. Medicine (Baltimore), 70(6): 384–397
https://doi.org/10.1097/00005792-199111000-00004 pmid: 1956280
99 Shiloh M U, Nathan C F (2000). Reactive nitrogen intermediates and the pathogenesis of Salmonella and Mycobacteria. Curr Opin Microbiol, 3(1): 35–42
https://doi.org/10.1016/S1369-5274(99)00048-X pmid: 10679417
100 Sita-Lumsden A, Lapthorn G, Swaminathan R, Milburn H J (2007). Reactivation of tuberculosis and vitamin D deficiency: the contribution of diet and exposure to sunlight. Thorax, 62(11): 1003–1007
https://doi.org/10.1136/thx.2006.070060 pmid: 17526677
101 Sly L M, Hingley-Wilson S M, Reiner N E, McMaster W R (2003). Survival of Mycobacterium tuberculosis in host macrophages involves resistance to apoptosis dependent upon induction of antiapoptotic Bcl-2 family member Mcl-1. J Immunol, 170(1): 430–437
https://doi.org/10.4049/jimmunol.170.1.430 pmid: 12496428
102 Snider D E Jr, Roper W L (1992). The new tuberculosis. N Engl J Med, 326(10): 703–705
https://doi.org/10.1056/NEJM199203053261011 pmid: 1736110
103 Sohn H, Kim J S, Shin S J, Kim K, Won C J, Kim W S, Min K N, Choi H G, Lee J C, Park J K, Kim H J (2011). Targeting of Mycobacterium tuberculosis heparin-binding hemagglutinin to mitochondria in macrophages. PLoS Pathog, 7(12): e1002435
https://doi.org/10.1371/journal.ppat.1002435 pmid: 22174691
104 Sreeramareddy C T, Panduru K V, Verma S C, Joshi H S, Bates M N (2008). Comparison of pulmonary and extrapulmonary tuberculosis in Nepal- a hospital-based retrospective study. BMC Infect Dis, 8(1): 8
https://doi.org/10.1186/1471-2334-8-8 pmid: 18218115
105 Sudre P, ten Dam G, Kochi A (1992). Tuberculosis: a global overview of the situation today. Bull World Health Organ, 70(2): 149–159
pmid: 1600578
106 Tascon R E, Soares C S, Ragno S, Stavropoulos E, Hirst E M, Colston M J (2000). Mycobacterium tuberculosis-activated dendritic cells induce protective immunity in mice. Immunology, 99(3): 473–480
https://doi.org/10.1046/j.1365-2567.2000.00963.x pmid: 10712679
107 Theuer C P, Hopewell P C, Elias D, Schecter G F, Rutherford G W, Chaisson R E (1990). Human immunodeficiency virus infection in tuberculosis patients. J Infect Dis, 162(1): 8–12
https://doi.org/10.1093/infdis/162.1.8 pmid: 1972384
108 Thuong N T, Hawn T R, Thwaites G E, Chau T T, Lan N T, Quy H T, Hieu N T, Aderem A, Hien T T, Farrar J J, Dunstan S J (2007). A polymorphism in human TLR2 is associated with increased susceptibility to tuberculous meningitis. Genes Immun, 8(5): 422–428
https://doi.org/10.1038/sj.gene.6364405 pmid: 17554342
109 Tsenova L, Ellison E, Harbacheuski R, Moreira A L, Kurepina N, Reed M B, Mathema B, Barry C E 3rd, Kaplan G (2005). Virulence of selected Mycobacterium tuberculosis clinical isolates in the rabbit model of meningitis is dependent on phenolic glycolipid produced by the bacilli. J Infect Dis, 192(1): 98–106
https://doi.org/10.1086/430614 pmid: 15942899
110 van Pinxteren L A, Cassidy J P, Smedegaard B H, Agger E M, Andersen P (2000). Control of latent Mycobacterium tuberculosis infection is dependent on CD8 T cells. Eur J Immunol, 30(12): 3689–3698
https://doi.org/10.1002/1521-4141(200012)30:12<3689::AID-IMMU3689>3.0.CO;2-4 pmid: 11169412
111 Verway M, Bouttier M, Wang T T, Carrier M, Calderon M, An B S, Devemy E, McIntosh F, Divangahi M, Behr M A, White J H (2013). Vitamin D induces interleukin-1β expression: paracrine macrophage epithelial signaling controls M. tuberculosis infection. PLoS Pathog, 9(6): e1003407
https://doi.org/10.1371/journal.ppat.1003407 pmid: 23762029
112 Wang T T, Nestel F P, Bourdeau V, Nagai Y, Wang Q, Liao J, Tavera-Mendoza L, Lin R, Hanrahan J W, Mader S, White J H (2004). Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J Immunol, 173(5): 2909–2912
https://doi.org/10.4049/jimmunol.173.5.2909 pmid: 15322146
113 Weir M R, Thornton G F (1985). Extrapulmonary tuberculosis. Experience of a community hospital and review of the literature. Am J Med, 79(4): 467–478
https://doi.org/10.1016/0002-9343(85)90034-8 pmid: 4050833
114 WHO (2014). Global tuberculosis control 2013.
115 Wilkinson R J, Llewelyn M, Toossi Z, Patel P, Pasvol G, Lalvani A, Wright D, Latif M, Davidson R N (2000). Influence of vitamin D deficiency and vitamin D receptor polymorphisms on tuberculosis among Gujarati Asians in west London: a case-control study. Lancet, 355(9204): 618–621
https://doi.org/10.1016/S0140-6736(99)02301-6 pmid: 10696983
116 Wilkinson R J, Patel P, Llewelyn M, Hirsch C S, Pasvol G, Snounou G, Davidson R N, Toossi Z (1999). Influence of polymorphism in the genes for the interleukin (IL)-1 receptor antagonist and IL-1beta on tuberculosis. J Exp Med, 189(12): 1863–1874
https://doi.org/10.1084/jem.189.12.1863 pmid: 10377182
117 Wolf A J, Linas B, Trevejo-Nu?ez G J, Kincaid E, Tamura T, Takatsu K, Ernst J D (2007). Mycobacterium tuberculosis infects dendritic cells with high frequency and impairs their function in vivo. J Immunol, 179(4): 2509–2519
https://doi.org/10.4049/jimmunol.179.4.2509 pmid: 17675513
118 Yang Z, Kong Y, Wilson F, Foxman B, Fowler A H, Marrs C F, Cave M D, Bates J H (2004). Identification of risk factors for extrapulmonary tuberculosis. Clin Infect Dis, 38(2): 199–205
https://doi.org/10.1086/380644 pmid: 14699451
119 Zhang X, Andersen A B, Lillebaek T, Kamper-J?rgensen Z, Thomsen V O, Ladefoged K, Marrs C F, Zhang L, Yang Z (2011). Effect of sex, age, and race on the clinical presentation of tuberculosis: a 15-year population-based study. Am J Trop Med Hyg, 85(2): 285–290
https://doi.org/10.4269/ajtmh.2011.10-0630 pmid: 21813849
[1] Arshid Yousefi-Avarvand, Mohsen Tafaghodi, Saman Soleimanpour, Farzad Khademi. HspX protein as a candidate vaccine against Mycobacterium tuberculosis: an overview[J]. Front. Biol., 2018, 13(4): 293-296.
[2] Anup Kainthola, Ajay Bhatt. Intervention points for community- acquired methicillin– resistant Staphylococcus aureus colonization and load in healthy population of lesser Himalayan Belt, South Asia, India[J]. Front. Biol., 2017, 12(3): 226-234.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed