|
|
The bacterial and host factors associated with extrapulmonary dissemination of Mycobacterium tuberculosis |
Dong Yang,Ying Kong( ) |
The Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA |
|
|
Abstract With high morbidity and mortality worldwide, tuberculosis (TB) is still an important public health threat. The majority of human TB cases are caused by Mycobacterium tuberculosis. Although pulmonary TB is the most common presentation, M. tuberculosis can disseminate into other organs and causes extrapulmonary TB (EPTB). The dissemination of bacteria from the initial site of infection to other organs can lead to fatal diseases, such as miliary and meningeal TB. Thoroughly understanding the mechanisms and pathways of dissemination would develop therapies to prevent the lethal prognosis of EPTB (miliary and meningeal TB) and vaccines to promote the development of adaptive immunity. This review focuses on risk factors of EPTB, bacterial and host genes involved in EPTB, and potential mechanisms of M. tuberculosis extrapulmonary dissemination.
|
Keywords
host genes
Mycobacterium tuberculosis
extrapulmonary
dissemination
risk factors
bacterial genes
|
Corresponding Author(s):
Ying Kong
|
Just Accepted Date: 26 March 2015
Online First Date: 28 April 2015
Issue Date: 23 June 2015
|
|
1 |
Adams D O (1976). The granulomatous inflammatory response. A review. Am J Pathol, 84(1): 164–192
pmid: 937513
|
2 |
Alvarado-Esquivel C, García-Corral N, Carrero-Dominguez D, Enciso-Moreno J A, Gurrola-Morales T, Portillo-Gómez L, Rossau R, Mijs W (2009). Molecular analysis of Mycobacterium isolates from extrapulmonary specimens obtained from patients in Mexico. BMC Clin Pathol, 9(1): 1
https://doi.org/10.1186/1472-6890-9-1
pmid: 19272158
|
3 |
American Thoracic Society, Infectious Diseases Society of America (2000). Diagnostic standards and classification of tuberculosis in adults and children. Am J Respir Crit Care Med, 161(4 Pt 1): 1376–1395
|
4 |
Antonucci G, Girardi E, Raviglione M C, Ippolito G (1995). Risk factors for tuberculosis in HIV-infected persons. A prospective cohort study. The Gruppo Italiano di Studio Tubercolosi e AIDS (GISTA). JAMA, 274(2): 143–148
https://doi.org/10.1001/jama.1995.03530020061033
pmid: 7596002
|
5 |
Arias M, Zabaleta J, Rodríguez J I, Rojas M, París S C, García L F (1997). Failure to induce nitric oxide production by human monocyte-derived macrophages. Manipulation of biochemical pathways. Allergol Immunopathol (Madr), 25(6): 280–288
pmid: 9469204
|
6 |
Arruda S, Bomfim G, Knights R, Huima-Byron T, Riley L W (1993). Cloning of an M. tuberculosis DNA fragment associated with entry and survival inside cells. Science, 261(5127): 1454–1457
https://doi.org/10.1126/science.8367727
pmid: 8367727
|
7 |
Asghar R J, Pratt R H, Kammerer J S, Navin T R (2008). Tuberculosis in South Asians living in the United States, 1993–2004. Arch Intern Med, 168(9): 936–942
https://doi.org/10.1001/archinte.168.9.936
pmid: 18474757
|
8 |
Barnes P F, Barrows S A (1993). Tuberculosis in the 1990s. Ann Intern Med, 119(5): 400–410
https://doi.org/10.7326/0003-4819-119-5-199309010-00009
pmid: 8338294
|
9 |
Barrios-Payán J, Saqui-Salces M, Jeyanathan M, Alcántara-Vazquez A, Casta?on-Arreola M, Rook G, Hernandez-Pando R (2012). Extrapulmonary locations of Mycobacterium tuberculosis DNA during latent infection. J Infect Dis, 206(8): 1194–1205
https://doi.org/10.1093/infdis/jis381
pmid: 22732919
|
10 |
Bates M N, Khalakdina A, Pai M, Chang L, Lessa F, Smith K R (2007). Risk of tuberculosis from exposure to tobacco smoke: a systematic review and meta-analysis. Arch Intern Med, 167(4): 335–342
https://doi.org/10.1001/archinte.167.4.335
pmid: 17325294
|
11 |
Be N A, Lamichhane G, Grosset J, Tyagi S, Cheng Q J, Kim K S, Bishai W R, Jain S K (2008). Murine model to study the invasion and survival of Mycobacterium tuberculosis in the central nervous system. J Infect Dis, 198(10): 1520–1528
https://doi.org/10.1086/592447
pmid: 18956986
|
12 |
Bekker L G, Moreira A L, Bergtold A, Freeman S, Ryffel B, Kaplan G (2000). Immunopathologic effects of tumor necrosis factor alpha in murine mycobacterial infection are dose dependent. Infect Immun, 68(12): 6954–6961
https://doi.org/10.1128/IAI.68.12.6954-6961.2000
pmid: 11083819
|
13 |
Boom W H, Canaday D H, Fulton S A, Gehring A J, Rojas R E, Torres M (2003). Human immunity to M. tuberculosis: T cell subsets and antigen processing. Tuberculosis (Edinb), 83(1-3): 98–106
https://doi.org/10.1016/S1472-9792(02)00054-9
pmid: 12758197
|
14 |
Bouley D M, Ghori N, Mercer K L, Falkow S, Ramakrishnan L (2001). Dynamic nature of host-pathogen interactions in Mycobacterium marinum granulomas. Infect Immun, 69(12): 7820–7831
https://doi.org/10.1128/IAI.69.12.7820-7831.2001
pmid: 11705964
|
15 |
Brewer T F, Heymann S J (2005). Long time due: reducing tuberculosis mortality in the 21st century. Arch Med Res, 36(6): 617–621
https://doi.org/10.1016/j.arcmed.2005.06.002
pmid: 16216642
|
16 |
Cailhol J, Decludt B, Che D (2005). Sociodemographic factors that contribute to the development of extrapulmonary tuberculosis were identified. J Clin Epidemiol, 58(10): 1066–1071
https://doi.org/10.1016/j.jclinepi.2005.02.023
pmid: 16168353
|
17 |
Campbell G R, Spector S A (2012). Vitamin D inhibits human immunodeficiency virus type 1 and Mycobacterium tuberculosis infection in macrophages through the induction of autophagy. PLoS Pathog, 8(5): e1002689
https://doi.org/10.1371/journal.ppat.1002689
pmid: 22589721
|
18 |
Camus J C, Pryor M J, Médigue C, Cole S T (2002). Re-annotation of the genome sequence of Mycobacterium tuberculosis H37Rv. Microbiology, 148(Pt 10): 2967–2973
pmid: 12368430
|
19 |
Caruso A M, Serbina N, Klein E, Triebold K, Bloom B R, Flynn J L (1999). Mice deficient in CD4 T cells have only transiently diminished levels of IFN-gamma, yet succumb to tuberculosis. J Immunol, 162(9): 5407–5416
pmid: 10228018
|
20 |
Casali N, Riley L W (2007). A phylogenomic analysis of the Actinomycetales mce operons. BMC Genomics, 8(1): 60
https://doi.org/10.1186/1471-2164-8-60
pmid: 17324287
|
21 |
Castro-Garza J, King C H, Swords W E, Quinn F D (2002). Demonstration of spread by Mycobacterium tuberculosis bacilli in A549 epithelial cell monolayers. FEMS Microbiol Lett, 212(2): 145–149
https://doi.org/10.1111/j.1574-6968.2002.tb11258.x
pmid: 12113926
|
22 |
Centers for Disease Control and Prevention (CDC) (2008). Trends in tuberculosis—United States, 2007. MMWR Morb Mortal Wkly Rep, 57(11): 281–285
pmid: 18354371
|
23 |
Chan-Yeung M, Noertjojo K, Chan S L, Tam C M (2002). Sex differences in tuberculosis in Hong Kong. Int J Tuberc Lung Dis, 6(1): 11–18
pmid: 11931395
|
24 |
Chang J C, Harik N S, Liao R P, Sherman D R (2007). Identification of Mycobacterial genes that alter growth and pathology in macrophages and in mice. J Infect Dis, 196(5): 788–795
https://doi.org/10.1086/520089
pmid: 17674323
|
25 |
Chawla M, Parikh P, Saxena A, Munshi M, Mehta M, Mai D, Srivastava A K, Narasimhulu K V, Redding K E, Vashi N, Kumar D, Steyn A J, Singh A (2012). Mycobacterium tuberculosis WhiB4 regulates oxidative stress response to modulate survival and dissemination in vivo. Mol Microbiol, 85(6): 1148–1165
https://doi.org/10.1111/j.1365-2958.2012.08165.x
pmid: 22780904
|
26 |
Chiang C Y, Slama K, Enarson D A (2007). Associations between tobacco and tuberculosis. Int J Tuberc Lung Dis, 11(3): 258–262
pmid: 17352089
|
27 |
Cirillo S L, Subbian S, Chen B, Weisbrod T R, Jacobs W R Jr, Cirillo J D (2009). Protection of Mycobacterium tuberculosis from reactive oxygen species conferred by the mel2 locus impacts persistence and dissemination. Infect Immun, 77(6): 2557–2567
https://doi.org/10.1128/IAI.01481-08
pmid: 19349422
|
28 |
Clay H, Davis J M, Beery D, Huttenlocher A, Lyons S E, Ramakrishnan L (2007). Dichotomous role of the macrophage in early Mycobacterium marinum infection of the zebrafish. Cell Host Microbe, 2(1): 29–39
https://doi.org/10.1016/j.chom.2007.06.004
pmid: 18005715
|
29 |
Cole S T (2002). Comparative and functional genomics of the Mycobacterium tuberculosis complex. Microbiology, 148(Pt 10): 2919–2928
pmid: 12368425
|
30 |
Cole S T, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon S V, Eiglmeier K, Gas S, Barry C E 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail M A, Rajandream M A, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston J E, Taylor K, Whitehead S, Barrell B G (1998). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 393(6685): 537–544
https://doi.org/10.1038/31159
pmid: 9634230
|
31 |
Cooper A M, Dalton D K, Stewart T A, Griffin J P, Russell D G, Orme I M (1993). Disseminated tuberculosis in interferon gamma gene-disrupted mice. J Exp Med, 178(6): 2243–2247
https://doi.org/10.1084/jem.178.6.2243
pmid: 8245795
|
32 |
Dannenberg A M Jr (1989). Immune mechanisms in the pathogenesis of pulmonary tuberculosis. Rev Infect Dis, 11(Suppl 2): S369–S378
https://doi.org/10.1093/clinids/11.Supplement_2.S369
pmid: 2496453
|
33 |
Davis J M, Ramakrishnan L (2009). The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell, 136(1): 37–49
https://doi.org/10.1016/j.cell.2008.11.014
pmid: 19135887
|
34 |
Davis N K, Chater K F (1992). The Streptomyces coelicolor whiB gene encodes a small transcription factor-like protein dispensable for growth but essential for sporulation. Mol Gen Genet, 232(3): 351–358
https://doi.org/10.1007/BF00266237
pmid: 1316997
|
35 |
de Jong R, Altare F, Haagen I A, Elferink D G, Boer T, van Breda Vriesman P J, Kabel P J, Draaisma J M, van Dissel J T, Kroon F P, Casanova J L, Ottenhoff T H (1998). Severe mycobacterial and Salmonella infections in interleukin-12 receptor-deficient patients. Science, 280(5368): 1435–1438
https://doi.org/10.1126/science.280.5368.1435
pmid: 9603733
|
36 |
Dobos K M, Spotts E A, Quinn F D, King C H (2000). Necrosis of lung epithelial cells during infection with Mycobacterium tuberculosis is preceded by cell permeation. Infect Immun, 68(11): 6300–6310
https://doi.org/10.1128/IAI.68.11.6300-6310.2000
pmid: 11035739
|
37 |
Edwards D, Kirkpatrick C H (1986). The immunology of mycobacterial diseases. Am Rev Respir Dis, 134(5): 1062–1071
pmid: 3535595
|
38 |
Farer L S, Lowell A M, Meador M P (1979). Extrapulmonary tuberculosis in the United States. Am J Epidemiol, 109(2): 205–217
pmid: 425959
|
39 |
Fenton M J, Vermeulen M W (1996). Immunopathology of tuberculosis: roles of macrophages and monocytes. Infect Immun, 64(3): 683–690
pmid: 8641767
|
40 |
Fernando S L, Saunders B M, Sluyter R, Skarratt K K, Goldberg H, Marks G B, Wiley J S, Britton W J (2007). A polymorphism in the P2X7 gene increases susceptibility to extrapulmonary tuberculosis. Am J Respir Crit Care Med, 175(4): 360–366
https://doi.org/10.1164/rccm.200607-970OC
pmid: 17095747
|
41 |
Fiske C T, Griffin M R, Erin H, Warkentin J, Lisa K, Arbogast P G, Sterling T R (2010). Black race, sex, and extrapulmonary tuberculosis risk: an observational study. BMC Infect Dis, 10(1): 16
https://doi.org/10.1186/1471-2334-10-16
pmid: 20096113
|
42 |
Flynn J L, Chan J (2001). Immunology of tuberculosis. Annu Rev Immunol, 19(1): 93–129
https://doi.org/10.1146/annurev.immunol.19.1.93
pmid: 11244032
|
43 |
Forssbohm M, Zwahlen M, Loddenkemper R, Rieder H L (2008). Demographic characteristics of patients with extrapulmonary tuberculosis in Germany. Eur Respir J, 31(1): 99–105
https://doi.org/10.1183/09031936.00020607
pmid: 17804450
|
44 |
Fortune S M, Solache A, Jaeger A, Hill P J, Belisle J T, Bloom B R, Rubin E J, Ernst J D (2004). Mycobacterium tuberculosis inhibits macrophage responses to IFN-gamma through myeloid differentiation factor 88-dependent and-independent mechanisms. J Immunol, 172(10): 6272–6280
https://doi.org/10.4049/jimmunol.172.10.6272
pmid: 15128816
|
45 |
Gioffré A, Infante E, Aguilar D, Santangelo M P, Klepp L, Amadio A, Meikle V, Etchechoury I, Romano M I, Cataldi A, Hernández R P, Bigi F (2005). Mutation in mce operons attenuates Mycobacterium tuberculosis virulence. Microbes Infect, 7(3): 325–334
https://doi.org/10.1016/j.micinf.2004.11.007
pmid: 15804490
|
46 |
Gombart A F, Borregaard N, Koeffler H P (2005). Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25-dihydroxyvitamin D3. FASEB J, 19(9): 1067–1077
https://doi.org/10.1096/fj.04-3284com
pmid: 15985530
|
47 |
Gonzalez O Y, Adams G, Teeter L D, Bui T T, Musser J M, Graviss E A (2003). Extra-pulmonary manifestations in a large metropolitan area with a low incidence of tuberculosis. Int J Tuberc Lung Dis, 7(12): 1178–1185
pmid: 14677893
|
48 |
Gordon A H, Hart P D, Young M R (1980). Ammonia inhibits phagosome-lysosome fusion in macrophages. Nature, 286(5768): 79–80
https://doi.org/10.1038/286079a0
pmid: 6993961
|
49 |
Goren M B, D’Arcy Hart P, Young M R, Armstrong J A (1976). Prevention of phagosome-lysosome fusion in cultured macrophages by sulfatides of Mycobacterium tuberculosis. Proc Natl Acad Sci USA, 73(7): 2510–2514
https://doi.org/10.1073/pnas.73.7.2510
pmid: 821057
|
50 |
Haas D W, Des Prez R M (1994). Tuberculosis and acquired immunodeficiency syndrome: a historical perspective on recent developments. Am J Med, 96(5): 439–450
https://doi.org/10.1016/0002-9343(94)90171-6
pmid: 8192176
|
51 |
Harris S S (2006). Vitamin D and African Americans. J Nutr, 136(4): 1126–1129
pmid: 16549493
|
52 |
Hart P D, Young M R, Jordan M M, Perkins W J, Geisow M J (1983). Chemical inhibitors of phagosome-lysosome fusion in cultured macrophages also inhibit saltatory lysosomal movements. A combined microscopic and computer study. J Exp Med, 158(2): 477–492
https://doi.org/10.1084/jem.158.2.477
pmid: 6193224
|
53 |
Henao M I, Montes C, París S C, García L F (2006). Cytokine gene polymorphisms in Colombian patients with different clinical presentations of tuberculosis. Tuberculosis (Edinb), 86(1): 11–19
https://doi.org/10.1016/j.tube.2005.03.001
pmid: 15925543
|
54 |
Henkle E, Winthrop K L (2015). Nontuberculous mycobacteria infections in immunosuppressed hosts. Clin Chest Med, 36(1): 91–99
https://doi.org/10.1016/j.ccm.2014.11.002
pmid: 25676522
|
55 |
Hoal-Van Helden E G, Epstein J, Victor T C, Hon D, Lewis L A, Beyers N, Zurakowski D, Ezekowitz A B, Van Helden P D (1999). Mannose-binding protein B allele confers protection against tuberculous meningitis. Pediatr Res, 45(4 Pt 1): 459–464
https://doi.org/10.1203/00006450-199904010-00002
pmid: 10203135
|
56 |
Holmes C B, Hausler H, Nunn P (1998). A review of sex differences in the epidemiology of tuberculosis. Int J Tuberc Lung Dis, 2(2): 96–104
pmid: 9562118
|
57 |
Hopewell P (1994). Overview of Clinical Tuberculosis. In: Barry B(ed.). Tuberculosis: Pathogenesis, Protection and Control. ASM Press, Washington, DC. pp. 25–46
|
58 |
Hsu T, Hingley-Wilson S M, Chen B, Chen M, Dai A Z, Morin P M, Marks C B, Padiyar J, Goulding C, Gingery M, Eisenberg D, Russell R G, Derrick S C, Collins F M, Morris S L, King C H, Jacobs W R Jr (2003). The primary mechanism of attenuation of bacillus Calmette-Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue. Proc Natl Acad Sci USA, 100(21): 12420–12425
https://doi.org/10.1073/pnas.1635213100
pmid: 14557547
|
59 |
Hudelson P (1996). Gender differentials in tuberculosis: the role of socio-economic and cultural factors. Tuber Lung Dis, 77(5): 391–400
https://doi.org/10.1016/S0962-8479(96)90110-0
pmid: 8959141
|
60 |
Jones B E, Young S M, Antoniskis D, Davidson P T, Kramer F, Barnes P F (1993). Relationship of the manifestations of tuberculosis to CD4 cell counts in patients with human immunodeficiency virus infection. Am Rev Respir Dis, 148(5): 1292–1297
https://doi.org/10.1164/ajrccm/148.5.1292
pmid: 7902049
|
61 |
Jouanguy E, Altare F, Lamhamedi S, Revy P, Emile J F, Newport M, Levin M, Blanche S, Seboun E, Fischer A, Casanova J L (1996). Interferon-gamma-receptor deficiency in an infant with fatal bacille Calmette-Guérin infection. N Engl J Med, 335(26): 1956–1961
https://doi.org/10.1056/NEJM199612263352604
pmid: 8960475
|
62 |
Kapur V, Whittam T S, Musser J M (1994). Is Mycobacterium tuberculosis 15,000 years old? J Infect Dis, 170(5): 1348–1349
https://doi.org/10.1093/infdis/170.5.1348
pmid: 7963745
|
63 |
Kaufmann S H (2002). Protection against tuberculosis: cytokines, T cells, and macrophages. Ann Rheum Dis, 61(Suppl 2): ii54–ii58
https://doi.org/10.1136/ard.61.suppl_2.ii54
pmid: 12379623
|
64 |
Keane J, Gershon S, Wise R P, Mirabile-Levens E, Kasznica J, Schwieterman W D, Siegel J N, Braun M M (2001). Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N Engl J Med, 345(15): 1098–1104
https://doi.org/10.1056/NEJMoa011110
pmid: 11596589
|
65 |
Kim J H, Lee S Y, Lee S H, Sin C, Shim J J, In K H, Yoo S H, Kang K H (2003). NRAMP1 genetic polymorphisms as a risk factor of tuberculous pleurisy. Int J Tuberc Lung Dis, 7(4): 370–375
pmid: 12729343
|
66 |
Kinhikar A G, Verma I, Chandra D, Singh K K, Weldingh K, Andersen P, Hsu T, Jacobs W R Jr, Laal S (2010). Potential role for ESAT6 in dissemination of M. tuberculosis via human lung epithelial cells. Mol Microbiol, 75(1): 92–106
https://doi.org/10.1111/j.1365-2958.2009.06959.x
pmid: 19906174
|
67 |
Kumar A, Bose M, Brahmachari V (2003). Analysis of expression profile of mammalian cell entry (mce) operons of Mycobacterium tuberculosis. Infect Immun, 71(10): 6083–6087
https://doi.org/10.1128/IAI.71.10.6083-6087.2003
pmid: 14500535
|
68 |
Lado Lado F L, Barrio Gómez E, Carballo Arceo E, Cabarcos Ortíz de Barrón A, LadoF L, Barrio Gómez E (1999). Clinical presentation of tuberculosis and the degree of immunodeficiency in patients with HIV infection. Scand J Infect Dis, 31(4): 387–391
https://doi.org/10.1080/00365549950163842
pmid: 10528879
|
69 |
Lebrun P, Raze D, Fritzinger B, Wieruszeski J M, Biet F, Dose A, Carpentier M, Schwarzer D, Allain F, Lippens G, Locht C (2012). Differential contribution of the repeats to heparin binding of HBHA, a major adhesin of Mycobacterium tuberculosis. PLoS ONE, 7(3): e32421
https://doi.org/10.1371/journal.pone.0032421
pmid: 22403657
|
70 |
Lee M P, Chan J W, Ng K K, Li P C (2000). Clinical manifestations of tuberculosis in HIV-infected patients. Respirology, 5(4): 423–426
https://doi.org/10.1046/j.1440-1843.2000.00287.x
pmid: 11192558
|
71 |
Levin M, Newport M J, D’Souza S, Kalabalikis P, Brown I N, Lenicker H M, Agius P V, Davies E G, Thrasher A, Klein N, (1995). Familial disseminated atypical mycobacterial infection in childhood: a human mycobacterial susceptibility gene? Lancet, 345(8942): 79–83
https://doi.org/10.1016/S0140-6736(95)90059-4
pmid: 7815885
|
72 |
Lin C Y, Chen T C, Lu P L, Lai C C, Yang Y H, Lin W R, Huang P M, Chen Y H (2013). Effects of gender and age on development of concurrent extrapulmonary tuberculosis in patients with pulmonary tuberculosis: a population based study. PLoS ONE, 8(5): e63936
https://doi.org/10.1371/journal.pone.0063936
pmid: 23717513
|
73 |
Lin P L, Myers A, Smith L, Bigbee C, Bigbee M, Fuhrman C, Grieser H, Chiosea I, Voitenek N N, Capuano S V, Klein E, Flynn J L (2010). Tumor necrosis factor neutralization results in disseminated disease in acute and latent Mycobacterium tuberculosis infection with normal granuloma structure in a cynomolgus macaque model. Arthritis Rheum, 62(2): 340–350
pmid: 20112395
|
74 |
Liu P T, Stenger S, Li H, Wenzel L, Tan B H, Krutzik S R, Ochoa M T, Schauber J, Wu K, Meinken C, Kamen D L, Wagner M, Bals R, Steinmeyer A, Zügel U, Gallo R L, Eisenberg D, Hewison M, Hollis B W, Adams J S, Bloom B R, Modlin R L (2006). Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science, 311(5768): 1770–1773
https://doi.org/10.1126/science.1123933
pmid: 16497887
|
75 |
MacMicking J D, Taylor G A, McKinney J D (2003). Immune control of tuberculosis by IFN-gamma-inducible LRG-47. Science, 302(5645): 654–659
https://doi.org/10.1126/science.1088063
pmid: 14576437
|
76 |
Malik Z A, Iyer S S, Kusner D J (2001). Mycobacterium tuberculosis phagosomes exhibit altered calmodulin-dependent signal transduction: contribution to inhibition of phagosome-lysosome fusion and intracellular survival in human macrophages. J Immunol, 166(5): 3392–3401
https://doi.org/10.4049/jimmunol.166.5.3392
pmid: 11207296
|
77 |
Manca C, Tsenova L, Bergtold A, Freeman S, Tovey M, Musser J M, Barry C E 3rd, Freedman V H, Kaplan G (2001). Virulence of a Mycobacterium tuberculosis clinical isolate in mice is determined by failure to induce Th1 type immunity and is associated with induction of IFN-alpha /beta. Proc Natl Acad Sci USA, 98(10): 5752–5757
https://doi.org/10.1073/pnas.091096998
pmid: 11320211
|
78 |
Martineau A R, Wilkinson R J, Wilkinson K A, Newton S M, Kampmann B, Hall B M, Packe G E, Davidson R N, Eldridge S M, Maunsell Z J, Rainbow S J, Berry J L, Griffiths C J (2007). A single dose of vitamin D enhances immunity to mycobacteria. Am J Respir Crit Care Med, 176(2): 208–213
https://doi.org/10.1164/rccm.200701-007OC
pmid: 17463418
|
79 |
Martinez A N, Rhee J T, Small P M, Behr M A (2000). Sex differences in the epidemiology of tuberculosis in San Francisco. Int J Tuberc Lung Dis, 4(1): 26–31
pmid: 10654640
|
80 |
McDonough K A, Kress Y (1995). Cytotoxicity for lung epithelial cells is a virulence-associated phenotype of Mycobacterium tuberculosis. Infect Immun, 63(12): 4802–4811
pmid: 7591139
|
81 |
McDonough K A, Kress Y, Bloom B R (1993). Pathogenesis of tuberculosis: interaction of Mycobacterium tuberculosis with macrophages. Infect Immun, 61(7): 2763–2773
pmid: 8514378
|
82 |
McKinney J D, H?ner zu Bentrup K, Mu?oz-Elías E J, Miczak A, Chen B, Chan W T, Swenson D, Sacchettini J C, Jacobs W R Jr, Russell D G (2000). Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature, 406(6797): 735–738
https://doi.org/10.1038/35021074
pmid: 10963599
|
83 |
Menozzi F D, Bischoff R, Fort E, Brennan M J, Locht C (1998). Molecular characterization of the mycobacterial heparin-binding hemagglutinin, a mycobacterial adhesin. Proc Natl Acad Sci USA, 95(21): 12625–12630
https://doi.org/10.1073/pnas.95.21.12625
pmid: 9770536
|
84 |
Menozzi F D, Rouse J H, Alavi M, Laude-Sharp M, Muller J, Bischoff R, Brennan M J, Locht C (1996). Identification of a heparin-binding hemagglutinin present in mycobacteria. J Exp Med, 184(3): 993–1001
https://doi.org/10.1084/jem.184.3.993
pmid: 9064359
|
85 |
Musellim B, Erturan S, Sonmez Duman E, Ongen G (2005). Comparison of extra-pulmonary and pulmonary tuberculosis cases: factors influencing the site of reactivation. Int J Tuberc Lung Dis, 9(11): 1220–1223
pmid: 16333928
|
86 |
Nathan C, Shiloh M U (2000). Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci USA, 97(16): 8841–8848
https://doi.org/10.1073/pnas.97.16.8841
pmid: 10922044
|
87 |
Nursyam E W, Amin Z, Rumende C M (2006). The effect of vitamin D as supplementary treatment in patients with moderately advanced pulmonary tuberculous lesion. Acta Med Indones, 38(1): 3–5
pmid: 16479024
|
88 |
Peters W, Ernst J D (2003). Mechanisms of cell recruitment in the immune response to Mycobacterium tuberculosis. Microbes Infect, 5(2): 151–158
https://doi.org/10.1016/S1286-4579(02)00082-5
pmid: 12650773
|
89 |
Pethe K, Alonso S, Biet F, Delogu G, Brennan M J, Locht C, Menozzi F D (2001). The heparin-binding haemagglutinin of M. tuberculosis is required for extrapulmonary dissemination. Nature, 412(6843): 190–194
https://doi.org/10.1038/35084083
pmid: 11449276
|
90 |
Pitchenik A E, Fertel D, Bloch A B (1988). Mycobacterial disease: epidemiology, diagnosis, treatment, and prevention. Clin Chest Med, 9(3): 425–441
pmid: 3044679
|
91 |
Raviglione M C, Narain J P, Kochi A (1992). HIV-associated tuberculosis in developing countries: clinical features, diagnosis, and treatment. Bull World Health Organ, 70(4): 515–526
pmid: 1394786
|
92 |
Reed M B, Domenech P, Manca C, Su H, Barczak A K, Kreiswirth B N, Kaplan G, Barry C E 3rd (2004). A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response. Nature, 431(7004): 84–87
https://doi.org/10.1038/nature02837
pmid: 15343336
|
93 |
Rengarajan J, Bloom B R, Rubin E J (2005). Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. Proc Natl Acad Sci USA, 102(23): 8327–8332
https://doi.org/10.1073/pnas.0503272102
pmid: 15928073
|
94 |
Rieder H L, Snider D E Jr, Cauthen G M (1990). Extrapulmonary tuberculosis in the United States. Am Rev Respir Dis, 141(2): 347–351
https://doi.org/10.1164/ajrccm/141.2.347
pmid: 2301852
|
95 |
Rook G A, Hernandez-Pando R (1996). The pathogenesis of tuberculosis. Annu Rev Microbiol, 50(1): 259–284
https://doi.org/10.1146/annurev.micro.50.1.259
pmid: 8905081
|
96 |
Sassetti C M, Rubin E J (2003). Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci USA, 100(22): 12989–12994
https://doi.org/10.1073/pnas.2134250100
pmid: 14569030
|
97 |
Schnappinger D, Ehrt S, Voskuil M I, Liu Y, Mangan J A, Monahan I M, Dolganov G, Efron B, Butcher P D, Nathan C, Schoolnik G K (2003). Transcriptional adaptation of Mycobacterium tuberculosis within Macrophages: Insights into the phagosomal environment. J Exp Med, 198(5): 693–704
https://doi.org/10.1084/jem.20030846
pmid: 12953091
|
98 |
Shafer R W, Kim D S, Weiss J P, Quale J M (1991). Extrapulmonary tuberculosis in patients with human immunodeficiency virus infection. Medicine (Baltimore), 70(6): 384–397
https://doi.org/10.1097/00005792-199111000-00004
pmid: 1956280
|
99 |
Shiloh M U, Nathan C F (2000). Reactive nitrogen intermediates and the pathogenesis of Salmonella and Mycobacteria. Curr Opin Microbiol, 3(1): 35–42
https://doi.org/10.1016/S1369-5274(99)00048-X
pmid: 10679417
|
100 |
Sita-Lumsden A, Lapthorn G, Swaminathan R, Milburn H J (2007). Reactivation of tuberculosis and vitamin D deficiency: the contribution of diet and exposure to sunlight. Thorax, 62(11): 1003–1007
https://doi.org/10.1136/thx.2006.070060
pmid: 17526677
|
101 |
Sly L M, Hingley-Wilson S M, Reiner N E, McMaster W R (2003). Survival of Mycobacterium tuberculosis in host macrophages involves resistance to apoptosis dependent upon induction of antiapoptotic Bcl-2 family member Mcl-1. J Immunol, 170(1): 430–437
https://doi.org/10.4049/jimmunol.170.1.430
pmid: 12496428
|
102 |
Snider D E Jr, Roper W L (1992). The new tuberculosis. N Engl J Med, 326(10): 703–705
https://doi.org/10.1056/NEJM199203053261011
pmid: 1736110
|
103 |
Sohn H, Kim J S, Shin S J, Kim K, Won C J, Kim W S, Min K N, Choi H G, Lee J C, Park J K, Kim H J (2011). Targeting of Mycobacterium tuberculosis heparin-binding hemagglutinin to mitochondria in macrophages. PLoS Pathog, 7(12): e1002435
https://doi.org/10.1371/journal.ppat.1002435
pmid: 22174691
|
104 |
Sreeramareddy C T, Panduru K V, Verma S C, Joshi H S, Bates M N (2008). Comparison of pulmonary and extrapulmonary tuberculosis in Nepal- a hospital-based retrospective study. BMC Infect Dis, 8(1): 8
https://doi.org/10.1186/1471-2334-8-8
pmid: 18218115
|
105 |
Sudre P, ten Dam G, Kochi A (1992). Tuberculosis: a global overview of the situation today. Bull World Health Organ, 70(2): 149–159
pmid: 1600578
|
106 |
Tascon R E, Soares C S, Ragno S, Stavropoulos E, Hirst E M, Colston M J (2000). Mycobacterium tuberculosis-activated dendritic cells induce protective immunity in mice. Immunology, 99(3): 473–480
https://doi.org/10.1046/j.1365-2567.2000.00963.x
pmid: 10712679
|
107 |
Theuer C P, Hopewell P C, Elias D, Schecter G F, Rutherford G W, Chaisson R E (1990). Human immunodeficiency virus infection in tuberculosis patients. J Infect Dis, 162(1): 8–12
https://doi.org/10.1093/infdis/162.1.8
pmid: 1972384
|
108 |
Thuong N T, Hawn T R, Thwaites G E, Chau T T, Lan N T, Quy H T, Hieu N T, Aderem A, Hien T T, Farrar J J, Dunstan S J (2007). A polymorphism in human TLR2 is associated with increased susceptibility to tuberculous meningitis. Genes Immun, 8(5): 422–428
https://doi.org/10.1038/sj.gene.6364405
pmid: 17554342
|
109 |
Tsenova L, Ellison E, Harbacheuski R, Moreira A L, Kurepina N, Reed M B, Mathema B, Barry C E 3rd, Kaplan G (2005). Virulence of selected Mycobacterium tuberculosis clinical isolates in the rabbit model of meningitis is dependent on phenolic glycolipid produced by the bacilli. J Infect Dis, 192(1): 98–106
https://doi.org/10.1086/430614
pmid: 15942899
|
110 |
van Pinxteren L A, Cassidy J P, Smedegaard B H, Agger E M, Andersen P (2000). Control of latent Mycobacterium tuberculosis infection is dependent on CD8 T cells. Eur J Immunol, 30(12): 3689–3698
https://doi.org/10.1002/1521-4141(200012)30:12<3689::AID-IMMU3689>3.0.CO;2-4
pmid: 11169412
|
111 |
Verway M, Bouttier M, Wang T T, Carrier M, Calderon M, An B S, Devemy E, McIntosh F, Divangahi M, Behr M A, White J H (2013). Vitamin D induces interleukin-1β expression: paracrine macrophage epithelial signaling controls M. tuberculosis infection. PLoS Pathog, 9(6): e1003407
https://doi.org/10.1371/journal.ppat.1003407
pmid: 23762029
|
112 |
Wang T T, Nestel F P, Bourdeau V, Nagai Y, Wang Q, Liao J, Tavera-Mendoza L, Lin R, Hanrahan J W, Mader S, White J H (2004). Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J Immunol, 173(5): 2909–2912
https://doi.org/10.4049/jimmunol.173.5.2909
pmid: 15322146
|
113 |
Weir M R, Thornton G F (1985). Extrapulmonary tuberculosis. Experience of a community hospital and review of the literature. Am J Med, 79(4): 467–478
https://doi.org/10.1016/0002-9343(85)90034-8
pmid: 4050833
|
114 |
WHO (2014). Global tuberculosis control 2013.
|
115 |
Wilkinson R J, Llewelyn M, Toossi Z, Patel P, Pasvol G, Lalvani A, Wright D, Latif M, Davidson R N (2000). Influence of vitamin D deficiency and vitamin D receptor polymorphisms on tuberculosis among Gujarati Asians in west London: a case-control study. Lancet, 355(9204): 618–621
https://doi.org/10.1016/S0140-6736(99)02301-6
pmid: 10696983
|
116 |
Wilkinson R J, Patel P, Llewelyn M, Hirsch C S, Pasvol G, Snounou G, Davidson R N, Toossi Z (1999). Influence of polymorphism in the genes for the interleukin (IL)-1 receptor antagonist and IL-1beta on tuberculosis. J Exp Med, 189(12): 1863–1874
https://doi.org/10.1084/jem.189.12.1863
pmid: 10377182
|
117 |
Wolf A J, Linas B, Trevejo-Nu?ez G J, Kincaid E, Tamura T, Takatsu K, Ernst J D (2007). Mycobacterium tuberculosis infects dendritic cells with high frequency and impairs their function in vivo. J Immunol, 179(4): 2509–2519
https://doi.org/10.4049/jimmunol.179.4.2509
pmid: 17675513
|
118 |
Yang Z, Kong Y, Wilson F, Foxman B, Fowler A H, Marrs C F, Cave M D, Bates J H (2004). Identification of risk factors for extrapulmonary tuberculosis. Clin Infect Dis, 38(2): 199–205
https://doi.org/10.1086/380644
pmid: 14699451
|
119 |
Zhang X, Andersen A B, Lillebaek T, Kamper-J?rgensen Z, Thomsen V O, Ladefoged K, Marrs C F, Zhang L, Yang Z (2011). Effect of sex, age, and race on the clinical presentation of tuberculosis: a 15-year population-based study. Am J Trop Med Hyg, 85(2): 285–290
https://doi.org/10.4269/ajtmh.2011.10-0630
pmid: 21813849
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|