|
|
Overview of guide RNA design tools for CRISPR-Cas9 genome editing technology |
Lihua Julie Zhu( ) |
Department of Molecular, Cell and Cancer Biology, Program in Bioinformatics and Integrated Biology, Program in Molecular Medicine, University of Massachusetts Medical School,Worcester, MA 01605, USA |
|
|
Abstract CRISPR-Cas (Clustered, Regularly Interspaced, Short Palindromic Repeats – CRISPR-associated (Cas)) RNA guided endonuclease has emerged as the most effective and widely used genome editing technology, which has become the most exciting and rapidly advancing research field. Efficient genome editing by the CRISPR-Cas9 system has been demonstrated in many species, and several laboratories have established CRISPR-Cas9 as a screening tool for systematic genetic analysis, similar to shRNA screening. At least three companies have been founded to leverage this technology for therapeutic uses. To facilitate the implementation of this technology, many software tools have been developed to identify guide RNAs that effectively target a desired genomic region. Here, I provide an overview of the technology, focusing on guide RNA design principles, available software tools and their strengths and weaknesses.
|
Keywords
CRISPR-Cas9
genome editing
gRNA design
off-target analysis
gRNA efficacy
|
Corresponding Author(s):
Lihua Julie Zhu
|
Just Accepted Date: 10 July 2015
Online First Date: 05 August 2015
Issue Date: 14 August 2015
|
|
1 |
Bae S, Park J, Kim J S (2014). Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics, 30(10): 1473–1475
https://doi.org/10.1093/bioinformatics/btu048
pmid: 24463181
|
2 |
Chen S, Sanjana N E, Zheng K, Shalem O, Lee K, Shi X, Scott D A, Song J, Pan J Q, Weissleder R, Lee H, Zhang F, Sharp P A (2015). Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell, 160(6): 1246–1260
https://doi.org/10.1016/j.cell.2015.02.038
pmid: 25748654
|
3 |
Cho S W, Kim S, Kim Y, Kweon J, Kim H S, Bae S, Kim J S (2014). Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res, 24(1): 132–141
https://doi.org/10.1101/gr.162339.113
pmid: 24253446
|
4 |
Chu S W, Noyes M B, Christensen R G, Pierce B G, Zhu L J, Weng Z, Stormo G D, Wolfe S A (2012). Exploring the DNA-recognition potential of homeodomains. Genome Res, 22(10): 1889–1898
https://doi.org/10.1101/gr.139014.112
pmid: 22539651
|
5 |
Cong L, Ran F A, Cox D, Lin S, Barretto R, Habib N, Hsu P D, Wu X, Jiang W, Marraffini L A, Zhang F (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121): 819–823
https://doi.org/10.1126/science.1231143
pmid: 23287718
|
6 |
Cradick T J, Qiu P, Lee C M, Fine E J, Bao G (2014). COSMID: A Web-based Tool for Identifying and Validating CRISPR/Cas Off-target Sites. Mol Ther Nucleic Acids, 3(12): e214
https://doi.org/10.1038/mtna.2014.64
pmid: 25462530
|
7 |
Ding Q, Regan S N, Xia Y, Oostrom L A, Cowan C A, Musunuru K (2013). Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell, 12(4): 393–394
https://doi.org/10.1016/j.stem.2013.03.006
pmid: 23561441
|
8 |
Doench J G, Hartenian E, Graham D B, Tothova Z, Hegde M, Smith I, Sullender M, Ebert B L, Xavier R J, Root D E (2014). Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol, 32(12): 1262–1267
https://doi.org/10.1038/nbt.3026
pmid: 25184501
|
9 |
Doudna J A, Charpentier E (2014). Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213): 1258096
https://doi.org/10.1126/science.1258096
pmid: 25430774
|
10 |
Enuameh M S, Asriyan Y, Richards A, Christensen R G, Hall V L, Kazemian M, Zhu C, Pham H, Cheng Q, Blatti C, Brasefield J A, Basciotta M D, Ou J, McNulty J C, Zhu L J, Celniker S E, Sinha S, Stormo G D, Brodsky M H, Wolfe S A (2013). Global analysis of Drosophila Cys?-His? zinc finger proteins reveals a multitude of novel recognition motifs and binding determinants. Genome Res, 23(6): 928–940
https://doi.org/10.1101/gr.151472.112
pmid: 23471540
|
11 |
Esvelt K M, Mali P, Braff J L, Moosburner M, Yaung S J, Church G M (2013). Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods, 10(11): 1116–1121
https://doi.org/10.1038/nmeth.2681
pmid: 24076762
|
12 |
Friedland A E, Tzur Y B, Esvelt K M, Colaiácovo M P, Church G M, Calarco J A (2013). Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat Methods, 10(8): 741–743
https://doi.org/10.1038/nmeth.2532
pmid: 23817069
|
13 |
Fu Y, Sander J D, Reyon D, Cascio V M, Joung J K (2014). Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol, 32(3): 279–284
https://doi.org/10.1038/nbt.2808
pmid: 24463574
|
14 |
Gratz S J, Cummings A M, Nguyen J N, Hamm D C, Donohue L K, Harrison M M, Wildonger J, O’Connor-Giles K M (2013). Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics, 194(4): 1029–1035
https://doi.org/10.1534/genetics.113.152710
pmid: 23709638
|
15 |
Gupta A, Meng X, Zhu L J, Lawson N D, Wolfe S A (2011). Zinc finger protein-dependent and-independent contributions to the in vivo off-target activity of zinc finger nucleases. Nucleic Acids Res, 39(1): 381–392
https://doi.org/10.1093/nar/gkq787
pmid: 20843781
|
16 |
Heigwer F, Kerr G, Boutros M (2014). E-CRISP: fast CRISPR target site identification. Nat Methods, 11(2): 122–123
https://doi.org/10.1038/nmeth.2812
pmid: 24481216
|
17 |
Horvath P, Barrangou R (2010). CRISPR/Cas, the immune system of bacteria and archaea. Science, 327(5962): 167–170
https://doi.org/10.1126/science.1179555
pmid: 20056882
|
18 |
Hou Z, Zhang Y, Propson N E, Howden S E, Chu L F, Sontheimer E J, Thomson J A (2013). Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc Natl Acad Sci USA, 110(39): 15644–15649
https://doi.org/10.1073/pnas.1313587110
pmid: 23940360
|
19 |
Hsu P D, Scott D A, Weinstein J A, Ran F A, Konermann S, Agarwala V, Li Y, Fine E J, Wu X, Shalem O, Cradick T J, Marraffini L A, Bao G, Zhang F (2013). DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol, 31(9): 827–832
https://doi.org/10.1038/nbt.2647
pmid: 23873081
|
20 |
Hwang W Y, Fu Y, Reyon D, Maeder M L, Tsai S Q, Sander J D, Peterson R T, Yeh J R, Joung J K (2013). Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol, 31(3): 227–229
https://doi.org/10.1038/nbt.2501
pmid: 23360964
|
21 |
Ikmi A, McKinney S A, Delventhal K M, Gibson M C (2014). TALEN and CRISPR/Cas9-mediated genome editing in the early-branching metazoan Nematostella vectensis. Nat Commun, 5: 5486
https://doi.org/10.1038/ncomms6486
pmid: 25417547
|
22 |
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096): 816–821
https://doi.org/10.1126/science.1225829
pmid: 22745249
|
23 |
Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J (2013). RNA-programmed genome editing in human cells. eLife, 2: e00471
https://doi.org/10.7554/eLife.00471
pmid: 23386978
|
24 |
Joung J K, Sander J D (2013). TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol, 14(1): 49–55
https://doi.org/10.1038/nrm3486
pmid: 23169466
|
25 |
Koike-Yusa H, Li Y, Tan E P, Velasco-Herrera M C, Yusa K (2014). Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol, 32(3): 267–273
https://doi.org/10.1038/nbt.2800
pmid: 24535568
|
26 |
Koonin E V, Makarova K S (2009). CRISPR-Cas: an adaptive immunity system in prokaryotes. F1000 Biol Rep, 1: 95
pmid: 20556198
|
27 |
Koonin E V, Makarova K S (2013). CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes. RNA Biol, 10(5): 679–686
https://doi.org/10.4161/rna.24022
pmid: 23439366
|
28 |
Li D, Qiu Z, Shao Y, Chen Y, Guan Y, Liu M, Li Y, Gao N, Wang L, Lu X, Zhao Y, Liu M (2013). Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nat Biotechnol, 31(8): 681–683
https://doi.org/10.1038/nbt.2661
pmid: 23929336
|
29 |
Lorenz R, Bernhart S H, H?ner Zu Siederdissen C, Tafer H, Flamm C, Stadler P F, Hofacker I L (2011). ViennaRNA Package 2.0. Algorithms Mol Biol, 6(1): 26
https://doi.org/10.1186/1748-7188-6-26
pmid: 22115189
|
30 |
Ma M, Ye A Y, Zheng W, Kong L (2013). A guide RNA sequence design platform for the CRISPR/Cas9 system for model organism genomes. BioMed Res Int, 2013: 270805
https://doi.org/10.1155/2013/270805
pmid: 24199189
|
31 |
Mali P, Aach J, Stranges P B, Esvelt K M, Moosburner M, Kosuri S, Yang L, Church G M (2013a). CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol, 31(9): 833–838
https://doi.org/10.1038/nbt.2675
pmid: 23907171
|
32 |
Mali P, Yang L, Esvelt K M, Aach J, Guell M, DiCarlo J E, Norville J E, Church G M (2013b). RNA-guided human genome engineering via Cas9. Science, 339(6121): 823–826
https://doi.org/10.1126/science.1232033
pmid: 23287722
|
33 |
Meng X, Noyes M B, Zhu L J, Lawson N D, Wolfe S A (2008). Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol, 26(6): 695–701
https://doi.org/10.1038/nbt1398
pmid: 18500337
|
34 |
Prykhozhij S V, Rajan V, Gaston D, Berman J N (2015). CRISPR multitargeter: a web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences. PLoS ONE, 10(3): e0119372
https://doi.org/10.1371/journal.pone.0119372
pmid: 25742428
|
35 |
Ran F A, Hsu P D, Lin C Y, Gootenberg J S, Konermann S, Trevino A E, Scott D A, Inoue A, Matoba S, Zhang Y, Zhang F (2013a). Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 154(6): 1380–1389
https://doi.org/10.1016/j.cell.2013.08.021
pmid: 23992846
|
36 |
Ran F A, Hsu P D, Wright J, Agarwala V, Scott D A, Zhang F (2013b). Genome engineering using the CRISPR-Cas9 system. Nat Protoc, 8(11): 2281–2308
https://doi.org/10.1038/nprot.2013.143
pmid: 24157548
|
37 |
Sampson T R, Saroj S D, Llewellyn A C, Tzeng Y L, Weiss D S (2013). A CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature, 497(7448): 254–257
https://doi.org/10.1038/nature12048
pmid: 23584588
|
38 |
Shalem O, Sanjana N E, Hartenian E, Shi X, Scott D A, Mikkelsen T S, Heckl D, Ebert B L, Root D E, Doench J G, Zhang F (2014). Genome-scale CRISPR-Cas9 knockout screening in human cells. Science, 343(6166): 84–87
https://doi.org/10.1126/science.1247005
pmid: 24336571
|
39 |
Smith C, Gore A, Yan W, Abalde-Atristain L, Li Z, He C, Wang Y, Brodsky R A, Zhang K, Cheng L, Ye Z (2014). Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs. Cell Stem Cell, 15(1): 12–13
https://doi.org/10.1016/j.stem.2014.06.011
pmid: 24996165
|
40 |
Tsai S Q, Wyvekens N, Khayter C, Foden J A, Thapar V, Reyon D, Goodwin M J, Aryee M J, Joung J K (2014). Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol, 32(6): 569–576
https://doi.org/10.1038/nbt.2908
pmid: 24770325
|
41 |
Tsai S Q, Zheng Z, Nguyen N T, Liebers M, Topkar V V, Thapar V, Wyvekens N, Khayter C, Iafrate A J, Le L P, Aryee M J, Joung J K (2015). GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol, 33(2): 187–197
https://doi.org/10.1038/nbt.3117
pmid: 25513782
|
42 |
Wang T, Wei J J, Sabatini D M, Lander E S (2014). Genetic screens in human cells using the CRISPR-Cas9 system. Science, 343(6166): 80–84
https://doi.org/10.1126/science.1246981
pmid: 24336569
|
43 |
Wyman C, Kanaar R (2006). DNA double-strand break repair: all’s well that ends well. Annu Rev Genet, 40(1): 363–383
https://doi.org/10.1146/annurev.genet.40.110405.090451
pmid: 16895466
|
44 |
Xiao A, Cheng Z, Kong L, Zhu Z, Lin S, Gao G, Zhang B (2014). CasOT: a genome-wide Cas9/gRNA off-target searching tool. Bioinformatics
https://doi.org/10.1093/bioinformatics/btt764
|
45 |
Xu H, Xiao T, Chen C H, Li W, Meyer C, Wu Q, Wu D, Cong L, Zhang F, Liu J S, Brown M, Liu S X (2015). Sequence determinants of improved CRISPR sgRNA design. Genome Res: gr.191452.115
https://doi.org/10.1101/gr.191452.115
pmid: 26063738
|
46 |
Yang H, Wang H, Shivalila C S, Cheng A W, Shi L, Jaenisch R (2013). One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell, 154(6): 1370–1379
https://doi.org/10.1016/j.cell.2013.08.022
pmid: 23992847
|
47 |
Zhu L J, Holmes B R, Aronin N, Brodsky M H (2014). CRISPRseek: a bioconductor package to identify target-specific guide RNAs for CRISPR-Cas9 genome-editing systems. PLoS ONE, 9(9): e108424
https://doi.org/10.1371/journal.pone.0108424
pmid: 25247697
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|