Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2015, Vol. 10 Issue (4) : 289-296    https://doi.org/10.1007/s11515-015-1366-y
MINI-REVIEW
Overview of guide RNA design tools for CRISPR-Cas9 genome editing technology
Lihua Julie Zhu()
Department of Molecular, Cell and Cancer Biology, Program in Bioinformatics and Integrated Biology, Program in Molecular Medicine, University of Massachusetts Medical School,Worcester, MA 01605, USA
 Download: PDF(974 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

CRISPR-Cas (Clustered, Regularly Interspaced, Short Palindromic Repeats – CRISPR-associated (Cas)) RNA guided endonuclease has emerged as the most effective and widely used genome editing technology, which has become the most exciting and rapidly advancing research field. Efficient genome editing by the CRISPR-Cas9 system has been demonstrated in many species, and several laboratories have established CRISPR-Cas9 as a screening tool for systematic genetic analysis, similar to shRNA screening. At least three companies have been founded to leverage this technology for therapeutic uses. To facilitate the implementation of this technology, many software tools have been developed to identify guide RNAs that effectively target a desired genomic region. Here, I provide an overview of the technology, focusing on guide RNA design principles, available software tools and their strengths and weaknesses.

Keywords CRISPR-Cas9      genome editing      gRNA design      off-target analysis      gRNA efficacy     
Corresponding Author(s): Lihua Julie Zhu   
Just Accepted Date: 10 July 2015   Online First Date: 05 August 2015    Issue Date: 14 August 2015
 Cite this article:   
Lihua Julie Zhu. Overview of guide RNA design tools for CRISPR-Cas9 genome editing technology[J]. Front. Biol., 2015, 10(4): 289-296.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-015-1366-y
https://academic.hep.com.cn/fib/EN/Y2015/V10/I4/289
Fig.1  Two components of the CRISPR-Cas9 system from bacteria S. pyogenes along with their recognition sites.
Functions/Limits sgRNA designer1 Zhang laboratory2 eCRISP3 Kong laboratory4 CRISPR MultiTargeter5 CRISPRseek6
Off-target analysis No Yes with PDMM penalty scoring Yes without scoring Yes without scoring Yes without scoring Yes with PDMM penalty scoring
gRNA efficacy prediction Yes No No No No Yes
Batch search No Yes Yes No No Yes
Paired configuration No Nickase No No No Nickase, dCas9-Fok1 and Cas9-DBD fusion (dev)
Cas9 type SpCas9 only SpCas9 only SpCas9 only SpCas9 only SpCas9 only Flexible
Alternative scoring matrix for efficacy and off-targets No No No No No Yes
Target species Human and mouse A specified set A specified set A specified set Any
Restriction enzyme sites No No No No No Yes
Compare set of sequences No No No No Yes Yes
Predict secondary structure No No No Yes No Yes
Tab.1  Overview of several representative gRNA design tools, that are available at 1http://www.bioconductor.org/packages/release/bioc/html/CRISPRseek.html, 2http://crispr.mit.edu, 3http://www.e-crisp.org/E-CRISP/, 4http://cas9.cbi.pku.edu.cn, 5http://www.multicrispr.net, and 6http://www.broadinstitute.org/rnai/public/analysis-tools/sgrna-design
Mismatch position Penalty weight
1 0
2 0
3 0.014
4 0
5 0
6 0.395
7 0.317
8 0
9 0.389
10 0.079
11 0.445
12 0.508
13 0.613
14 0.851
15 0.732
16 0.828
17 0.615
18 0.804
19 0.685
20 0.583
Tab.2  Penalty weights to capture the position-dependent mismatch effect of gRNA on target cleavage, where 0 means no mismatch effect and 1 indicates the biggest effect on cleavage, and position 1 is the most distal from PAM sequence (Hsu et al., 2013).
Fig.2  Identify INDELs by restriction enzyme digestion (Courtesy of Dr. Huang Yang at Dr. Michael Green’s laboratory University of Massachusetts)
Fig.3  The offTargetAnalysis workflow. Major steps in gRNA design are gRNA finding and filtering, on-target and off-target searching, scoring, filtering and annotation, flanking sequence fetching and report generation. The gRNA analysis is colored in blue and off-target analysis is colored in gray. Required inputs for gRNA and off-target analysis are colored in dark green, optional input is colored in dark salmon, and output is colored in mint green. Several report files are generated including gRNAs in different format, i.e., fasta format, GenBank format, bed format to be visualized in UCSC genome browser, a tab delimited file containing gRNAs overlap with restriction sites, a tab delimited file containing gRNAs in paired configuration, a tab delimited file containing detailed off-target analysis results, a tab delimited file containing a summary of the gRNAs.
Fig.4  An example of gRNA bed output, visualized in UCSC genome browser, one row per gRNA plotted in gray scale to reflect the gRNA efficacy. The darker the color, the higher efficacy the gRNA has. The thicker portion of the rectangle is the cas9 cleavage site with arrow indicating the gRNA orientation either in positive or negative strand.
Fig.5  The compare2Sequences workflow for design gRNAs that target one but not the other sequences, or that target all sequences equally well. The gRNA analysis is colored in blue and off-target analysis is colored in gray. Required inputs for gRNA and off-target analysis are colored in dark green and output is colored in mint green. Several report files are generated including gRNAs in different format for each input sequence, i.e., fasta format, GenBank format, bed format to be visualized in UCSC genome browser, a tab delimited file containing gRNAs overlap with restriction sites, a tab delimited file containing gRNAs in paired configuration. In addition, it outputs a tab-delimited file containing gRNAs with their predicted efficacy, cleavage score for both sequences and score difference. For applications to target both sequences equally well, you would need to select the gRNAs with minimum absolute score difference. For applications to target one of the sequences but not the other, you would want to select gRNAs with the largest score difference.
1 Bae S, Park J, Kim J S (2014). Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics, 30(10): 1473–1475
https://doi.org/10.1093/bioinformatics/btu048 pmid: 24463181
2 Chen S, Sanjana N E, Zheng K, Shalem O, Lee K, Shi X, Scott D A, Song J, Pan J Q, Weissleder R, Lee H, Zhang F, Sharp P A (2015). Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell, 160(6): 1246–1260
https://doi.org/10.1016/j.cell.2015.02.038 pmid: 25748654
3 Cho S W, Kim S, Kim Y, Kweon J, Kim H S, Bae S, Kim J S (2014). Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res, 24(1): 132–141
https://doi.org/10.1101/gr.162339.113 pmid: 24253446
4 Chu S W, Noyes M B, Christensen R G, Pierce B G, Zhu L J, Weng Z, Stormo G D, Wolfe S A (2012). Exploring the DNA-recognition potential of homeodomains. Genome Res, 22(10): 1889–1898
https://doi.org/10.1101/gr.139014.112 pmid: 22539651
5 Cong L, Ran F A, Cox D, Lin S, Barretto R, Habib N, Hsu P D, Wu X, Jiang W, Marraffini L A, Zhang F (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121): 819–823
https://doi.org/10.1126/science.1231143 pmid: 23287718
6 Cradick T J, Qiu P, Lee C M, Fine E J, Bao G (2014). COSMID: A Web-based Tool for Identifying and Validating CRISPR/Cas Off-target Sites. Mol Ther Nucleic Acids, 3(12): e214
https://doi.org/10.1038/mtna.2014.64 pmid: 25462530
7 Ding Q, Regan S N, Xia Y, Oostrom L A, Cowan C A, Musunuru K (2013). Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell, 12(4): 393–394
https://doi.org/10.1016/j.stem.2013.03.006 pmid: 23561441
8 Doench J G, Hartenian E, Graham D B, Tothova Z, Hegde M, Smith I, Sullender M, Ebert B L, Xavier R J, Root D E (2014). Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol, 32(12): 1262–1267
https://doi.org/10.1038/nbt.3026 pmid: 25184501
9 Doudna J A, Charpentier E (2014). Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213): 1258096
https://doi.org/10.1126/science.1258096 pmid: 25430774
10 Enuameh M S, Asriyan Y, Richards A, Christensen R G, Hall V L, Kazemian M, Zhu C, Pham H, Cheng Q, Blatti C, Brasefield J A, Basciotta M D, Ou J, McNulty J C, Zhu L J, Celniker S E, Sinha S, Stormo G D, Brodsky M H, Wolfe S A (2013). Global analysis of Drosophila Cys?-His? zinc finger proteins reveals a multitude of novel recognition motifs and binding determinants. Genome Res, 23(6): 928–940
https://doi.org/10.1101/gr.151472.112 pmid: 23471540
11 Esvelt K M, Mali P, Braff J L, Moosburner M, Yaung S J, Church G M (2013). Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods, 10(11): 1116–1121
https://doi.org/10.1038/nmeth.2681 pmid: 24076762
12 Friedland A E, Tzur Y B, Esvelt K M, Colaiácovo M P, Church G M, Calarco J A (2013). Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat Methods, 10(8): 741–743
https://doi.org/10.1038/nmeth.2532 pmid: 23817069
13 Fu Y, Sander J D, Reyon D, Cascio V M, Joung J K (2014). Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol, 32(3): 279–284
https://doi.org/10.1038/nbt.2808 pmid: 24463574
14 Gratz S J, Cummings A M, Nguyen J N, Hamm D C, Donohue L K, Harrison M M, Wildonger J, O’Connor-Giles K M (2013). Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics, 194(4): 1029–1035
https://doi.org/10.1534/genetics.113.152710 pmid: 23709638
15 Gupta A, Meng X, Zhu L J, Lawson N D, Wolfe S A (2011). Zinc finger protein-dependent and-independent contributions to the in vivo off-target activity of zinc finger nucleases. Nucleic Acids Res, 39(1): 381–392
https://doi.org/10.1093/nar/gkq787 pmid: 20843781
16 Heigwer F, Kerr G, Boutros M (2014). E-CRISP: fast CRISPR target site identification. Nat Methods, 11(2): 122–123
https://doi.org/10.1038/nmeth.2812 pmid: 24481216
17 Horvath P, Barrangou R (2010). CRISPR/Cas, the immune system of bacteria and archaea. Science, 327(5962): 167–170
https://doi.org/10.1126/science.1179555 pmid: 20056882
18 Hou Z, Zhang Y, Propson N E, Howden S E, Chu L F, Sontheimer E J, Thomson J A (2013). Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc Natl Acad Sci USA, 110(39): 15644–15649
https://doi.org/10.1073/pnas.1313587110 pmid: 23940360
19 Hsu P D, Scott D A, Weinstein J A, Ran F A, Konermann S, Agarwala V, Li Y, Fine E J, Wu X, Shalem O, Cradick T J, Marraffini L A, Bao G, Zhang F (2013). DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol, 31(9): 827–832
https://doi.org/10.1038/nbt.2647 pmid: 23873081
20 Hwang W Y, Fu Y, Reyon D, Maeder M L, Tsai S Q, Sander J D, Peterson R T, Yeh J R, Joung J K (2013). Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol, 31(3): 227–229
https://doi.org/10.1038/nbt.2501 pmid: 23360964
21 Ikmi A, McKinney S A, Delventhal K M, Gibson M C (2014). TALEN and CRISPR/Cas9-mediated genome editing in the early-branching metazoan Nematostella vectensis. Nat Commun, 5: 5486
https://doi.org/10.1038/ncomms6486 pmid: 25417547
22 Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096): 816–821
https://doi.org/10.1126/science.1225829 pmid: 22745249
23 Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J (2013). RNA-programmed genome editing in human cells. eLife, 2: e00471
https://doi.org/10.7554/eLife.00471 pmid: 23386978
24 Joung J K, Sander J D (2013). TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol, 14(1): 49–55
https://doi.org/10.1038/nrm3486 pmid: 23169466
25 Koike-Yusa H, Li Y, Tan E P, Velasco-Herrera M C, Yusa K (2014). Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol, 32(3): 267–273
https://doi.org/10.1038/nbt.2800 pmid: 24535568
26 Koonin E V, Makarova K S (2009). CRISPR-Cas: an adaptive immunity system in prokaryotes. F1000 Biol Rep, 1: 95
pmid: 20556198
27 Koonin E V, Makarova K S (2013). CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes. RNA Biol, 10(5): 679–686
https://doi.org/10.4161/rna.24022 pmid: 23439366
28 Li D, Qiu Z, Shao Y, Chen Y, Guan Y, Liu M, Li Y, Gao N, Wang L, Lu X, Zhao Y, Liu M (2013). Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nat Biotechnol, 31(8): 681–683
https://doi.org/10.1038/nbt.2661 pmid: 23929336
29 Lorenz R, Bernhart S H, H?ner Zu Siederdissen C, Tafer H, Flamm C, Stadler P F, Hofacker I L (2011). ViennaRNA Package 2.0. Algorithms Mol Biol, 6(1): 26
https://doi.org/10.1186/1748-7188-6-26 pmid: 22115189
30 Ma M, Ye A Y, Zheng W, Kong L (2013). A guide RNA sequence design platform for the CRISPR/Cas9 system for model organism genomes. BioMed Res Int, 2013: 270805
https://doi.org/10.1155/2013/270805 pmid: 24199189
31 Mali P, Aach J, Stranges P B, Esvelt K M, Moosburner M, Kosuri S, Yang L, Church G M (2013a). CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol, 31(9): 833–838
https://doi.org/10.1038/nbt.2675 pmid: 23907171
32 Mali P, Yang L, Esvelt K M, Aach J, Guell M, DiCarlo J E, Norville J E, Church G M (2013b). RNA-guided human genome engineering via Cas9. Science, 339(6121): 823–826
https://doi.org/10.1126/science.1232033 pmid: 23287722
33 Meng X, Noyes M B, Zhu L J, Lawson N D, Wolfe S A (2008). Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol, 26(6): 695–701
https://doi.org/10.1038/nbt1398 pmid: 18500337
34 Prykhozhij S V, Rajan V, Gaston D, Berman J N (2015). CRISPR multitargeter: a web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences. PLoS ONE, 10(3): e0119372
https://doi.org/10.1371/journal.pone.0119372 pmid: 25742428
35 Ran F A, Hsu P D, Lin C Y, Gootenberg J S, Konermann S, Trevino A E, Scott D A, Inoue A, Matoba S, Zhang Y, Zhang F (2013a). Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 154(6): 1380–1389
https://doi.org/10.1016/j.cell.2013.08.021 pmid: 23992846
36 Ran F A, Hsu P D, Wright J, Agarwala V, Scott D A, Zhang F (2013b). Genome engineering using the CRISPR-Cas9 system. Nat Protoc, 8(11): 2281–2308
https://doi.org/10.1038/nprot.2013.143 pmid: 24157548
37 Sampson T R, Saroj S D, Llewellyn A C, Tzeng Y L, Weiss D S (2013). A CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature, 497(7448): 254–257
https://doi.org/10.1038/nature12048 pmid: 23584588
38 Shalem O, Sanjana N E, Hartenian E, Shi X, Scott D A, Mikkelsen T S, Heckl D, Ebert B L, Root D E, Doench J G, Zhang F (2014). Genome-scale CRISPR-Cas9 knockout screening in human cells. Science, 343(6166): 84–87
https://doi.org/10.1126/science.1247005 pmid: 24336571
39 Smith C, Gore A, Yan W, Abalde-Atristain L, Li Z, He C, Wang Y, Brodsky R A, Zhang K, Cheng L, Ye Z (2014). Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs. Cell Stem Cell, 15(1): 12–13
https://doi.org/10.1016/j.stem.2014.06.011 pmid: 24996165
40 Tsai S Q, Wyvekens N, Khayter C, Foden J A, Thapar V, Reyon D, Goodwin M J, Aryee M J, Joung J K (2014). Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol, 32(6): 569–576
https://doi.org/10.1038/nbt.2908 pmid: 24770325
41 Tsai S Q, Zheng Z, Nguyen N T, Liebers M, Topkar V V, Thapar V, Wyvekens N, Khayter C, Iafrate A J, Le L P, Aryee M J, Joung J K (2015). GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol, 33(2): 187–197
https://doi.org/10.1038/nbt.3117 pmid: 25513782
42 Wang T, Wei J J, Sabatini D M, Lander E S (2014). Genetic screens in human cells using the CRISPR-Cas9 system. Science, 343(6166): 80–84
https://doi.org/10.1126/science.1246981 pmid: 24336569
43 Wyman C, Kanaar R (2006). DNA double-strand break repair: all’s well that ends well. Annu Rev Genet, 40(1): 363–383
https://doi.org/10.1146/annurev.genet.40.110405.090451 pmid: 16895466
44 Xiao A, Cheng Z, Kong L, Zhu Z, Lin S, Gao G, Zhang B (2014). CasOT: a genome-wide Cas9/gRNA off-target searching tool. Bioinformatics
https://doi.org/10.1093/bioinformatics/btt764
45 Xu H, Xiao T, Chen C H, Li W, Meyer C, Wu Q, Wu D, Cong L, Zhang F, Liu J S, Brown M, Liu S X (2015). Sequence determinants of improved CRISPR sgRNA design. Genome Res: gr.191452.115
https://doi.org/10.1101/gr.191452.115 pmid: 26063738
46 Yang H, Wang H, Shivalila C S, Cheng A W, Shi L, Jaenisch R (2013). One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell, 154(6): 1370–1379
https://doi.org/10.1016/j.cell.2013.08.022 pmid: 23992847
47 Zhu L J, Holmes B R, Aronin N, Brodsky M H (2014). CRISPRseek: a bioconductor package to identify target-specific guide RNAs for CRISPR-Cas9 genome-editing systems. PLoS ONE, 9(9): e108424
https://doi.org/10.1371/journal.pone.0108424 pmid: 25247697
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed