|
|
Less is more: Nutrient limitation induces cross-talk of nutrient sensing pathways with NAD+ homeostasis and contributes to longevity |
Felicia Tsang,Su-Ju Lin( ) |
Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA |
|
|
Abstract Nutrient sensing pathways and their regulation grant cells control over their metabolism and growth in response to changing nutrients. Factors that regulate nutrient sensing can also modulate longevity. Reduced activity of nutrient sensing pathways such as glucose-sensing PKA, nitrogen-sensing TOR and S6 kinase homolog Sch9 have been linked to increased life span in the yeast, Saccharomyces cerevisiae, and higher eukaryotes. Recently, reduced activity of amino acid sensing SPS pathway was also shown to increase yeast life span. Life span extension by reduced SPS activity requires enhanced NAD+ (nicotinamide adenine dinucleotide, oxidized form) and nicotinamide riboside (NR, a NAD+ precursor) homeostasis. Maintaining adequate NAD+ pools has been shown to play key roles in life span extension, but factors regulating NAD+ metabolism and homeostasis are not completely understood. Recently, NAD+ metabolism was also linked to the phosphate (Pi)-sensing PHO pathway in yeast. Canonical PHO activation requires Pi-starvation. Interestingly, NAD+ depletion without Pi-starvation was sufficient to induce PHO activation, increasing NR production and mobilization. Moreover, SPS signaling appears to function in parallel with PHO signaling components to regulate NR/NAD+ homeostasis. These studies suggest that NAD+ metabolism is likely controlled by and/or coordinated with multiple nutrient sensing pathways. Indeed, cross-regulation of PHO, PKA, TOR and Sch9 pathways was reported to potentially affect NAD+ metabolism; though detailed mechanisms remain unclear. This review discusses yeast longevity-related nutrient sensing pathways and possible mechanisms of life span extension, regulation of NAD+ homeostasis, and cross-talk among nutrient sensing pathways and NAD+ homeostasis.
|
Keywords
nutrient sensing
NAD+ homeostasis
yeast longevity
|
Corresponding Author(s):
Su-Ju Lin
|
Just Accepted Date: 10 July 2015
Online First Date: 04 August 2015
Issue Date: 14 August 2015
|
|
1 |
Abdel-Sater F, Jean C, Merhi A, Vissers S, André B (2011). Amino acid signaling in yeast: activation of Ssy5 protease is associated with its phosphorylation-induced ubiquitylation. J Biol Chem, 286(14): 12006–12015
https://doi.org/10.1074/jbc.M110.200592
pmid: 21310956
|
2 |
AbdelRaheim S R, Cartwright J L, Gasmi L, McLennan A G (2001). The NADH diphosphatase encoded by the Saccharomyces cerevisiae NPY1 nudix hydrolase gene is located in peroxisomes. Arch Biochem Biophys, 388(1): 18–24
https://doi.org/10.1006/abbi.2000.2268
pmid: 11361135
|
3 |
Andersen M P, Nelson Z W, Hetrick E D, Gottschling D E (2008). A genetic screen for increased loss of heterozygosity in Saccharomyces cerevisiae. Genetics, 179(3): 1179–1195
https://doi.org/10.1534/genetics.108.089250
pmid: 18562670
|
4 |
Anderson R M, Bitterman K J, Wood J G, Medvedik O, Cohen H, Lin S S, Manchester J K, Gordon J I, Sinclair D A (2002). Manipulation of a nuclear NAD+ salvage pathway delays aging without altering steady-state NAD+ levels. J Biol Chem, 277(21): 18881–18890
https://doi.org/10.1074/jbc.M111773200
pmid: 11884393
|
5 |
Anderson R M, Bitterman K J, Wood J G, Medvedik O, Sinclair D A (2003). Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature, 423(6936): 181–185
https://doi.org/10.1038/nature01578
pmid: 12736687
|
6 |
Andréasson C, Heessen S, Ljungdahl P O (2006). Regulation of transcription factor latency by receptor-activated proteolysis. Genes Dev, 20(12): 1563–1568
https://doi.org/10.1101/gad.374206
pmid: 16778074
|
7 |
Ashrafi K, Lin S S, Manchester J K, Gordon J I (2000). Sip2p and its partner snf1p kinase affect aging in S. cerevisiae. Genes Dev, 14(15): 1872–1885
pmid: 10921902
|
8 |
Auesukaree C, Homma T, Tochio H, Shirakawa M, Kaneko Y, Harashima S (2004). Intracellular phosphate serves as a signal for the regulation of the PHO pathway in Saccharomyces cerevisiae. J Biol Chem, 279(17): 17289–17294
https://doi.org/10.1074/jbc.M312202200
pmid: 14966138
|
9 |
Auesukaree C, Tochio H, Shirakawa M, Kaneko Y, Harashima S (2005). Plc1p, Arg82p, and Kcs1p, enzymes involved in inositol pyrophosphate synthesis, are essential for phosphate regulation and polyphosphate accumulation in Saccharomyces cerevisiae. J Biol Chem, 280(26): 25127–25133
https://doi.org/10.1074/jbc.M414579200
pmid: 15866881
|
10 |
Bakker B M, Overkamp K M, K?tter P, Luttik M A, Pronk J T, van Dijken J P, Pronk J T, and the van Maris AJ, and the van Dijken J P (2001). Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol Rev, 25(1): 15–37
https://doi.org/10.1111/j.1574-6976.2001.tb00570.x
pmid: 11152939
|
11 |
Baldwin S A, Yao S Y, Hyde R J, Ng A M, Foppolo S, Barnes K, Ritzel M W, Cass C E, Young J D (2005). Functional characterization of novel human and mouse equilibrative nucleoside transporters (hENT3 and mENT3) located in intracellular membranes. J Biol Chem, 280(16): 15880–15887
https://doi.org/10.1074/jbc.M414337200
pmid: 15701636
|
12 |
Barros M H, Bandy B, Tahara E B, Kowaltowski A J (2004). Higher respiratory activity decreases mitochondrial reactive oxygen release and increases life span in Saccharomyces cerevisiae. J Biol Chem, 279(48): 49883–49888
https://doi.org/10.1074/jbc.M408918200
pmid: 15383542
|
13 |
Beck T, Hall M N (1999). The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature, 402(6762): 689–692
https://doi.org/10.1038/45287
pmid: 10604478
|
14 |
Bedalov A, Hirao M, Posakony J, Nelson M, Simon J A (2003). NAD+-dependent deacetylase Hst1p controls biosynthesis and cellular NAD+ levels in Saccharomyces cerevisiae. Mol Cell Biol, 23(19): 7044–7054
https://doi.org/10.1128/MCB.23.19.7044-7054.2003
pmid: 12972620
|
15 |
Belenky P, Racette F G, Bogan K L, McClure J M, Smith J S, Brenner C (2007). Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk and Urh1/Pnp1/Meu1 pathways to NAD+. Cell, 129(3): 473–484
https://doi.org/10.1016/j.cell.2007.03.024
pmid: 17482543
|
16 |
Belenky P A, Moga T G, Brenner C (2008). Saccharomyces cerevisiae YOR071C encodes the high affinity nicotinamide riboside transporter Nrt1. J Biol Chem, 283(13): 8075–8079
https://doi.org/10.1074/jbc.C800021200
pmid: 18258590
|
17 |
Bender D A (1983). Biochemistry of tryptophan in health and disease. Mol Aspects Med, 6(2): 101–197
https://doi.org/10.1016/0098-2997(83)90005-5
pmid: 6371429
|
18 |
Bieganowski P, Brenner C (2004). Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans. Cell, 117(4): 495–502
https://doi.org/10.1016/S0092-8674(04)00416-7
pmid: 15137942
|
19 |
Bieganowski P, Pace H C, Brenner C (2003). Eukaryotic NAD+ synthetase Qns1 contains an essential, obligate intramolecular thiol glutamine amidotransferase domain related to nitrilase. J Biol Chem, 278(35): 33049–33055
https://doi.org/10.1074/jbc.M302257200
pmid: 12771147
|
20 |
Biliński T, Bartosz G (2006). Hypothesis: cell volume limits cell divisions. Acta Biochim Pol, 53(4): 833–835
pmid: 17106512
|
21 |
Biliński T, Zadr?g-T?cza R, Bartosz G (2012). Hypertrophy hypothesis as an alternative explanation of the phenomenon of replicative aging of yeast. FEMS Yeast Res, 12(1): 97–101
https://doi.org/10.1111/j.1567-1364.2011.00759.x
pmid: 22093953
|
22 |
Binda M, Péli-Gulli M P, Bonfils G, Panchaud N, Urban J, Sturgill T W, Loewith R, De Virgilio C (2009). The Vam6 GEF controls TORC1 by activating the EGO complex. Mol Cell, 35(5): 563–573
https://doi.org/10.1016/j.molcel.2009.06.033
pmid: 19748353
|
23 |
Bitterman K J, Anderson R M, Cohen H Y, Latorre-Esteves M, Sinclair D A (2002). Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J Biol Chem, 277(47): 45099–45107
https://doi.org/10.1074/jbc.M205670200
pmid: 12297502
|
24 |
Blinder D, Coschigano P W, Magasanik B (1996). Interaction of the GATA factor Gln3p with the nitrogen regulator Ure2p in Saccharomyces cerevisiae. J Bacteriol, 178(15): 4734–4736
pmid: 8755910
|
25 |
Bogan K L, Brenner C (2008). Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition. Annu Rev Nutr, 28(1): 115–130
https://doi.org/10.1146/annurev.nutr.28.061807.155443
pmid: 18429699
|
26 |
Bogan K L, Evans C, Belenky P, Song P, Burant C F, Kennedy R, Brenner C (2009). Identification of Isn1 and Sdt1 as glucose- and vitamin-regulated nicotinamide mononucleotide and nicotinic acid mononucleotide [corrected] 5′-nucleotidases responsible for production of nicotinamide riboside and nicotinic acid riboside. J Biol Chem, 284(50): 34861–34869
https://doi.org/10.1074/jbc.M109.056689
pmid: 19846558
|
27 |
Bonawitz N D, Chatenay-Lapointe M, Pan Y, Shadel G S (2007). Reduced TOR signaling extends chronological life span via increased respiration and upregulation of mitochondrial gene expression. Cell Metab, 5(4): 265–277
https://doi.org/10.1016/j.cmet.2007.02.009
pmid: 17403371
|
28 |
Boswell-Casteel R C, Johnson J M, Duggan K D, Roe-?ur? Z, Schmitz H, Burleson C, Hays F A (2014). FUN26 (function unknown now 26) protein from Saccharomyces cerevisiae is a broad selectivity, high affinity, nucleoside and nucleobase transporter. J Biol Chem, 289(35): 24440–24451
https://doi.org/10.1074/jbc.M114.553503
pmid: 25035431
|
29 |
Brachmann C B, Sherman J M, Devine S E, Cameron E E, Pillus L, Boeke J D (1995). The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genes Dev, 9(23): 2888–2902
https://doi.org/10.1101/gad.9.23.2888
pmid: 7498786
|
30 |
Broach J R (2012). Nutritional control of growth and development in yeast. Genetics, 192(1): 73–105
https://doi.org/10.1534/genetics.111.135731
pmid: 22964838
|
31 |
Bun-Ya M, Nishimura M, Harashima S, Oshima Y (1991). The PHO84 gene of Saccharomyces cerevisiae encodes an inorganic phosphate transporter. Mol Cell Biol, 11(6): 3229–3238
pmid: 2038328
|
32 |
Burtner C R, Murakami C J, Kennedy B K, Kaeberlein M (2009). A molecular mechanism of chronological aging in yeast. Cell Cycle, 8(8): 1256–1270
https://doi.org/10.4161/cc.8.8.8287
pmid: 19305133
|
33 |
Carroll A S, Bishop A C, DeRisi J L, Shokat K M, O’Shea E K (2001). Chemical inhibition of the Pho85 cyclin-dependent kinase reveals a role in the environmental stress response. Proc Natl Acad Sci USA, 98(22): 12578–12583
https://doi.org/10.1073/pnas.211195798
pmid: 11675494
|
34 |
Casamayor A, Torrance P D, Kobayashi T, Thorner J, Alessi D R (1999). Functional counterparts of mammalian protein kinases PDK1 and SGK in budding yeast. Curr Biol, 9(4): 186–197
https://doi.org/10.1016/S0960-9822(99)80088-8
pmid: 10074427
|
35 |
Celenza J L, Carlson M (1986). A yeast gene that is essential for release from glucose repression encodes a protein kinase. Science, 233(4769): 1175–1180
https://doi.org/10.1126/science.3526554
pmid: 3526554
|
36 |
Celic I, Masumoto H, Griffith W P, Meluh P, Cotter R J, Boeke J D, Verreault A (2006). The sirtuins hst3 and Hst4p preserve genome integrity by controlling histone h3 lysine 56 deacetylation. Curr Biol, 16(13): 1280–1289
https://doi.org/10.1016/j.cub.2006.06.023
pmid: 16815704
|
37 |
Chandrashekarappa D G, McCartney R R, Schmidt M C (2013). Ligand binding to the AMP-activated protein kinase active site mediates protection of the activation loop from dephosphorylation. J Biol Chem, 288(1): 89–98
https://doi.org/10.1074/jbc.M112.422659
pmid: 23184934
|
38 |
Cheng W, Roth J (1995). Isolation of NAD cycle mutants defective in nicotinamide mononucleotide deamidase in Salmonella typhimurium. J Bacteriol, 177(23): 6711–6717
pmid: 7592458
|
39 |
Cherkasova V A, Hinnebusch A G (2003). Translational control by TOR and TAP42 through dephosphorylation of eIF2alpha kinase GCN2. Genes Dev, 17(7): 859–872
https://doi.org/10.1101/gad.1069003
pmid: 12654728
|
40 |
Chodosh L A, Olesen J, Hahn S, Baldwin A S, Guarente L, Sharp P A (1988). A yeast and a human CCAAT-binding protein have heterologous subunits that are functionally interchangeable. Cell, 53(1): 25–35
https://doi.org/10.1016/0092-8674(88)90484-9
pmid: 3280141
|
41 |
Choi K M, Kwon Y Y, Lee C K (2015). Disruption of Snf3/Rgt2 glucose sensors decreases lifespan and caloric restriction effectiveness through Mth1/Std1 by adjusting mitochondrial efficiency in yeast. FEBS Lett, 589(3): 349–357
https://doi.org/10.1016/j.febslet.2014.12.020
pmid: 25541485
|
42 |
Clapper D L, Walseth T F, Dargie P J, Lee H C (1987). Pyridine nucleotide metabolites stimulate calcium release from sea urchin egg microsomes desensitized to inositol trisphosphate. J Biol Chem, 262(20): 9561–9568
pmid: 3496336
|
43 |
Conrad M, Schothorst J, Kankipati H N, Van Zeebroeck G, Rubio-Texeira M, Thevelein J M (2014). Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev, 38(2): 254–299
https://doi.org/10.1111/1574-6976.12065
pmid: 24483210
|
44 |
De Wever V, Reiter W, Ballarini A, Ammerer G, Brocard C (2005). A dual role for PP1 in shaping the Msn2-dependent transcriptional response to glucose starvation. EMBO J, 24(23): 4115–4123
https://doi.org/10.1038/sj.emboj.7600871
pmid: 16281053
|
45 |
Delaney J R, Ahmed U, Chou A, Sim S, Carr D, Murakami C J, Schleit J, Sutphin G L, An E H, Castanza A, Fletcher M, Higgins S, Jelic M, Klum S, Muller B, Peng Z J, Rai D, Ros V, Singh M, Wende H V, Kennedy B K, Kaeberlein M (2013). Stress profiling of longevity mutants identifies Afg3 as a mitochondrial determinant of cytoplasmic mRNA translation and aging. Aging Cell, 12(1): 156–166
https://doi.org/10.1111/acel.12032
pmid: 23167605
|
46 |
DeRisi J L, Iyer V R, Brown P O (1997). Exploring the metabolic and genetic control of gene expression on a genomic scale. Science, 278(5338): 680–686
https://doi.org/10.1126/science.278.5338.680
pmid: 9381177
|
47 |
Dever T E, Hinnebusch A G (2005). GCN2 whets the appetite for amino acids. Mol Cell, 18(2): 141–142
https://doi.org/10.1016/j.molcel.2005.03.023
pmid: 15837415
|
48 |
Dilova I, Aronova S, Chen J C, Powers T (2004). Tor signaling and nutrient-based signals converge on Mks1p phosphorylation to regulate expression of Rtg1.Rtg3p-dependent target genes. J Biol Chem, 279(45): 46527–46535
https://doi.org/10.1074/jbc.M409012200
pmid: 15326168
|
49 |
Dilova I, Easlon E, Lin S J (2007). Calorie restriction and the nutrient sensing signaling pathways. Cell Mol Life Sci, 64(6): 752–767
https://doi.org/10.1007/s00018-007-6381-y
pmid: 17260088
|
50 |
Dohlman H G, Thorner J W (2001). Regulation of G protein-initiated signal transduction in yeast: paradigms and principles. Annu Rev Biochem, 70(1): 703–754
https://doi.org/10.1146/annurev.biochem.70.1.703
pmid: 11395421
|
51 |
Dong J, Qiu H, Garcia-Barrio M, Anderson J, Hinnebusch A G (2000). Uncharged tRNA activates GCN2 by displacing the protein kinase moiety from a bipartite tRNA-binding domain. Mol Cell, 6(2): 269–279
https://doi.org/10.1016/S1097-2765(00)00028-9
pmid: 10983975
|
52 |
Dubouloz F, Deloche O, Wanke V, Cameroni E, De Virgilio C (2005). The TOR and EGO protein complexes orchestrate microautophagy in yeast. Mol Cell, 19(1): 15–26
https://doi.org/10.1016/j.molcel.2005.05.020
pmid: 15989961
|
53 |
Easlon E, Tsang F, Dilova I, Wang C, Lu S P, Skinner C, Lin S J (2007). The dihydrolipoamide acetyltransferase is a novel metabolic longevity factor and is required for calorie restriction-mediated life span extension. J Biol Chem, 282(9): 6161–6171
https://doi.org/10.1074/jbc.M607661200
pmid: 17200108
|
54 |
Easlon E, Tsang F, Skinner C, Wang C, Lin S J (2008). The malate-aspartate NADH shuttle components are novel metabolic longevity regulators required for calorie restriction-mediated life span extension in yeast. Genes Dev, 22(7): 931–944
https://doi.org/10.1101/gad.1648308
pmid: 18381895
|
55 |
Efeyan A, Zoncu R, Sabatini D M (2012). Amino acids and mTORC1: from lysosomes to disease. Trends Mol Med, 18(9): 524–533
https://doi.org/10.1016/j.molmed.2012.05.007
pmid: 22749019
|
56 |
Emanuelli M, Amici A, Carnevali F, Pierella F, Raffaelli N, Magni G (2003). Identification and characterization of a second NMN adenylyltransferase gene in Saccharomyces cerevisiae. Protein Expr Purif, 27(2): 357–364
https://doi.org/10.1016/S1046-5928(02)00645-9
pmid: 12597897
|
57 |
Emanuelli M, Carnevali F, Lorenzi M, Raffaelli N, Amici A, Ruggieri S, Magni G (1999). Identification and characterization of YLR328W, the Saccharomyces cerevisiae structural gene encoding NMN adenylyltransferase. Expression and characterization of the recombinant enzyme. FEBS Lett, 455(1–2): 13–17
https://doi.org/10.1016/S0014-5793(99)00852-2
pmid: 10428462
|
58 |
Endo Y, Obata T, Murata D, Ito M, Sakamoto K, Fukushima M, Yamasaki Y, Yamada Y, Natsume N, Sasaki T (2007). Cellular localization and functional characterization of the equilibrative nucleoside transporters of antitumor nucleosides. Cancer Sci, 98(10): 1633–1637
https://doi.org/10.1111/j.1349-7006.2007.00581.x
pmid: 17711502
|
59 |
Erjavec N, Bayot A, Gareil M, Camougrand N, Nystrom T, Friguet B, Bulteau A L (2013). Deletion of the mitochondrial Pim1/Lon protease in yeast results in accelerated aging and impairment of the proteasome. Free Radic Biol Med, 56: 9–16
https://doi.org/10.1016/j.freeradbiomed.2012.11.019
pmid: 23220263
|
60 |
Erjavec N, Cvijovic M, Klipp E, Nystr?m T (2008). Selective benefits of damage partitioning in unicellular systems and its effects on aging. Proc Natl Acad Sci USA, 105(48): 18764–18769
https://doi.org/10.1073/pnas.0804550105
pmid: 19020097
|
61 |
Erjavec N, Larsson L, Grantham J, Nystr?m T (2007). Accelerated aging and failure to segregate damaged proteins in Sir2 mutants can be suppressed by overproducing the protein aggregation-remodeling factor Hsp104p. Genes Dev, 21(19): 2410–2421
https://doi.org/10.1101/gad.439307
pmid: 17908928
|
62 |
Erjavec N, Nystr?m T (2007). Sir2p-dependent protein segregation gives rise to a superior reactive oxygen species management in the progeny of Saccharomyces cerevisiae. Proc Natl Acad Sci USA, 104(26): 10877–10881
https://doi.org/10.1073/pnas.0701634104
pmid: 17581878
|
63 |
Eto K, Tsubamoto Y, Terauchi Y, Sugiyama T, Kishimoto T, Takahashi N, Yamauchi N, Kubota N, Murayama S, Aizawa T, Akanuma Y, Aizawa S, Kasai H, Yazaki Y, Kadowaki T (1999). Role of NADH shuttle system in glucose-induced activation of mitochondrial metabolism and insulin secretion. Science, 283(5404): 981–985
https://doi.org/10.1126/science.283.5404.981
pmid: 9974390
|
64 |
Evans C, Bogan K L, Song P, Burant C F, Kennedy R T, Brenner C (2010). NAD+ metabolite levels as a function of vitamins and calorie restriction: evidence for different mechanisms of longevity. BMC Chem Biol, 10(1): 2
https://doi.org/10.1186/1472-6769-10-2
pmid: 20175898
|
65 |
Fabrizio P, Gattazzo C, Battistella L, Wei M, Cheng C, McGrew K, Longo V D (2005). Sir2 blocks extreme life-span extension. Cell, 123(4): 655–667
https://doi.org/10.1016/j.cell.2005.08.042
pmid: 16286010
|
66 |
Fabrizio P, Hoon S, Shamalnasab M, Galbani A, Wei M, Giaever G, Nislow C, Longo V D (2010). Genome-wide screen in Saccharomyces cerevisiae identifies vacuolar protein sorting, autophagy, biosynthetic, and tRNA methylation genes involved in life span regulation. PLoS Genet, 6(7): e1001024
https://doi.org/10.1371/journal.pgen.1001024
pmid: 20657825
|
67 |
Fabrizio P, Longo V D (2003). The chronological life span of Saccharomyces cerevisiae. Aging Cell, 2(2): 73–81
https://doi.org/10.1046/j.1474-9728.2003.00033.x
pmid: 12882320
|
68 |
Fabrizio P, Longo V D (2007). The chronological life span of Saccharomyces cerevisiae. Methods Mol Biol, 371: 89–95
https://doi.org/10.1007/978-1-59745-361-5_8
pmid: 17634576
|
69 |
Fabrizio P, Pozza F, Pletcher S D, Gendron C M, Longo V D (2001). Regulation of longevity and stress resistance by Sch9 in yeast. Science, 292(5515): 288–290
https://doi.org/10.1126/science.1059497
pmid: 11292860
|
70 |
Flick K M, Spielewoy N, Kalashnikova T I, Guaderrama M, Zhu Q, Chang H C, Wittenberg C (2003). Grr1-dependent inactivation of Mth1 mediates glucose-induced dissociation of Rgt1 from HXT gene promoters. Mol Biol Cell, 14(8): 3230–3241
https://doi.org/10.1091/mbc.E03-03-0135
pmid: 12925759
|
71 |
Foresti O, Rodriguez-Vaello V, Funaya C, Carvalho P (2014). Quality control of inner nuclear membrane proteins by the Asi complex. Science, 346(6210): 751–755
https://doi.org/10.1126/science.1255638
pmid: 25236469
|
72 |
Forsburg S L, Guarente L (1989). Identification and characterization of HAP4: a third component of the CCAAT-bound HAP2/HAP3 heteromer. Genes Dev, 3(8): 1166–1178
https://doi.org/10.1101/gad.3.8.1166
pmid: 2676721
|
73 |
Frye R A (2000). Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun, 273(2): 793–798
https://doi.org/10.1006/bbrc.2000.3000
pmid: 10873683
|
74 |
Gallo C M, Smith D L Jr, Smith J S (2004). Nicotinamide clearance by Pnc1 directly regulates Sir2-mediated silencing and longevity. Mol Cell Biol, 24(3): 1301–1312
https://doi.org/10.1128/MCB.24.3.1301-1312.2004
pmid: 14729974
|
75 |
Gancedo J M (1998). Yeast carbon catabolite repression. Microbiol Mol Biol Rev, 62(2): 334–361
pmid: 9618445
|
76 |
Garavaglia S, D’Angelo I, Emanuelli M, Carnevali F, Pierella F, Magni G, Rizzi M (2002). Structure of human NMN adenylyltransferase. A key nuclear enzyme for NAD homeostasis. J Biol Chem, 277(10): 8524–8530
https://doi.org/10.1074/jbc.M111589200
pmid: 11751893
|
77 |
Gauthier S, Coulpier F, Jourdren L, Merle M, Beck S, Konrad M, Daignan-Fornier B, Pinson B (2008). Co-regulation of yeast purine and phosphate pathways in response to adenylic nucleotide variations. Mol Microbiol, 68(6): 1583–1594
https://doi.org/10.1111/j.1365-2958.2008.06261.x
pmid: 18433446
|
78 |
Ghislain M, Talla E, Fran?ois J M (2002). Identification and functional analysis of the Saccharomyces cerevisiae nicotinamidase gene, PNC1. Yeast, 19(3): 215–224
https://doi.org/10.1002/yea.810
pmid: 11816029
|
79 |
Giots F, Donaton M C, Thevelein J M (2003). Inorganic phosphate is sensed by specific phosphate carriers and acts in concert with glucose as a nutrient signal for activation of the protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol, 47(4): 1163–1181
https://doi.org/10.1046/j.1365-2958.2003.03365.x
pmid: 12581367
|
80 |
Godard P, Urrestarazu A, Vissers S, Kontos K, Bontempi G, van Helden J, André B (2007). Effect of 21 different nitrogen sources on global gene expression in the yeast Saccharomyces cerevisiae. Mol Cell Biol, 27(8): 3065–3086
https://doi.org/10.1128/MCB.01084-06
pmid: 17308034
|
81 |
G?rner W, Durchschlag E, Martinez-Pastor M T, Estruch F, Ammerer G, Hamilton B, Ruis H, Schüller C (1998). Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity. Genes Dev, 12(4): 586–597
https://doi.org/10.1101/gad.12.4.586
pmid: 9472026
|
82 |
G?rner W, Durchschlag E, Wolf J, Brown E L, Ammerer G, Ruis H, Schüller C (2002). Acute glucose starvation activates the nuclear localization signal of a stress-specific yeast transcription factor. EMBO J, 21(1–2): 135–144
https://doi.org/10.1093/emboj/21.1.135
pmid: 11782433
|
83 |
Graeff R, Liu Q, Kriksunov I A, Hao Q, Lee H C (2006). Acidic residues at the active sites of CD38 and ADP-ribosyl cyclase determine nicotinic acid adenine dinucleotide phosphate (NAADP) synthesis and hydrolysis activities. J Biol Chem, 281(39): 28951–28957
https://doi.org/10.1074/jbc.M604370200
pmid: 16861223
|
84 |
Grose J H, Bergthorsson U, Roth J R (2005). Regulation of NAD synthesis by the trifunctional NadR protein of Salmonella enterica. J Bacteriol, 187(8): 2774–2782
https://doi.org/10.1128/JB.187.8.2774-2782.2005
pmid: 15805524
|
85 |
Guarente L (2013). Introduction: sirtuins in aging and diseases. Methods Mol Biol, 1077: 3–10
https://doi.org/10.1007/978-1-62703-637-5_1
pmid: 24014396
|
86 |
Guse A H, Lee H C (2008). NAADP: a universal Ca2+ trigger. Sci Signal, 1(44): re10
https://doi.org/10.1126/scisignal.144re10
pmid: 18984909
|
87 |
Hachinohe M, Hanaoka F, Masumoto H (2011). Hst3 and Hst4 histone deacetylases regulate replicative lifespan by preventing genome instability in Saccharomyces cerevisiae. Genes Cells, 16(4): 467–477
https://doi.org/10.1111/j.1365-2443.2011.01493.x
pmid: 21401809
|
88 |
Hachinohe M, Yamane M, Akazawa D, Ohsawa K, Ohno M, Terashita Y, Masumoto H (2013). A reduction in age-enhanced gluconeogenesis extends lifespan. PLoS ONE, 8(1): e54011
https://doi.org/10.1371/journal.pone.0054011
pmid: 23342062
|
89 |
Hahn J S, Thiele D J (2004). Activation of the Saccharomyces cerevisiae heat shock transcription factor under glucose starvation conditions by Snf1 protein kinase. J Biol Chem, 279(7): 5169–5176
https://doi.org/10.1074/jbc.M311005200
pmid: 14612437
|
90 |
Hahn S, Guarente L (1988). Yeast HAP2 and HAP3: transcriptional activators in a heteromeric complex. Science, 240(4850): 317–321
https://doi.org/10.1126/science.2832951
pmid: 2832951
|
91 |
Hahn S, Young E T (2011). Transcriptional regulation in Saccharomyces cerevisiae: transcription factor regulation and function, mechanisms of initiation, and roles of activators and coactivators. Genetics, 189(3): 705–736
https://doi.org/10.1534/genetics.111.127019
pmid: 22084422
|
92 |
Haigis M C, Mostoslavsky R, Haigis K M, Fahie K, Christodoulou D C, Murphy A J, Valenzuela D M, Yancopoulos G D, Karow M, Blander G, Wolberger C, Prolla T A, Weindruch R, Alt F W, Guarente L (2006). SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell, 126(5): 941–954
https://doi.org/10.1016/j.cell.2006.06.057
pmid: 16959573
|
93 |
Halme A, Bumgarner S, Styles C, Fink G R (2004). Genetic and epigenetic regulation of the FLO gene family generates cell-surface variation in yeast. Cell, 116(3): 405–415
https://doi.org/10.1016/S0092-8674(04)00118-7
pmid: 15016375
|
94 |
Hardie D G (2007). AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol, 8(10): 774–785
https://doi.org/10.1038/nrm2249
pmid: 17712357
|
95 |
Hecht A, Strahl-Bolsinger S, Grunstein M (1996). Spreading of transcriptional repressor SIR3 from telomeric heterochromatin. Nature, 383(6595): 92–96
https://doi.org/10.1038/383092a0
pmid: 8779721
|
96 |
Hernández H, Aranda C, López G, Riego L, González A (2011). Hap2-3-5-Gln3 determine transcriptional activation of GDH1 and ASN1 under repressive nitrogen conditions in the yeast Saccharomyces cerevisiae. Microbiology, 157(Pt 3): 879–889
https://doi.org/10.1099/mic.0.044974-0
pmid: 21051484
|
97 |
Hinnebusch A G (2005). Translational regulation of GCN4 and the general amino acid control of yeast. Annu Rev Microbiol, 59(1): 407–450
https://doi.org/10.1146/annurev.micro.59.031805.133833
pmid: 16153175
|
98 |
Hinnebusch A G, Natarajan K (2002). Gcn4p, a master regulator of gene expression, is controlled at multiple levels by diverse signals of starvation and stress. Eukaryot Cell, 1(1): 22–32
https://doi.org/10.1128/EC.01.1.22-32.2002
pmid: 12455968
|
99 |
Hong S P, Leiper F C, Woods A, Carling D, Carlson M (2003). Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases. Proc Natl Acad Sci USA, 100(15): 8839–8843
https://doi.org/10.1073/pnas.1533136100
pmid: 12847291
|
100 |
Houtkooper R H, Cantó C, Wanders R J, Auwerx J (2010). The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr Rev, 31(2): 194–223
https://doi.org/10.1210/er.2009-0026
pmid: 20007326
|
101 |
Hughes A L, Gottschling D E (2012). An early age increase in vacuolar pH limits mitochondrial function and lifespan in yeast. Nature, 492(7428): 261–265
https://doi.org/10.1038/nature11654
pmid: 23172144
|
102 |
Imai S, Armstrong C M, Kaeberlein M, Guarente L (2000). Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature, 403(6771): 795–800
https://doi.org/10.1038/35001622
pmid: 10693811
|
103 |
Imai S I, Guarente L (2014). NAD and sirtuins in aging and disease. Trends Cell Biol.
|
104 |
Ivy J M, Klar A J, Hicks J B (1986). Cloning and characterization of four SIR genes of Saccharomyces cerevisiae. Mol Cell Biol, 6: 688–702
|
105 |
Jacinto E, Lorberg A (2008). TOR regulation of AGC kinases in yeast and mammals. Biochem J, 410(1): 19–37
https://doi.org/10.1042/BJ20071518
pmid: 18215152
|
106 |
Jazwinski S M (1990). An experimental system for the molecular analysis of the aging process: the budding yeast Saccharomyces cerevisiae. J Gerontol, 45(3): B68–B74
https://doi.org/10.1093/geronj/45.3.B68
pmid: 2186084
|
107 |
Jazwinski S M (2000). Aging and longevity genes. Acta Biochim Pol, 47(2): 269–279
pmid: 11051192
|
108 |
Jia S H, Li Y, Parodo J, Kapus A, Fan L, Rotstein O D, Marshall J C (2004). Pre-B cell colony-enhancing factor inhibits neutrophil apoptosis in experimental inflammation and clinical sepsis. J Clin Invest, 113(9): 1318–1327
https://doi.org/10.1172/JCI19930
pmid: 15124023
|
109 |
Jiang J C, Jaruga E, Repnevskaya M V, Jazwinski S M (2000). An intervention resembling caloric restriction prolongs life span and retards aging in yeast. FASEB J, 14(14): 2135–2137
pmid: 11024000
|
110 |
Jouandot D 2nd, Roy A, Kim J H (2011). Functional dissection of the glucose signaling pathways that regulate the yeast glucose transporter gene (HXT) repressor Rgt1. J Cell Biochem, 112(11): 3268–3275
https://doi.org/10.1002/jcb.23253
pmid: 21748783
|
111 |
Kaeberlein M, Andalis A A, Fink G R, Guarente L (2002). High osmolarity extends life span in Saccharomyces cerevisiae by a mechanism related to calorie restriction. Mol Cell Biol, 22(22): 8056–8066
https://doi.org/10.1128/MCB.22.22.8056-8066.2002
pmid: 12391171
|
112 |
Kaeberlein M, Hu D, Kerr E O, Tsuchiya M, Westman E A, Dang N, Fields S, Kennedy B K (2005a). Increased life span due to calorie restriction in respiratory-deficient yeast. PLoS Genet, 1(5): e69
https://doi.org/10.1371/journal.pgen.0010069
pmid: 16311627
|
113 |
Kaeberlein M, Kirkland K T, Fields S, Kennedy B K (2004). Sir2-independent life span extension by calorie restriction in yeast. PLoS Biol, 2(9): E296
https://doi.org/10.1371/journal.pbio.0020296
pmid: 15328540
|
114 |
Kaeberlein M, Powers R W 3rd, Steffen K K, Westman E A, Hu D, Dang N, Kerr E O, Kirkland K T, Fields S, Kennedy B K (2005b). Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science, 310(5751): 1193–1196
https://doi.org/10.1126/science.1115535
pmid: 16293764
|
115 |
Kamada Y, Fujioka Y, Suzuki N N, Inagaki F, Wullschleger S, Loewith R, Hall M N, Ohsumi Y (2005). Tor2 directly phosphorylates the AGC kinase Ypk2 to regulate actin polarization. Mol Cell Biol, 25(16): 7239–7248
https://doi.org/10.1128/MCB.25.16.7239-7248.2005
pmid: 16055732
|
116 |
Kang H J, Jeong S J, Kim K N, Baek I J, Chang M, Kang C M, Park Y S, Yun C W (2014). A novel protein, Pho92, has a conserved YTH domain and regulates phosphate metabolism by decreasing the mRNA stability of PHO4 in Saccharomyces cerevisiae. Biochem J, 457(3): 391–400
https://doi.org/10.1042/BJ20130862
pmid: 24206186
|
117 |
Kato M, Lin S J (2014a). Regulation of NAD+ metabolism, signaling and compartmentalization in the yeast Saccharomyces cerevisiae. DNA Repair (Amst), 23: 49–58
https://doi.org/10.1016/j.dnarep.2014.07.009
pmid: 25096760
|
118 |
Kato M, Lin S J (2014b). YCL047C/POF1 is a novel nicotinamide mononucleotide adenylyltransferase (NMNAT) in Saccharomyces cerevisiae. J Biol Chem, 289(22): 15577–15587
https://doi.org/10.1074/jbc.M114.558643
pmid: 24759102
|
119 |
Keith C T, Schreiber S L (1995). PIK-related kinases: DNA repair, recombination, and cell cycle checkpoints. Science, 270(5233): 50–51
https://doi.org/10.1126/science.270.5233.50
pmid: 7569949
|
120 |
Kenyon C (2001). A conserved regulatory system for aging. Cell, 105(2): 165–168
https://doi.org/10.1016/S0092-8674(01)00306-3
pmid: 11336665
|
121 |
Kim J H, Brachet V, Moriya H, Johnston M (2006). Integration of transcriptional and posttranslational regulation in a glucose signal transduction pathway in Saccharomyces cerevisiae. Eukaryot Cell, 5(1): 167–173
https://doi.org/10.1128/EC.5.1.167-173.2006
pmid: 16400179
|
122 |
Kim J H, Johnston M (2006). Two glucose-sensing pathways converge on Rgt1 to regulate expression of glucose transporter genes in Saccharomyces cerevisiae. J Biol Chem, 281(36): 26144–26149
https://doi.org/10.1074/jbc.M603636200
pmid: 16844691
|
123 |
Kornitzer D, Raboy B, Kulka R G, Fink G R (1994). Regulated degradation of the transcription factor Gcn4. EMBO J, 13(24): 6021–6030
pmid: 7813440
|
124 |
Kruegel U, Robison B, Dange T, Kahlert G, Delaney J R, Kotireddy S, Tsuchiya M, Tsuchiyama S, Murakami C J, Schleit J, Sutphin G, Carr D, Tar K, Dittmar G, Kaeberlein M, Kennedy B K, Schmidt M (2011). Elevated proteasome capacity extends replicative lifespan in Saccharomyces cerevisiae. PLoS Genet, 7(9): e1002253
https://doi.org/10.1371/journal.pgen.1002253
pmid: 21931558
|
125 |
Lamming D W, Latorre-Esteves M, Medvedik O, Wong S N, Tsang F A, Wang C, Lin S J, Sinclair D A (2005). HST2 mediates SIR2-independent life-span extension by calorie restriction. Science, 309(5742): 1861–1864
https://doi.org/10.1126/science.1113611
pmid: 16051752
|
126 |
Lamming D W, Wood J G, Sinclair D A (2004). Small molecules that regulate lifespan: evidence for xenohormesis. Mol Microbiol, 53(4): 1003–1009
https://doi.org/10.1111/j.1365-2958.2004.04209.x
pmid: 15306006
|
127 |
Landry J, Sutton A, Tafrov S T, Heller R C, Stebbins J, Pillus L, Sternglanz R (2000). The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc Natl Acad Sci USA, 97(11): 5807–5811
https://doi.org/10.1073/pnas.110148297
pmid: 10811920
|
128 |
Lascaris R, Bussemaker H J, Boorsma A, Piper M, van der Spek H, Grivell L, Blom J (2003). Hap4p overexpression in glucose-grown Saccharomyces cerevisiae induces cells to enter a novel metabolic state. Genome Biol, 4(1): R3
https://doi.org/10.1186/gb-2002-4-1-r3
pmid: 12537548
|
129 |
Lee P, Kim M S, Paik S M, Choi S H, Cho B R, Hahn J S (2013). Rim15-dependent activation of Hsf1 and Msn2/4 transcription factors by direct phosphorylation in Saccharomyces cerevisiae. FEBS Lett, 587(22): 3648–3655
https://doi.org/10.1016/j.febslet.2013.10.004
pmid: 24140345
|
130 |
Lee Y S, Huang K, Quiocho F A, O’Shea E K (2008). Molecular basis of cyclin-CDK-CKI regulation by reversible binding of an inositol pyrophosphate. Nat Chem Biol, 4(1): 25–32
https://doi.org/10.1038/nchembio.2007.52
pmid: 18059263
|
131 |
Lee Y S, Mulugu S, York J D, O’Shea E K (2007). Regulation of a cyclin-CDK-CDK inhibitor complex by inositol pyrophosphates. Science, 316(5821): 109–112
https://doi.org/10.1126/science.1139080
pmid: 17412959
|
132 |
Lenburg M E, O’Shea E K (1996). Signaling phosphate starvation. Trends Biochem Sci, 21(10): 383–387
https://doi.org/10.1016/0968-0004(96)10048-7
pmid: 8918192
|
133 |
Lewis C A, Parker S J, Fiske B P, McCloskey D, Gui D Y, Green C R, Vokes N I, Feist A M, Vander Heiden M G, Metallo C M (2014). Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells. Mol Cell, 55(2): 253–263
https://doi.org/10.1016/j.molcel.2014.05.008
pmid: 24882210
|
134 |
Li B, Skinner C, Castello P R, Kato M, Easlon E, Xie L, Li T, Lu S P, Wang C, Tsang F, Poyton R O, Lin S J (2011). Identification of potential calorie restriction-mimicking yeast mutants with increased mitochondrial respiratory chain and nitric oxide levels. J Aging Res, 2011: 673185
https://doi.org/10.4061/2011/673185
pmid: 21584246
|
135 |
Li M, Valsakumar V, Poorey K, Bekiranov S, Smith J S (2013). Genome-wide analysis of functional sirtuin chromatin targets in yeast. Genome Biol, 14(5): R48
https://doi.org/10.1186/gb-2013-14-5-r48
pmid: 23710766
|
136 |
Li P L, Zhang Y, Abais J M, Ritter J K, Zhang F (2013). Cyclic ADP-ribose and NAADP in vascular regulation and diseases. Messenger (Los Angel), 2(2): 63–85
https://doi.org/10.1166/msr.2013.1022
pmid: 24749015
|
137 |
Lin S J, Defossez P A, Guarente L (2000). Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science, 289(5487): 2126–2128
https://doi.org/10.1126/science.289.5487.2126
pmid: 11000115
|
138 |
Lin S J, Ford E, Haigis M, Liszt G, Guarente L (2004). Calorie restriction extends yeast life span by lowering the level of NADH. Genes Dev, 18(1): 12–16
https://doi.org/10.1101/gad.1164804
pmid: 14724176
|
139 |
Lin S J, Kaeberlein M, Andalis A A, Sturtz L A, Defossez P A, Culotta V C, Fink G R, Guarente L (2002). Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature, 418(6895): 344–348
https://doi.org/10.1038/nature00829
pmid: 12124627
|
140 |
Lin S S, Manchester J K, Gordon J I (2003). Sip2, an N-myristoylated beta subunit of Snf1 kinase, regulates aging in Saccharomyces cerevisiae by affecting cellular histone kinase activity, recombination at rDNA loci, and silencing. J Biol Chem, 278(15): 13390–13397
https://doi.org/10.1074/jbc.M212818200
pmid: 12562756
|
141 |
Lin Y Y, Lu J Y, Zhang J, Walter W, Dang W, Wan J, Tao S C, Qian J, Zhao Y, Boeke J D, Berger S L, Zhu H (2009). Protein acetylation microarray reveals that NuA4 controls key metabolic target regulating gluconeogenesis. Cell, 136(6): 1073–1084
https://doi.org/10.1016/j.cell.2009.01.033
pmid: 19303850
|
142 |
Liu Z, Thornton J, Spírek M, Butow R A (2008). Activation of the SPS amino acid-sensing pathway in Saccharomyces cerevisiae correlates with the phosphorylation state of a sensor component, Ptr3. Mol Cell Biol, 28(2): 551–563
https://doi.org/10.1128/MCB.00929-07
pmid: 17984223
|
143 |
Ljungdahl P O (2009). Amino-acid-induced signalling via the SPS-sensing pathway in yeast. Biochem Soc Trans, 37(Pt 1): 242–247
https://doi.org/10.1042/BST0370242
pmid: 19143640
|
144 |
Ljungdahl P O, Daignan-Fornier B (2012). Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. Genetics, 190(3): 885–929
https://doi.org/10.1534/genetics.111.133306
pmid: 22419079
|
145 |
Llorente B, Dujon B (2000). Transcriptional regulation of the Saccharomyces cerevisiae DAL5 gene family and identification of the high affinity nicotinic acid permease TNA1 (YGR260w). FEBS Lett, 475(3): 237–241
https://doi.org/10.1016/S0014-5793(00)01698-7
pmid: 10869563
|
146 |
Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo J L, Bonenfant D, Oppliger W, Jenoe P, Hall M N (2002). Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell, 10(3): 457–468
https://doi.org/10.1016/S1097-2765(02)00636-6
pmid: 12408816
|
147 |
Longo V D (2003). The Ras and Sch9 pathways regulate stress resistance and longevity. Exp Gerontol, 38(7): 807–811
https://doi.org/10.1016/S0531-5565(03)00113-X
pmid: 12855292
|
148 |
Longo V D, Fabrizio P (2012). Chronological aging in Saccharomyces cerevisiae. Subcell Biochem, 57: 101–121
https://doi.org/10.1007/978-94-007-2561-4_5
pmid: 22094419
|
149 |
Lu J Y, Lin Y Y, Sheu J C, Wu J T, Lee F J, Chen Y, Lin M I, Chiang F T, Tai T Y, Berger S L, Zhao Y, Tsai K S, Zhu H, Chuang L M, Boeke J D (2011). Acetylation of yeast AMPK controls intrinsic aging independently of caloric restriction. Cell, 146(6): 969–979
https://doi.org/10.1016/j.cell.2011.07.044
pmid: 21906795
|
150 |
Lu S P, Kato M, Lin S J (2009). Assimilation of endogenous nicotinamide riboside is essential for calorie restriction-mediated life span extension in Saccharomyces cerevisiae. J Biol Chem, 284(25): 17110–17119
https://doi.org/10.1074/jbc.M109.004010
pmid: 19416965
|
151 |
Lu S P, Lin S J (2010). Regulation of yeast sirtuins by NAD(+) metabolism and calorie restriction. Biochim Biophys Acta, 1804(8): 1567–1575
https://doi.org/10.1016/j.bbapap.2009.09.030
pmid: 19818879
|
152 |
Lu S P, Lin S J (2011). Phosphate-responsive signaling pathway is a novel component of NAD+ metabolism in Saccharomyces cerevisiae. J Biol Chem, 286(16): 14271–14281
https://doi.org/10.1074/jbc.M110.217885
pmid: 21349851
|
153 |
Lundh F, Mouillon J M, Samyn D, Stadler K, Popova Y, Lagerstedt J O, Thevelein J M, Persson B L (2009). Molecular mechanisms controlling phosphate-induced downregulation of the yeast Pho84 phosphate transporter. Biochemistry, 48(21): 4497–4505
https://doi.org/10.1021/bi9001198
pmid: 19348508
|
154 |
Magni G, Amici A, Emanuelli M, Orsomando G, Raffaelli N, Ruggieri S (2004). Structure and function of nicotinamide mononucleotide adenylyltransferase. Curr Med Chem, 11(7): 873–885
https://doi.org/10.2174/0929867043455666
pmid: 15078171
|
155 |
Marzluf G A (1997). Molecular genetics of sulfur assimilation in filamentous fungi and yeast. Annu Rev Microbiol, 51(1): 73–96
https://doi.org/10.1146/annurev.micro.51.1.73
pmid: 9343344
|
156 |
Matecic M, Smith D L, Pan X, Maqani N, Bekiranov S, Boeke J D, Smith J S (2010). A microarray-based genetic screen for yeast chronological aging factors. PLoS Genet, 6(4): e1000921
https://doi.org/10.1371/journal.pgen.1000921
pmid: 20421943
|
157 |
Mayer F V, Heath R, Underwood E, Sanders M J, Carmena D, McCartney R R, Leiper F C, Xiao B, Jing C, Walker P A, Haire L F, Ogrodowicz R, Martin S R, Schmidt M C, Gamblin S J, Carling D (2011). ADP regulates SNF1, the Saccharomyces cerevisiae homolog of AMP-activated protein kinase. Cell Metab, 14(5): 707–714
https://doi.org/10.1016/j.cmet.2011.09.009
pmid: 22019086
|
158 |
McCartney R R, Schmidt M C (2001). Regulation of Snf1 kinase. ACTIVATION REQUIRES PHOSPHORYLATION OF THREONINE 210 BY AN UPSTREAM KINASE AS WELL AS A DISTINCT STEP MEDIATED BY THE SNF4 SUBUNIT. J Biol Chem, 276(39): 36460–36466
https://doi.org/10.1074/jbc.M104418200
pmid: 11486005
|
159 |
McNabb D S, Pinto I (2005). Assembly of the Hap2p/Hap3p/Hap4p/Hap5p-DNA complex in Saccharomyces cerevisiae. Eukaryot Cell, 4(11): 1829–1839
https://doi.org/10.1128/EC.4.11.1829-1839.2005
pmid: 16278450
|
160 |
McNabb D S, Xing Y, Guarente L (1995). Cloning of yeast HAP5: a novel subunit of a heterotrimeric complex required for CCAAT binding. Genes Dev, 9(1): 47–58
https://doi.org/10.1101/gad.9.1.47
pmid: 7828851
|
161 |
Medvedik O, Lamming D W, Kim K D, Sinclair D A (2007). MSN2 and MSN4 link calorie restriction and TOR to sirtuin-mediated lifespan extension in Saccharomyces cerevisiae. PLoS Biol, 5(10): e261
https://doi.org/10.1371/journal.pbio.0050261
pmid: 17914901
|
162 |
Menoyo S, Ricco N, Bru S, Hernández-Ortega S, Escoté X, Aldea M, Clotet J (2013). Phosphate-activated cyclin-dependent kinase stabilizes G1 cyclin to trigger cell cycle entry. Mol Cell Biol, 33(7): 1273–1284
https://doi.org/10.1128/MCB.01556-12
pmid: 23339867
|
163 |
Mense S M, Zhang L (2006). Heme: a versatile signaling molecule controlling the activities of diverse regulators ranging from transcription factors to MAP kinases. Cell Res, 16(8): 681–692
https://doi.org/10.1038/sj.cr.7310086
pmid: 16894358
|
164 |
Mesquita A, Weinberger M, Silva A, Sampaio-Marques B, Almeida B, Le?o C, Costa V, Rodrigues F, Burhans W C, Ludovico P (2010). Caloric restriction or catalase inactivation extends yeast chronological lifespan by inducing H2O2 and superoxide dismutase activity. Proc Natl Acad Sci USA, 107(34): 15123–15128
https://doi.org/10.1073/pnas.1004432107
pmid: 20696905
|
165 |
Moazed D (2001). Common themes in mechanisms of gene silencing. Mol Cell, 8(3): 489–498
https://doi.org/10.1016/S1097-2765(01)00340-9
pmid: 11583612
|
166 |
Moriya H, Johnston M (2004). Glucose sensing and signaling in Saccharomyces cerevisiae through the Rgt2 glucose sensor and casein kinase I. Proc Natl Acad Sci USA, 101(6): 1572–1577
https://doi.org/10.1073/pnas.0305901101
pmid: 14755054
|
167 |
Mortimer R K, Johnston J R (1959). Life span of individual yeast cells. Nature, 183(4677): 1751–1752
https://doi.org/10.1038/1831751a0
pmid: 13666896
|
168 |
Mouillon J M, Persson B L (2005). Inhibition of the protein kinase A alters the degradation of the high-affinity phosphate transporter Pho84 in Saccharomyces cerevisiae. Curr Genet, 48(4): 226–234
https://doi.org/10.1007/s00294-005-0019-0
pmid: 16160831
|
169 |
Murakami C, Delaney J R, Chou A, Carr D, Schleit J, Sutphin G L, An E H, Castanza A S, Fletcher M, Goswami S, Higgins S, Holmberg M, Hui J, Jelic M, Jeong K S, Kim J R, Klum S, Liao E, Lin M S, Lo W, Miller H, Moller R, Peng Z J, Pollard T, Pradeep P, Pruett D, Rai D, Ros V, Schuster A, Singh M, Spector B L, Vander Wende H, Wang A M, Wasko B M, Olsen B, Kaeberlein M (2012). pH neutralization protects against reduction in replicative lifespan following chronological aging in yeast. Cell Cycle, 11(16): 3087–3096
https://doi.org/10.4161/cc.21465
pmid: 22871733
|
170 |
Murakami C J, Wall V, Basisty N, Kaeberlein M (2011). Composition and acidification of the culture medium influences chronological aging similarly in vineyard and laboratory yeast. PLoS ONE, 6(9): e24530
https://doi.org/10.1371/journal.pone.0024530
pmid: 21949725
|
171 |
Natalini P, Ruggieri S, Raffaelli N, Magni G (1986). Nicotinamide mononucleotide adenylyltransferase. Molecular and enzymatic properties of the homogeneous enzyme from baker’s yeast. Biochemistry, 25(12): 3725–3729
https://doi.org/10.1021/bi00360a037
pmid: 3013296
|
172 |
Natarajan K, Meyer M R, Jackson B M, Slade D, Roberts C, Hinnebusch A G, Marton M J (2001). Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol Cell Biol, 21(13): 4347–4368
https://doi.org/10.1128/MCB.21.13.4347-4368.2001
pmid: 11390663
|
173 |
Niles B J, Powers T (2014). TOR complex 2-Ypk1 signaling regulates actin polarization via reactive oxygen species. Mol Biol Cell, 25(24): 3962–3972
https://doi.org/10.1091/mbc.E14-06-1122
pmid: 25253719
|
174 |
Noda T, Klionsky D J (2008). The quantitative Pho8Delta60 assay of nonspecific autophagy. Methods Enzymol, 451: 33–42
https://doi.org/10.1016/S0076-6879(08)03203-5
pmid: 19185711
|
175 |
North B J, Verdin E (2004). Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome Biol, 5(5): 224
https://doi.org/10.1186/gb-2004-5-5-224
pmid: 15128440
|
176 |
Ocampo A, Liu J, Barrientos A (2013). NAD+ salvage pathway proteins suppress proteotoxicity in yeast models of neurodegeneration by promoting the clearance of misfolded/oligomerized proteins. Hum Mol Genet, 22(9): 1699–1708
https://doi.org/10.1093/hmg/ddt016
pmid: 23335597
|
177 |
Ocampo A, Liu J, Schroeder E A, Shadel G S, Barrientos A (2012). Mitochondrial respiratory thresholds regulate yeast chronological life span and its extension by caloric restriction. Cell Metab, 16(1): 55–67
https://doi.org/10.1016/j.cmet.2012.05.013
pmid: 22768839
|
178 |
Ohashi K, Kawai S, Murata K (2013). Secretion of quinolinic acid, an intermediate in the kynurenine pathway, for utilization in NAD+ biosynthesis in the yeast Saccharomyces cerevisiae. Eukaryot Cell, 12(5): 648–653
https://doi.org/10.1128/EC.00339-12
pmid: 23457190
|
179 |
Omnus D J, Ljungdahl P O (2014). Latency of transcription factor Stp1 depends on a modular regulatory motif that functions as cytoplasmic retention determinant and nuclear degron. Mol Biol Cell, 25(23): 3823–3833
https://doi.org/10.1091/mbc.E14-06-1140
pmid: 25253722
|
180 |
Omnus D J, Pfirrmann T, Andréasson C, Ljungdahl P O (2011). A phosphodegron controls nutrient-induced proteasomal activation of the signaling protease Ssy5. Mol Biol Cell, 22(15): 2754–2765
https://doi.org/10.1091/mbc.E11-04-0282
pmid: 21653827
|
181 |
Overton M C, Chinault S L, Blumer K J (2005). Oligomerization of G-protein-coupled receptors: lessons from the yeast Saccharomyces cerevisiae. Eukaryot Cell, 4(12): 1963–1970
https://doi.org/10.1128/EC.4.12.1963-1970.2005
pmid: 16339714
|
182 |
Pan Y (2011). Mitochondria, reactive oxygen species, and chronological aging: a message from yeast. Exp Gerontol, 46(11): 847–852
https://doi.org/10.1016/j.exger.2011.08.007
pmid: 21884780
|
183 |
Pan Y, Schroeder E A, Ocampo A, Barrientos A, Shadel G S (2011). Regulation of yeast chronological life span by TORC1 via adaptive mitochondrial ROS signaling. Cell Metab, 13(6): 668–678
https://doi.org/10.1016/j.cmet.2011.03.018
pmid: 21641548
|
184 |
Panozzo C, Nawara M, Suski C, Kucharczyka R, Skoneczny M, Bécam A M, Rytka J, Herbert C J (2002). Aerobic and anaerobic NAD+ metabolism in Saccharomyces cerevisiae. FEBS Lett, 517(1–3): 97–102
https://doi.org/10.1016/S0014-5793(02)02585-1
pmid: 12062417
|
185 |
Parua P K, Ratnakumar S, Braun K A, Dombek K M, Arms E, Ryan P M, Young E T (2010). 14-3-3 (Bmh) proteins inhibit transcription activation by Adr1 through direct binding to its regulatory domain. Mol Cell Biol, 30(22): 5273–5283
https://doi.org/10.1128/MCB.00715-10
pmid: 20855531
|
186 |
Pasula S, Jouandot D 2nd, Kim J H (2007). Biochemical evidence for glucose-independent induction of HXT expression in Saccharomyces cerevisiae. FEBS Lett, 581(17): 3230–3234
https://doi.org/10.1016/j.febslet.2007.06.013
pmid: 17586499
|
187 |
Peeters T, Louwet W, Geladé R, Nauwelaers D, Thevelein J M, Versele M (2006). Kelch-repeat proteins interacting with the Gα protein Gpa2 bypass adenylate cyclase for direct regulation of protein kinase A in yeast. Proc Natl Acad Sci USA, 103(35): 13034–13039
https://doi.org/10.1073/pnas.0509644103
pmid: 16924114
|
188 |
Perrod S, Cockell M M, Laroche T, Renauld H, Ducrest A L, Bonnard C, Gasser S M (2001). A cytosolic NAD-dependent deacetylase, Hst2p, can modulate nucleolar and telomeric silencing in yeast. EMBO J, 20(1–2): 197–209
https://doi.org/10.1093/emboj/20.1.197
pmid: 11226170
|
189 |
Persson B L, Lagerstedt J O, Pratt J R, Pattison-Granberg J, Lundh K, Shokrollahzadeh S, Lundh F (2003). Regulation of phosphate acquisition in Saccharomyces cerevisiae. Curr Genet, 43(4): 225–244
https://doi.org/10.1007/s00294-003-0400-9
pmid: 12740714
|
190 |
Pinson B, Vaur S, Sagot I, Coulpier F, Lemoine S, Daignan-Fornier B (2009). Metabolic intermediates selectively stimulate transcription factor interaction and modulate phosphate and purine pathways. Genes Dev, 23(12): 1399–1407
https://doi.org/10.1101/gad.521809
pmid: 19528318
|
191 |
Popova Y, Thayumanavan P, Lonati E, Agroch?o M, Thevelein J M (2010). Transport and signaling through the phosphate-binding site of the yeast Pho84 phosphate transceptor. Proc Natl Acad Sci USA, 107(7): 2890–2895
https://doi.org/10.1073/pnas.0906546107
pmid: 20133652
|
192 |
Powers R W 3rd, Kaeberlein M, Caldwell S D, Kennedy B K, Fields S (2006). Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev, 20(2): 174–184
https://doi.org/10.1101/gad.1381406
pmid: 16418483
|
193 |
Preiss J, Handler P (1958 a). Biosynthesis of diphosphopyridine nucleotide. I. Identification of intermediates. J Biol Chem, 233(2): 488–492
pmid: 13563526
|
194 |
Preiss J, Handler P (1958 b). Biosynthesis of diphosphopyridine nucleotide. II. Enzymatic aspects. J Biol Chem, 233(2): 493–500
pmid: 13563527
|
195 |
Ramsey K M, Mills K F, Satoh A, Imai S (2008). Age-associated loss of Sirt1-mediated enhancement of glucose-stimulated insulin secretion in beta cell-specific Sirt1-overexpressing (BESTO) mice. Aging Cell, 7(1): 78–88
https://doi.org/10.1111/j.1474-9726.2007.00355.x
pmid: 18005249
|
196 |
Revollo J R, Grimm A A, Imai S (2004). The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyl transferase regulates Sir2 activity in mammalian cells. J Biol Chem, 279(49): 50754–50763
https://doi.org/10.1074/jbc.M408388200
pmid: 15381699
|
197 |
Rine J, Herskowitz I (1987). Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae. Genetics, 116(1): 9–22
pmid: 3297920
|
198 |
Rodgers J T, Lerin C, Haas W, Gygi S P, Spiegelman B M, Puigserver P (2005). Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature, 434(7029): 113–118
https://doi.org/10.1038/nature03354
pmid: 15744310
|
199 |
Rolland F, De Winde J H, Lemaire K, Boles E, Thevelein J M, Winderickx J (2000). Glucose-induced cAMP signalling in yeast requires both a G-protein coupled receptor system for extracellular glucose detection and a separable hexose kinase-dependent sensing process. Mol Microbiol, 38(2): 348–358
https://doi.org/10.1046/j.1365-2958.2000.02125.x
pmid: 11069660
|
200 |
Roosen J, Engelen K, Marchal K, Mathys J, Griffioen G, Cameroni E, Thevelein J M, De Virgilio C, De Moor B, Winderickx J (2005). PKA and Sch9 control a molecular switch important for the proper adaptation to nutrient availability. Mol Microbiol, 55(3): 862–880
https://doi.org/10.1111/j.1365-2958.2004.04429.x
pmid: 15661010
|
201 |
Roth S, Kumme J, Schüller H J (2004). Transcriptional activators Cat8 and Sip4 discriminate between sequence variants of the carbon source-responsive promoter element in the yeast Saccharomyces cerevisiae. Curr Genet, 45(3): 121–128
https://doi.org/10.1007/s00294-003-0476-2
pmid: 14685767
|
202 |
Rubenstein E M, McCartney R R, Zhang C, Shokat K M, Shirra M K, Arndt K M, Schmidt M C (2008). Access denied: Snf1 activation loop phosphorylation is controlled by availability of the phosphorylated threonine 210 to the PP1 phosphatase. J Biol Chem, 283(1): 222–230
https://doi.org/10.1074/jbc.M707957200
pmid: 17991748
|
203 |
Rubio-Texeira M, Van Zeebroeck G, Voordeckers K, Thevelein J M (2010). Saccharomyces cerevisiae plasma membrane nutrient sensors and their role in PKA signaling. FEMS Yeast Res, 10(2): 134–149
https://doi.org/10.1111/j.1567-1364.2009.00587.x
pmid: 19849717
|
204 |
Samyn D R, Ruiz-Pávon L, Andersson M R, Popova Y, Thevelein J M, Persson B L (2012). Mutational analysis of putative phosphate- and proton-binding sites in the Saccharomyces cerevisiae Pho84 phosphate:H(+) transceptor and its effect on signalling to the PKA and PHO pathways. Biochem J, 445(3): 413–422
https://doi.org/10.1042/BJ20112086
pmid: 22587366
|
205 |
Sancak Y, Peterson T R, Shaul Y D, Lindquist R A, Thoreen C C, Bar-Peled L, Sabatini D M (2008). The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science, 320(5882): 1496–1501
https://doi.org/10.1126/science.1157535
pmid: 18497260
|
206 |
Sanz P (2003). Snf1 protein kinase: a key player in the response to cellular stress in yeast. Biochem Soc Trans, 31(Pt 1): 178–181
https://doi.org/10.1042/BST0310178
pmid: 12546680
|
207 |
Sasaki Y, Araki T, Milbrandt J (2006). Stimulation of nicotinamide adenine dinucleotide biosynthetic pathways delays axonal degeneration after axotomy. J Neurosci, 26(33): 8484–8491
https://doi.org/10.1523/JNEUROSCI.2320-06.2006
pmid: 16914673
|
208 |
Sauve A A, Schramm V L (2003). Sir2 regulation by nicotinamide results from switching between base exchange and deacetylation chemistry. Biochemistry, 42(31): 9249–9256
https://doi.org/10.1021/bi034959l
pmid: 12899610
|
209 |
Scheckhuber C Q, Erjavec N, Tinazli A, Hamann A, Nystr?m T, Osiewacz H D (2007). Reducing mitochondrial fission results in increased life span and fitness of two fungal ageing models. Nat Cell Biol, 9(1): 99–105
https://doi.org/10.1038/ncb1524
pmid: 17173038
|
210 |
Schleit J, Johnson S C, Bennett C F, Simko M, Trongtham N, Castanza A, Hsieh E J, Moller R M, Wasko B M, Delaney J R, Sutphin G L, Carr D, Murakami C J, Tocchi A, Xian B, Chen W, Yu T, Goswami S, Higgins S, Jeong K S, Kim J R, Klum S, Liao E, Lin M S, Lo W, Miller H, Olsen B, Peng Z J, Pollard T, Pradeep P, Pruett D, Rai D, Ros V, Singh M, Spector B L, Wende H V, An E H, Fletcher M, Jelic M, Rabinovitch P S, Maccoss M J, Han J D, Kennedy B K, Kaeberlein M (2013). Molecular mechanisms underlying genotype-dependent responses to dietary restriction. Aging Cell, 12(6): 1050–1061
|
211 |
Schmeisser K, Mansfeld J, Kuhlow D, Weimer S, Priebe S, Heiland I, Birringer M, Groth M, Segref A, Kanfi Y, Price N L, Schmeisser S, Schuster S, Pfeiffer A F, Guthke R, Platzer M, Hoppe T, Cohen H Y, Zarse K, Sinclair D A, Ristow M, Klum S, Liao E, Lin M S, Lo W, Miller H, Olsen B, Peng Z J, Pollard T, Pradeep P, Pruett D, Rai D, Ros V, Singh M, Spector B L, Wende H V, An E H, Fletcher M, Jelic M, Rabinovitch P S, Maccoss M J, Han J D, Kennedy B K, Kaeberlein M (2013). Role of sirtuins in lifespan regulation is linked to methylation of nicotinamide. Nat Chem Biol, 9(11): 693–700
https://doi.org/10.1038/nchembio.1352
pmid: 24077178
|
212 |
Schmidt M T, Smith B C, Jackson M D, Denu J M (2004). Coenzyme specificity of Sir2 protein deacetylases: implications for physiological regulation. J Biol Chem, 279(38): 40122–40129
https://doi.org/10.1074/jbc.M407484200
pmid: 15269219
|
213 |
Schmidt-Brauns J, Herbert M, Kemmer G, Kraiss A, Schl?r S, Reidl J (2001). Is a NAD pyrophosphatase activity necessary for Haemophilus influenzae type b multiplication in the blood stream? Int J Med Microbiol, 291(3): 219–225
https://doi.org/10.1078/1438-4221-00122
pmid: 11554562
|
214 |
Schüller H J (2003). Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae. Curr Genet, 43(3): 139–160
pmid: 12715202
|
215 |
Schulz T J, Zarse K, Voigt A, Urban N, Birringer M, Ristow M (2007). Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab, 6(4): 280–293
https://doi.org/10.1016/j.cmet.2007.08.011
pmid: 17908557
|
216 |
Shama S, Lai C Y, Antoniazzi J M, Jiang J C, Jazwinski S M (1998). Heat stress-induced life span extension in yeast. Exp Cell Res, 245(2): 379–388
https://doi.org/10.1006/excr.1998.4279
pmid: 9851879
|
217 |
Shimada K, Filipuzzi I, Stahl M, Helliwell S B, Studer C, Hoepfner D, Seeber A, Loewith R, Movva N R, Gasser S M (2013). TORC2 signaling pathway guarantees genome stability in the face of DNA strand breaks. Mol Cell, 51(6): 829–839
https://doi.org/10.1016/j.molcel.2013.08.019
pmid: 24035500
|
218 |
Shirra M K, McCartney R R, Zhang C, Shokat K M, Schmidt M C, Arndt K M (2008). A chemical genomics study identifies Snf1 as a repressor of GCN4 translation. J Biol Chem, 283(51): 35889–35898
https://doi.org/10.1074/jbc.M805325200
pmid: 18955495
|
219 |
Shirra M K, Rogers S E, Alexander D E, Arndt K M (2005). The Snf1 protein kinase and Sit4 protein phosphatase have opposing functions in regulating TATA-binding protein association with the Saccharomyces cerevisiae INO1 promoter. Genetics, 169(4): 1957–1972
https://doi.org/10.1534/genetics.104.038075
pmid: 15716495
|
220 |
Sies H (1982). Metabolic Compartmentation. Orlando, FL, Academic Press
|
221 |
Smets B, De Snijder P, Engelen K, Joossens E, Ghillebert R, Thevissen K, Marchal K, Winderickx J (2008). Genome-wide expression analysis reveals TORC1-dependent and-independent functions of Sch9. FEMS Yeast Res, 8(8): 1276–1288
https://doi.org/10.1111/j.1567-1364.2008.00432.x
pmid: 18759743
|
222 |
Smith D L Jr, McClure J M, Matecic M, Smith J S (2007). Calorie restriction extends the chronological lifespan of Saccharomyces cerevisiae independently of the Sirtuins. Aging Cell, 6(5): 649–662
https://doi.org/10.1111/j.1474-9726.2007.00326.x
pmid: 17711561
|
223 |
Smith J S, Boeke J D (1997). An unusual form of transcriptional silencing in yeast ribosomal DNA. Genes Dev, 11(2): 241–254
https://doi.org/10.1101/gad.11.2.241
pmid: 9009206
|
224 |
Smith J S, Brachmann C B, Celic I, Kenna M A, Muhammad S, Starai V J, Avalos J L, Escalante-Semerena J C, Grubmeyer C, Wolberger C, Boeke J D (2000). A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family. Proc Natl Acad Sci USA, 97(12): 6658–6663
https://doi.org/10.1073/pnas.97.12.6658
pmid: 10841563
|
225 |
Soontorngun N, Larochelle M, Drouin S, Robert F, Turcotte B (2007). Regulation of gluconeogenesis in Saccharomyces cerevisiae is mediated by activator and repressor functions of Rds2. Mol Cell Biol, 27(22): 7895–7905
https://doi.org/10.1128/MCB.01055-07
pmid: 17875938
|
226 |
Sporty J, Lin S J, Kato M, Ognibene T, Stewart B, Turteltaub K, Bench G (2009). Quantitation of NAD+ biosynthesis from the salvage pathway in Saccharomyces cerevisiae. Yeast, 26(7): 363–369
https://doi.org/10.1002/yea.1671
pmid: 19399913
|
227 |
Staschke K A, Dey S, Zaborske J M, Palam L R, McClintick J N, Pan T, Edenberg H J, Wek R C (2010). Integration of general amino acid control and target of rapamycin (TOR) regulatory pathways in nitrogen assimilation in yeast. J Biol Chem, 285(22): 16893–16911
https://doi.org/10.1074/jbc.M110.121947
pmid: 20233714
|
228 |
Steffen K K, McCormick M A, Pham K M, MacKay V L, Delaney J R, Murakami C J, Kaeberlein M, Kennedy B K (2012). Ribosome deficiency protects against ER stress in Saccharomyces cerevisiae. Genetics, 191(1): 107–118
https://doi.org/10.1534/genetics.111.136549
pmid: 22377630
|
229 |
Strahl-Bolsinger S, Hecht A, Luo K, Grunstein M (1997). SIR2 and SIR4 interactions differ in core and extended telomeric heterochromatin in yeast. Genes Dev, 11(1): 83–93
https://doi.org/10.1101/gad.11.1.83
pmid: 9000052
|
230 |
Sturgill T W, Cohen A, Diefenbacher M, Trautwein M, Martin D E, Hall M N (2008). TOR1 and TOR2 have distinct locations in live cells. Eukaryot Cell, 7(10): 1819–1830
https://doi.org/10.1128/EC.00088-08
pmid: 18723607
|
231 |
Sun J, Kale S P, Childress A M, Pinswasdi C, Jazwinski S M (1994). Divergent roles of RAS1 and RAS2 in yeast longevity. J Biol Chem, 269(28): 18638–18645
pmid: 8034612
|
232 |
Sutherland C M, Hawley S A, McCartney R R, Leech A, Stark M J, Schmidt M C, Hardie D G (2003). Elm1p is one of three upstream kinases for the Saccharomyces cerevisiae SNF1 complex. Curr Biol, 13(15): 1299–1305
https://doi.org/10.1016/S0960-9822(03)00459-7
pmid: 12906789
|
233 |
Sutton A, Heller R C, Landry J, Choy J S, Sirko A, Sternglanz R (2001). A novel form of transcriptional silencing by Sum1-1 requires Hst1 and the origin recognition complex. Mol Cell Biol, 21(10): 3514–3522
https://doi.org/10.1128/MCB.21.10.3514-3522.2001
pmid: 11313477
|
234 |
Swinnen E, Wanke V, Roosen J, Smets B, Dubouloz F, Pedruzzi I, Cameroni E, De Virgilio C, Winderickx J (2006). Rim15 and the crossroads of nutrient signalling pathways in Saccharomyces cerevisiae. Cell Div, 1(1): 3
https://doi.org/10.1186/1747-1028-1-3
pmid: 16759348
|
235 |
Tanny J C, Kirkpatrick D S, Gerber S A, Gygi S P, Moazed D (2004). Budding yeast silencing complexes and regulation of Sir2 activity by protein-protein interactions. Mol Cell Biol, 24(16): 6931–6946
https://doi.org/10.1128/MCB.24.16.6931-6946.2004
pmid: 15282295
|
236 |
Thevelein J M, Cauwenberg L, Colombo S, Donation M, Dumortier F, Kraakman L, Lemaire K, Ma P, Nauwelaers D, Rolland F, Teunissen A, Versele M, Wera S, Winderickx J, Wera S, Winderickx J, De Winde J H, Van Dijck P (2000). Nutrient-induced signal transduction through the protein kinase A pathway and its role in the control of metabolism, stress resistance, and growth in yeast. Enzyme Microb Technol, 26(9–10): 819–825
https://doi.org/10.1016/S0141-0229(00)00177-0
pmid: 10862891
|
237 |
Todisco S, Agrimi G, Castegna A, Palmieri F (2006). Identification of the mitochondrial NAD+ transporter in Saccharomyces cerevisiae. J Biol Chem, 281(3): 1524–1531
https://doi.org/10.1074/jbc.M510425200
pmid: 16291748
|
238 |
Tsang F, James C, Kato M, Myers V, Ilyas I, Tsang M, Lin S J (2015). Reduced Ssy1-Ptr3-Ssy5 (SPS) signaling extends replicative life span by enhancing NAD+ homeostasis in Saccharomyces cerevisiae. J Biol Chem, 290(20):12753–12764
|
239 |
Ueda Y, Oshima Y (1975). A constitutive mutation, phoT, of the repressible acid phosphatase synthesis with inability to transport inorganic phosphate in Saccharomyces cerevisiae. Mol Gen Genet, 136: 255–259
|
240 |
Unal E, Kinde B, Amon A (2011). Gametogenesis eliminates age-induced cellular damage and resets life span in yeast. Science, 332(6037): 1554–1557
https://doi.org/10.1126/science.1204349
pmid: 21700873
|
241 |
Urban J, Soulard A, Huber A, Lippman S, Mukhopadhyay D, Deloche O, Wanke V, Anrather D, Ammerer G, Riezman H, Broach J R, De Virgilio C, Hall M N, Loewith R (2007). Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol Cell, 26(5): 663–674
https://doi.org/10.1016/j.molcel.2007.04.020
pmid: 17560372
|
242 |
van der Veer E, Nong Z, O’Neil C, Urquhart B, Freeman D, Pickering J G (2005). Pre-B-cell colony-enhancing factor regulates NAD+-dependent protein deacetylase activity and promotes vascular smooth muscle cell maturation. Circ Res, 97(1): 25–34
https://doi.org/10.1161/01.RES.0000173298.38808.27
pmid: 15947248
|
243 |
van Oevelen C J, van Teeffelen H A, van Werven F J, Timmers H T (2006). Snf1p-dependent Spt-Ada-Gcn5-acetyltransferase (SAGA) recruitment and chromatin remodeling activities on the HXT2 and HXT4 promoters. J Biol Chem, 281(7): 4523–4531
https://doi.org/10.1074/jbc.M509330200
pmid: 16368692
|
244 |
Veatch J R, McMurray M A, Nelson Z W, Gottschling D E (2009). Mitochondrial dysfunction leads to nuclear genome instability via an iron-sulfur cluster defect. Cell, 137(7): 1247–1258
https://doi.org/10.1016/j.cell.2009.04.014
pmid: 19563757
|
245 |
Vickers M F, Yao S Y, Baldwin S A, Young J D, Cass C E (2000). Nucleoside transporter proteins of Saccharomyces cerevisiae. Demonstration of a transporter (FUI1) with high uridine selectivity in plasma membranes and a transporter (FUN26) with broad nucleoside selectivity in intracellular membranes. J Biol Chem, 275(34): 25931–25938
https://doi.org/10.1074/jbc.M000239200
pmid: 10827169
|
246 |
Vlahakis A, Graef M, Nunnari J, Powers T (2014). TOR complex 2-Ypk1 signaling is an essential positive regulator of the general amino acid control response and autophagy. Proc Natl Acad Sci USA, 111(29): 10586–10591
https://doi.org/10.1073/pnas.1406305111
pmid: 25002487
|
247 |
Vlahakis A, Powers T (2014). A role for TOR complex 2 signaling in promoting autophagy. Autophagy, 10(11): 2085–2086
https://doi.org/10.4161/auto.36262
pmid: 25426890
|
248 |
Voordeckers K, Kimpe M, Haesendonckx S, Louwet W, Versele M, Thevelein J M (2011). Yeast 3-phosphoinositide-dependent protein kinase-1 (PDK1) orthologs Pkh1-3 differentially regulate phosphorylation of protein kinase A (PKA) and the protein kinase B (PKB)/S6K ortholog Sch9. J Biol Chem, 286(25): 22017–22027
https://doi.org/10.1074/jbc.M110.200071
pmid: 21531713
|
249 |
Wang C, Skinner C, Easlon E, Lin S J (2009). Deleting the 14-3-3 protein Bmh1 extends life span in Saccharomyces cerevisiae by increasing stress response. Genetics, 183(4): 1373–1384
https://doi.org/10.1534/genetics.109.107797
pmid: 19805817
|
250 |
Wang J, Jiang J C, Jazwinski S M (2010). Gene regulatory changes in yeast during life extension by nutrient limitation. Exp Gerontol, 45(7–8): 621–631
https://doi.org/10.1016/j.exger.2010.02.008
pmid: 20178842
|
251 |
Wanke V, Cameroni E, Uotila A, Piccolis M, Urban J, Loewith R, De Virgilio C (2008). Caffeine extends yeast lifespan by targeting TORC1. Mol Microbiol, 69(1): 277–285
https://doi.org/10.1111/j.1365-2958.2008.06292.x
pmid: 18513215
|
252 |
Wanke V, Pedruzzi I, Cameroni E, Dubouloz F, De Virgilio C (2005). Regulation of G0 entry by the Pho80-Pho85 cyclin-CDK complex. EMBO J, 24(24): 4271–4278
https://doi.org/10.1038/sj.emboj.7600889
pmid: 16308562
|
253 |
Wedaman K P, Reinke A, Anderson S, Yates J 3rd, McCaffery J M, Powers T (2003). Tor kinases are in distinct membrane-associated protein complexes in Saccharomyces cerevisiae. Mol Biol Cell, 14(3): 1204–1220
https://doi.org/10.1091/mbc.E02-09-0609
pmid: 12631735
|
254 |
Wei M, Fabrizio P, Hu J, Ge H, Cheng C, Li L, Longo V D (2008). Life span extension by calorie restriction depends on Rim15 and transcription factors downstream of Ras/PKA, Tor, and Sch9. PLoS Genet, 4(1): e13
https://doi.org/10.1371/journal.pgen.0040013
pmid: 18225956
|
255 |
Weinberger M, Feng L, Paul A, Smith D L Jr, Hontz R D, Smith J S, Vujcic M, Singh K K, Huberman J A, Burhans W C (2007). DNA replication stress is a determinant of chronological lifespan in budding yeast. PLoS ONE, 2(8): e748
https://doi.org/10.1371/journal.pone.0000748
pmid: 17710147
|
256 |
Weindruch W, Walford R L (1998). The retardation of aging and diseases by dietary restriction. Springfield, Illinois, USA, Charles C. Thomas
|
257 |
Wek R C, Jackson B M, Hinnebusch A G (1989). Juxtaposition of domains homologous to protein kinases and histidyl-tRNA synthetases in GCN2 protein suggests a mechanism for coupling GCN4 expression to amino acid availability. Proc Natl Acad Sci USA, 86(12): 4579–4583
https://doi.org/10.1073/pnas.86.12.4579
pmid: 2660141
|
258 |
Wiederhold E, Gandhi T, Permentier H P, Breitling R, Poolman B, Slotboom D J (2009). The yeast vacuolar membrane proteome. Mol Cell Proteomics, 8(2): 380–392
https://doi.org/10.1074/mcp.M800372-MCP200
pmid: 19001347
|
259 |
Wilson J M, Le V Q, Zimmerman C, Marmorstein R, Pillus L (2006). Nuclear export modulates the cytoplasmic Sir2 homologue Hst2. EMBO Rep, 7(12): 1247–1251
https://doi.org/10.1038/sj.embor.7400829
pmid: 17110954
|
260 |
Wogulis M, Chew E R, Donohoue P D, Wilson D K (2008). Identification of formyl kynurenine formamidase and kynurenine aminotransferase from Saccharomyces cerevisiae using crystallographic, bioinformatic and biochemical evidence. Biochemistry, 47(6): 1608–1621
https://doi.org/10.1021/bi701172v
pmid: 18205391
|
261 |
Wu Z, Liu S Q, Huang D (2013). Dietary restriction depends on nutrient composition to extend chronological lifespan in budding yeast Saccharomyces cerevisiae. PLoS ONE, 8(5): e64448
https://doi.org/10.1371/journal.pone.0064448
pmid: 23691220
|
262 |
Wykoff D D, O’Shea E K (2001). Phosphate transport and sensing in Saccharomyces cerevisiae. Genetics, 159(4): 1491–1499
pmid: 11779791
|
263 |
Xiao B, Heath R, Saiu P, Leiper F C, Leone P, Jing C, Walker P A, Haire L, Eccleston J F, Davis C T, Martin S R, Carling D, Gamblin S J (2007). Structural basis for AMP binding to mammalian AMP-activated protein kinase. Nature, 449(7161): 496–500
https://doi.org/10.1038/nature06161
pmid: 17851531
|
264 |
Xie J, Pierce M, Gailus-Durner V, Wagner M, Winter E, Vershon A K (1999). Sum1 and Hst1 repress middle sporulation-specific gene expression during mitosis in Saccharomyces cerevisiae. EMBO J, 18(22): 6448–6454
https://doi.org/10.1093/emboj/18.22.6448
pmid: 10562556
|
265 |
Xu Y F, Létisse F, Absalan F, Lu W, Kuznetsova E, Brown G, Caudy A A, Yakunin A F, Broach J R, Rabinowitz J D (2013). Nucleotide degradation and ribose salvage in yeast. Mol Syst Biol, 9(1): 665
https://doi.org/10.1038/msb.2013.21
pmid: 23670538
|
266 |
Yang J, Dungrawala H, Hua H, Manukyan A, Abraham L, Lane W, Mead H, Wright J, Schneider B L (2011). Cell size and growth rate are major determinants of replicative lifespan. Cell Cycle, 10(1): 144–155
https://doi.org/10.4161/cc.10.1.14455
pmid: 21248481
|
267 |
Yao Y, Tsuchiyama S, Yang C, Bulteau A L, He C, Robison B, Tsuchiya M, Miller D, Briones V, Tar K, Potrero A, Friguet B, Kennedy B K, Schmidt M (2015). Proteasomes, Sir2, and Hxk2 form an interconnected aging network that impinges on the AMPK/Snf1-regulated transcriptional repressor Mig1. PLoS Genet, 11(1): e1004968
https://doi.org/10.1371/journal.pgen.1004968
pmid: 25629410
|
268 |
Young J D, Yao S Y, Sun L, Cass C E, Baldwin S A (2008). Human equilibrative nucleoside transporter (ENT) family of nucleoside and nucleobase transporter proteins. Xenobiotica, 38(7 – 8 ): 995–1021
https://doi.org/10.1080/00498250801927427
pmid: 18668437
|
269 |
Zaborske J M, Narasimhan J, Jiang L, Wek S A, Dittmar K A, Freimoser F, Pan T, Wek R C (2009). Genome-wide analysis of tRNA charging and activation of the eIF2 kinase Gcn2p. J Biol Chem, 284(37): 25254–25267
https://doi.org/10.1074/jbc.M109.000877
pmid: 19546227
|
270 |
Zaborske J M, Wu X, Wek R C, Pan T (2010). Selective control of amino acid metabolism by the GCN2 eIF2 kinase pathway in Saccharomyces cerevisiae. BMC Biochem, 11(1): 29
https://doi.org/10.1186/1471-2091-11-29
pmid: 20684782
|
271 |
Zaman S, Lippman S I, Schneper L, Slonim N, Broach J R (2009). Glucose regulates transcription in yeast through a network of signaling pathways. Mol Syst Biol, 5: 245
https://doi.org/10.1038/msb.2009.2
pmid: 19225458
|
272 |
Zargari A, Boban M, Heessen S, Andréasson C, Thyberg J, Ljungdahl P O (2007). Inner nuclear membrane proteins Asi1, Asi2, and Asi3 function in concert to maintain the latent properties of transcription factors Stp1 and Stp2. J Biol Chem, 282(1): 594–605
https://doi.org/10.1074/jbc.M609201200
pmid: 17085444
|
273 |
Zhai R G, Zhang F, Hiesinger P R, Cao Y, Haueter C M, Bellen H J (2008). NAD synthase NMNAT acts as a chaperone to protect against neurodegeneration. Nature, 452(7189): 887–891
https://doi.org/10.1038/nature06721
pmid: 18344983
|
274 |
Zhang T, Péli-Gulli M P, Yang H, De Virgilio C, Ding J (2012). Ego3 functions as a homodimer to mediate the interaction between Gtr1-Gtr2 and Ego1 in the ego complex to activate TORC1. Structure, 20(12): 2151–2160
https://doi.org/10.1016/j.str.2012.09.019
pmid: 23123112
|
275 |
Zitomer R S, Lowry C V (1992). Regulation of gene expression by oxygen in Saccharomyces cerevisiae. Microbiol Rev, 56(1): 1–11
pmid: 1579104
|
276 |
Zuin A, Carmona M, Morales-Ivorra I, Gabrielli N, Vivancos A P, Ayté J, Hidalgo E (2010). Lifespan extension by calorie restriction relies on the Sty1 MAP kinase stress pathway. EMBO J, 29(5): 981–991
https://doi.org/10.1038/emboj.2009.407
pmid: 20075862
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|