Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2015, Vol. 10 Issue (4) : 333-357    https://doi.org/10.1007/s11515-015-1367-x
REVIEW
Less is more: Nutrient limitation induces cross-talk of nutrient sensing pathways with NAD+ homeostasis and contributes to longevity
Felicia Tsang,Su-Ju Lin()
Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
 Download: PDF(756 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Nutrient sensing pathways and their regulation grant cells control over their metabolism and growth in response to changing nutrients. Factors that regulate nutrient sensing can also modulate longevity. Reduced activity of nutrient sensing pathways such as glucose-sensing PKA, nitrogen-sensing TOR and S6 kinase homolog Sch9 have been linked to increased life span in the yeast, Saccharomyces cerevisiae, and higher eukaryotes. Recently, reduced activity of amino acid sensing SPS pathway was also shown to increase yeast life span. Life span extension by reduced SPS activity requires enhanced NAD+ (nicotinamide adenine dinucleotide, oxidized form) and nicotinamide riboside (NR, a NAD+ precursor) homeostasis. Maintaining adequate NAD+ pools has been shown to play key roles in life span extension, but factors regulating NAD+ metabolism and homeostasis are not completely understood. Recently, NAD+ metabolism was also linked to the phosphate (Pi)-sensing PHO pathway in yeast. Canonical PHO activation requires Pi-starvation. Interestingly, NAD+ depletion without Pi-starvation was sufficient to induce PHO activation, increasing NR production and mobilization. Moreover, SPS signaling appears to function in parallel with PHO signaling components to regulate NR/NAD+ homeostasis. These studies suggest that NAD+ metabolism is likely controlled by and/or coordinated with multiple nutrient sensing pathways. Indeed, cross-regulation of PHO, PKA, TOR and Sch9 pathways was reported to potentially affect NAD+ metabolism; though detailed mechanisms remain unclear. This review discusses yeast longevity-related nutrient sensing pathways and possible mechanisms of life span extension, regulation of NAD+ homeostasis, and cross-talk among nutrient sensing pathways and NAD+ homeostasis.

Keywords nutrient sensing      NAD+ homeostasis      yeast longevity     
Corresponding Author(s): Su-Ju Lin   
Just Accepted Date: 10 July 2015   Online First Date: 04 August 2015    Issue Date: 14 August 2015
 Cite this article:   
Felicia Tsang,Su-Ju Lin. Less is more: Nutrient limitation induces cross-talk of nutrient sensing pathways with NAD+ homeostasis and contributes to longevity[J]. Front. Biol., 2015, 10(4): 333-357.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-015-1367-x
https://academic.hep.com.cn/fib/EN/Y2015/V10/I4/333
Fig.1  Nutrient sensing pathways that have been linked to life span in yeast. Amino acids, preferred nitrogen sources, carbon sources and phosphate are sensed by yeast cells through various signaling pathways. Some of these pathways cross-talk via shared targets. Major functions of each pathway are summarized in the sections “PKA and carbon-source sensing pathways” to “Phosphate sensing pathway. ” Abbreviations of the key players shown here are defined in the order of left to right and top to bottom. SPS: Ssy1-Ptr3-Ssy5 amino acid sensing pathway. Yck1/2: yeast casein kinase 1/2. Stp1/2: SPS pathway transcription factors. GAAC: general amino acid control. Gcn2: general control nonderepressible kinase. Gcn4: general control nonderepressible, leucine-zipper transcription factor. TORC2: target of rapamycin complex 2. Ypk1/2: yeast protein kinase; serine/threonine protein kinase. TORC1: target of rapamycin complex 1. Tap42-PP2A: Tap42: two A phosphatase associated protein; PP2A: protein phosphatase 2A; complex. Npr1: nitrogen permease reactivator; kinase. Gln3: glutamine metabolism; TOR transcription factor. Rtg1/3: retrograde response transcription factors. Rim15: serine/threonine kinase. Pkh1/2: PKB-activating kinase homolog 1/2; serine/threonine kinases. Sch9: S6 kinase homolog. Snf3-Rgt2: plasma membrane sensors; Snf3: sucrose non-fermenting; low glucose sensor, Rgt2; restores glucose transport; high glucose sensor. Rgt1: restores glucose transport; glucose-responsive transcription factor. SNF1: sucrose non-fermenting 1; complex. Mig1: multicopy inhibitor of GAL gene expression; transcription repressor. PKA: glucose-sensing cyclic AMP-protein kinase A pathway. Msn2/4: zinc finger STRE (stress response element; AGGGG) binding transcription factors. Pnc1: nicotinamide deamidase. Gis1: zinc finger STRE binding transcription factors. Pho85-Pho80: Pho80: cyclin, Pho85: cyclin dependent kinase; complex. Pho4: PHO pathway transcription factor.
Fig.2  NAD+ biosynthetic pathways in S. cerevisiae. NAD+ is synthesized from two key intermediates, nicotinic acid mononucleotide (NaMN) and nicotinamide mononucleotide (NMN), via the de novo and NA/Nam/NR salvaging pathways. Trp: tryptophan. QA: quinolinic acid. NaMN: nicotinic acid mononucleotide. NaAD: nicotinic acid adenine dinucleotide. NAD+: nicotinamide adenine dinucleotide. Nam: nicotinamide. NA: nicotinic acid. NR: nicotinamide riboside. NMN: nicotinamide mononucleotide. Bna: Bna2, Bna7, Bna1, Bna4, Bna5. Bna6: phosphorybosyltransferase; transfers the phosphoribose moiety of phosphoribosyl pyrophosphate (PRPP). Nma1, Nma2: NaMN and NMN adenylyltransferase, transfers the AMP moiety from ATP. Qns1: a glutamine-dependent NAD+ synthetase. Sir2 Family: Sir2, Hst1, Hst2, Hst3, Hst4. Pnc1: deamidase. Npt1: phosphorybosyltransferase. Meu1, Pnp1, Urh1: nucleosidases, can also convert nicotinic acid riboside (NaR) to NA (not shown). Nrk1: NR kinase, can also convert NaR to NaMN (not shown). Pof1: NMN adenylyltransferases. Not shown: Tna1, NA transporter, also imports QA. Nrt1, high-affinity NR transporter. Isn1, Sdt1, nucleotidases, and Pho5, Pho8 phosphatases, which convert NMN to NR.
Fig.3  Nutrient sensing pathways that cross-talk with or cross-regulate the NAD+ biosynthetic pathways. NAD+ metabolism produces Nam, which is inhibitory to the activity of Sir2 family proteins as NAD+-dependent protein deacetylases. Also the Sir2 family, Hst1, can repress de novo NAD+ synthesis by silencing the expression of BNA genes. TORC1/Sch9/PKA/Pho85 may inhibit NA/NAM salvage via regulating Pnc1. Reduced SPS pathway activity increases PHO pathway activity and also increases PHO8 expression independent of PHO pathway, both leading to increased NR salvage activity. Thus active SPS pathway likely represses PHO activity. Low levels of phosphate activates PHO pathway, leading to concomitant increases in NR salvage activity via phosphatases, Pho8 and Pho5 (not shown), and nucleotidases Sdt1 and Isn1 (not shown). Whereas active Pho85 may activate or inhibit NR salvage activity. When phosphate is plentiful (and PHO pathway is suppressed), PKA helps degrade Pho84 phosphate transporter. When PHO84 is deleted, PHO pathway is activated and NR salvage activity increases. TORC1: target of rapamycin complex 1. Sch9: S6 kinase homolog. PKA: glucose-sensing cyclic AMP-protein kinase A pathway. Pho85: cyclin dependent kinase. Rim15: serine/threonine kinase. Msn2/4: zinc finger STRE (stress response element; AGGGG) binding transcription factors. Pnc1: nicotinamide deamidase. SPS: Ssy1-Ptr3-Ssy5 amino acid sensing pathway. Stp1/2: SPS pathway transcription factors. Pho2/4: PHO pathway transcription factors. Pho8: vacuolar phosphatase. Sdt1: cytoplasmic nucleotidase. Pho84: plasma membrane phosphate transporter. de novo: pathway of NaMN synthesis from tryptophan. NaMN: nicotinic acid mononucleotide. NaAD: nicotinic acid adenine dinucleotide. NAD+: nicotinamide adenine dinucleotide. Nam: nicotinamide. NA: nicotinic acid. NR: nicotinamide riboside. NMN: nicotinamide mononucleotide. Sir2 Family: Sir2, Hst1, Hst2, Hst3, Hst4.
1 Abdel-Sater F, Jean C, Merhi A, Vissers S, André B (2011). Amino acid signaling in yeast: activation of Ssy5 protease is associated with its phosphorylation-induced ubiquitylation. J Biol Chem, 286(14): 12006–12015
https://doi.org/10.1074/jbc.M110.200592 pmid: 21310956
2 AbdelRaheim S R, Cartwright J L, Gasmi L, McLennan A G (2001). The NADH diphosphatase encoded by the Saccharomyces cerevisiae NPY1 nudix hydrolase gene is located in peroxisomes. Arch Biochem Biophys, 388(1): 18–24
https://doi.org/10.1006/abbi.2000.2268 pmid: 11361135
3 Andersen M P, Nelson Z W, Hetrick E D, Gottschling D E (2008). A genetic screen for increased loss of heterozygosity in Saccharomyces cerevisiae. Genetics, 179(3): 1179–1195
https://doi.org/10.1534/genetics.108.089250 pmid: 18562670
4 Anderson R M, Bitterman K J, Wood J G, Medvedik O, Cohen H, Lin S S, Manchester J K, Gordon J I, Sinclair D A (2002). Manipulation of a nuclear NAD+ salvage pathway delays aging without altering steady-state NAD+ levels. J Biol Chem, 277(21): 18881–18890
https://doi.org/10.1074/jbc.M111773200 pmid: 11884393
5 Anderson R M, Bitterman K J, Wood J G, Medvedik O, Sinclair D A (2003). Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature, 423(6936): 181–185
https://doi.org/10.1038/nature01578 pmid: 12736687
6 Andréasson C, Heessen S, Ljungdahl P O (2006). Regulation of transcription factor latency by receptor-activated proteolysis. Genes Dev, 20(12): 1563–1568
https://doi.org/10.1101/gad.374206 pmid: 16778074
7 Ashrafi K, Lin S S, Manchester J K, Gordon J I (2000). Sip2p and its partner snf1p kinase affect aging in S. cerevisiae. Genes Dev, 14(15): 1872–1885
pmid: 10921902
8 Auesukaree C, Homma T, Tochio H, Shirakawa M, Kaneko Y, Harashima S (2004). Intracellular phosphate serves as a signal for the regulation of the PHO pathway in Saccharomyces cerevisiae. J Biol Chem, 279(17): 17289–17294
https://doi.org/10.1074/jbc.M312202200 pmid: 14966138
9 Auesukaree C, Tochio H, Shirakawa M, Kaneko Y, Harashima S (2005). Plc1p, Arg82p, and Kcs1p, enzymes involved in inositol pyrophosphate synthesis, are essential for phosphate regulation and polyphosphate accumulation in Saccharomyces cerevisiae. J Biol Chem, 280(26): 25127–25133
https://doi.org/10.1074/jbc.M414579200 pmid: 15866881
10 Bakker B M, Overkamp K M, K?tter P, Luttik M A, Pronk J T, van Dijken J P, Pronk J T, and the van Maris AJ, and the van Dijken J P (2001). Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol Rev, 25(1): 15–37
https://doi.org/10.1111/j.1574-6976.2001.tb00570.x pmid: 11152939
11 Baldwin S A, Yao S Y, Hyde R J, Ng A M, Foppolo S, Barnes K, Ritzel M W, Cass C E, Young J D (2005). Functional characterization of novel human and mouse equilibrative nucleoside transporters (hENT3 and mENT3) located in intracellular membranes. J Biol Chem, 280(16): 15880–15887
https://doi.org/10.1074/jbc.M414337200 pmid: 15701636
12 Barros M H, Bandy B, Tahara E B, Kowaltowski A J (2004). Higher respiratory activity decreases mitochondrial reactive oxygen release and increases life span in Saccharomyces cerevisiae. J Biol Chem, 279(48): 49883–49888
https://doi.org/10.1074/jbc.M408918200 pmid: 15383542
13 Beck T, Hall M N (1999). The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature, 402(6762): 689–692
https://doi.org/10.1038/45287 pmid: 10604478
14 Bedalov A, Hirao M, Posakony J, Nelson M, Simon J A (2003). NAD+-dependent deacetylase Hst1p controls biosynthesis and cellular NAD+ levels in Saccharomyces cerevisiae. Mol Cell Biol, 23(19): 7044–7054
https://doi.org/10.1128/MCB.23.19.7044-7054.2003 pmid: 12972620
15 Belenky P, Racette F G, Bogan K L, McClure J M, Smith J S, Brenner C (2007). Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk and Urh1/Pnp1/Meu1 pathways to NAD+. Cell, 129(3): 473–484
https://doi.org/10.1016/j.cell.2007.03.024 pmid: 17482543
16 Belenky P A, Moga T G, Brenner C (2008). Saccharomyces cerevisiae YOR071C encodes the high affinity nicotinamide riboside transporter Nrt1. J Biol Chem, 283(13): 8075–8079
https://doi.org/10.1074/jbc.C800021200 pmid: 18258590
17 Bender D A (1983). Biochemistry of tryptophan in health and disease. Mol Aspects Med, 6(2): 101–197
https://doi.org/10.1016/0098-2997(83)90005-5 pmid: 6371429
18 Bieganowski P, Brenner C (2004). Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans. Cell, 117(4): 495–502
https://doi.org/10.1016/S0092-8674(04)00416-7 pmid: 15137942
19 Bieganowski P, Pace H C, Brenner C (2003). Eukaryotic NAD+ synthetase Qns1 contains an essential, obligate intramolecular thiol glutamine amidotransferase domain related to nitrilase. J Biol Chem, 278(35): 33049–33055
https://doi.org/10.1074/jbc.M302257200 pmid: 12771147
20 Biliński T, Bartosz G (2006). Hypothesis: cell volume limits cell divisions. Acta Biochim Pol, 53(4): 833–835
pmid: 17106512
21 Biliński T, Zadr?g-T?cza R, Bartosz G (2012). Hypertrophy hypothesis as an alternative explanation of the phenomenon of replicative aging of yeast. FEMS Yeast Res, 12(1): 97–101
https://doi.org/10.1111/j.1567-1364.2011.00759.x pmid: 22093953
22 Binda M, Péli-Gulli M P, Bonfils G, Panchaud N, Urban J, Sturgill T W, Loewith R, De Virgilio C (2009). The Vam6 GEF controls TORC1 by activating the EGO complex. Mol Cell, 35(5): 563–573
https://doi.org/10.1016/j.molcel.2009.06.033 pmid: 19748353
23 Bitterman K J, Anderson R M, Cohen H Y, Latorre-Esteves M, Sinclair D A (2002). Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J Biol Chem, 277(47): 45099–45107
https://doi.org/10.1074/jbc.M205670200 pmid: 12297502
24 Blinder D, Coschigano P W, Magasanik B (1996). Interaction of the GATA factor Gln3p with the nitrogen regulator Ure2p in Saccharomyces cerevisiae. J Bacteriol, 178(15): 4734–4736
pmid: 8755910
25 Bogan K L, Brenner C (2008). Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition. Annu Rev Nutr, 28(1): 115–130
https://doi.org/10.1146/annurev.nutr.28.061807.155443 pmid: 18429699
26 Bogan K L, Evans C, Belenky P, Song P, Burant C F, Kennedy R, Brenner C (2009). Identification of Isn1 and Sdt1 as glucose- and vitamin-regulated nicotinamide mononucleotide and nicotinic acid mononucleotide [corrected] 5′-nucleotidases responsible for production of nicotinamide riboside and nicotinic acid riboside. J Biol Chem, 284(50): 34861–34869
https://doi.org/10.1074/jbc.M109.056689 pmid: 19846558
27 Bonawitz N D, Chatenay-Lapointe M, Pan Y, Shadel G S (2007). Reduced TOR signaling extends chronological life span via increased respiration and upregulation of mitochondrial gene expression. Cell Metab, 5(4): 265–277
https://doi.org/10.1016/j.cmet.2007.02.009 pmid: 17403371
28 Boswell-Casteel R C, Johnson J M, Duggan K D, Roe-?ur? Z, Schmitz H, Burleson C, Hays F A (2014). FUN26 (function unknown now 26) protein from Saccharomyces cerevisiae is a broad selectivity, high affinity, nucleoside and nucleobase transporter. J Biol Chem, 289(35): 24440–24451
https://doi.org/10.1074/jbc.M114.553503 pmid: 25035431
29 Brachmann C B, Sherman J M, Devine S E, Cameron E E, Pillus L, Boeke J D (1995). The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genes Dev, 9(23): 2888–2902
https://doi.org/10.1101/gad.9.23.2888 pmid: 7498786
30 Broach J R (2012). Nutritional control of growth and development in yeast. Genetics, 192(1): 73–105
https://doi.org/10.1534/genetics.111.135731 pmid: 22964838
31 Bun-Ya M, Nishimura M, Harashima S, Oshima Y (1991). The PHO84 gene of Saccharomyces cerevisiae encodes an inorganic phosphate transporter. Mol Cell Biol, 11(6): 3229–3238
pmid: 2038328
32 Burtner C R, Murakami C J, Kennedy B K, Kaeberlein M (2009). A molecular mechanism of chronological aging in yeast. Cell Cycle, 8(8): 1256–1270
https://doi.org/10.4161/cc.8.8.8287 pmid: 19305133
33 Carroll A S, Bishop A C, DeRisi J L, Shokat K M, O’Shea E K (2001). Chemical inhibition of the Pho85 cyclin-dependent kinase reveals a role in the environmental stress response. Proc Natl Acad Sci USA, 98(22): 12578–12583
https://doi.org/10.1073/pnas.211195798 pmid: 11675494
34 Casamayor A, Torrance P D, Kobayashi T, Thorner J, Alessi D R (1999). Functional counterparts of mammalian protein kinases PDK1 and SGK in budding yeast. Curr Biol, 9(4): 186–197
https://doi.org/10.1016/S0960-9822(99)80088-8 pmid: 10074427
35 Celenza J L, Carlson M (1986). A yeast gene that is essential for release from glucose repression encodes a protein kinase. Science, 233(4769): 1175–1180
https://doi.org/10.1126/science.3526554 pmid: 3526554
36 Celic I, Masumoto H, Griffith W P, Meluh P, Cotter R J, Boeke J D, Verreault A (2006). The sirtuins hst3 and Hst4p preserve genome integrity by controlling histone h3 lysine 56 deacetylation. Curr Biol, 16(13): 1280–1289
https://doi.org/10.1016/j.cub.2006.06.023 pmid: 16815704
37 Chandrashekarappa D G, McCartney R R, Schmidt M C (2013). Ligand binding to the AMP-activated protein kinase active site mediates protection of the activation loop from dephosphorylation. J Biol Chem, 288(1): 89–98
https://doi.org/10.1074/jbc.M112.422659 pmid: 23184934
38 Cheng W, Roth J (1995). Isolation of NAD cycle mutants defective in nicotinamide mononucleotide deamidase in Salmonella typhimurium. J Bacteriol, 177(23): 6711–6717
pmid: 7592458
39 Cherkasova V A, Hinnebusch A G (2003). Translational control by TOR and TAP42 through dephosphorylation of eIF2alpha kinase GCN2. Genes Dev, 17(7): 859–872
https://doi.org/10.1101/gad.1069003 pmid: 12654728
40 Chodosh L A, Olesen J, Hahn S, Baldwin A S, Guarente L, Sharp P A (1988). A yeast and a human CCAAT-binding protein have heterologous subunits that are functionally interchangeable. Cell, 53(1): 25–35
https://doi.org/10.1016/0092-8674(88)90484-9 pmid: 3280141
41 Choi K M, Kwon Y Y, Lee C K (2015). Disruption of Snf3/Rgt2 glucose sensors decreases lifespan and caloric restriction effectiveness through Mth1/Std1 by adjusting mitochondrial efficiency in yeast. FEBS Lett, 589(3): 349–357
https://doi.org/10.1016/j.febslet.2014.12.020 pmid: 25541485
42 Clapper D L, Walseth T F, Dargie P J, Lee H C (1987). Pyridine nucleotide metabolites stimulate calcium release from sea urchin egg microsomes desensitized to inositol trisphosphate. J Biol Chem, 262(20): 9561–9568
pmid: 3496336
43 Conrad M, Schothorst J, Kankipati H N, Van Zeebroeck G, Rubio-Texeira M, Thevelein J M (2014). Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev, 38(2): 254–299
https://doi.org/10.1111/1574-6976.12065 pmid: 24483210
44 De Wever V, Reiter W, Ballarini A, Ammerer G, Brocard C (2005). A dual role for PP1 in shaping the Msn2-dependent transcriptional response to glucose starvation. EMBO J, 24(23): 4115–4123
https://doi.org/10.1038/sj.emboj.7600871 pmid: 16281053
45 Delaney J R, Ahmed U, Chou A, Sim S, Carr D, Murakami C J, Schleit J, Sutphin G L, An E H, Castanza A, Fletcher M, Higgins S, Jelic M, Klum S, Muller B, Peng Z J, Rai D, Ros V, Singh M, Wende H V, Kennedy B K, Kaeberlein M (2013). Stress profiling of longevity mutants identifies Afg3 as a mitochondrial determinant of cytoplasmic mRNA translation and aging. Aging Cell, 12(1): 156–166
https://doi.org/10.1111/acel.12032 pmid: 23167605
46 DeRisi J L, Iyer V R, Brown P O (1997). Exploring the metabolic and genetic control of gene expression on a genomic scale. Science, 278(5338): 680–686
https://doi.org/10.1126/science.278.5338.680 pmid: 9381177
47 Dever T E, Hinnebusch A G (2005). GCN2 whets the appetite for amino acids. Mol Cell, 18(2): 141–142
https://doi.org/10.1016/j.molcel.2005.03.023 pmid: 15837415
48 Dilova I, Aronova S, Chen J C, Powers T (2004). Tor signaling and nutrient-based signals converge on Mks1p phosphorylation to regulate expression of Rtg1.Rtg3p-dependent target genes. J Biol Chem, 279(45): 46527–46535
https://doi.org/10.1074/jbc.M409012200 pmid: 15326168
49 Dilova I, Easlon E, Lin S J (2007). Calorie restriction and the nutrient sensing signaling pathways. Cell Mol Life Sci, 64(6): 752–767
https://doi.org/10.1007/s00018-007-6381-y pmid: 17260088
50 Dohlman H G, Thorner J W (2001). Regulation of G protein-initiated signal transduction in yeast: paradigms and principles. Annu Rev Biochem, 70(1): 703–754
https://doi.org/10.1146/annurev.biochem.70.1.703 pmid: 11395421
51 Dong J, Qiu H, Garcia-Barrio M, Anderson J, Hinnebusch A G (2000). Uncharged tRNA activates GCN2 by displacing the protein kinase moiety from a bipartite tRNA-binding domain. Mol Cell, 6(2): 269–279
https://doi.org/10.1016/S1097-2765(00)00028-9 pmid: 10983975
52 Dubouloz F, Deloche O, Wanke V, Cameroni E, De Virgilio C (2005). The TOR and EGO protein complexes orchestrate microautophagy in yeast. Mol Cell, 19(1): 15–26
https://doi.org/10.1016/j.molcel.2005.05.020 pmid: 15989961
53 Easlon E, Tsang F, Dilova I, Wang C, Lu S P, Skinner C, Lin S J (2007). The dihydrolipoamide acetyltransferase is a novel metabolic longevity factor and is required for calorie restriction-mediated life span extension. J Biol Chem, 282(9): 6161–6171
https://doi.org/10.1074/jbc.M607661200 pmid: 17200108
54 Easlon E, Tsang F, Skinner C, Wang C, Lin S J (2008). The malate-aspartate NADH shuttle components are novel metabolic longevity regulators required for calorie restriction-mediated life span extension in yeast. Genes Dev, 22(7): 931–944
https://doi.org/10.1101/gad.1648308 pmid: 18381895
55 Efeyan A, Zoncu R, Sabatini D M (2012). Amino acids and mTORC1: from lysosomes to disease. Trends Mol Med, 18(9): 524–533
https://doi.org/10.1016/j.molmed.2012.05.007 pmid: 22749019
56 Emanuelli M, Amici A, Carnevali F, Pierella F, Raffaelli N, Magni G (2003). Identification and characterization of a second NMN adenylyltransferase gene in Saccharomyces cerevisiae. Protein Expr Purif, 27(2): 357–364
https://doi.org/10.1016/S1046-5928(02)00645-9 pmid: 12597897
57 Emanuelli M, Carnevali F, Lorenzi M, Raffaelli N, Amici A, Ruggieri S, Magni G (1999). Identification and characterization of YLR328W, the Saccharomyces cerevisiae structural gene encoding NMN adenylyltransferase. Expression and characterization of the recombinant enzyme. FEBS Lett, 455(1–2): 13–17
https://doi.org/10.1016/S0014-5793(99)00852-2 pmid: 10428462
58 Endo Y, Obata T, Murata D, Ito M, Sakamoto K, Fukushima M, Yamasaki Y, Yamada Y, Natsume N, Sasaki T (2007). Cellular localization and functional characterization of the equilibrative nucleoside transporters of antitumor nucleosides. Cancer Sci, 98(10): 1633–1637
https://doi.org/10.1111/j.1349-7006.2007.00581.x pmid: 17711502
59 Erjavec N, Bayot A, Gareil M, Camougrand N, Nystrom T, Friguet B, Bulteau A L (2013). Deletion of the mitochondrial Pim1/Lon protease in yeast results in accelerated aging and impairment of the proteasome. Free Radic Biol Med, 56: 9–16
https://doi.org/10.1016/j.freeradbiomed.2012.11.019 pmid: 23220263
60 Erjavec N, Cvijovic M, Klipp E, Nystr?m T (2008). Selective benefits of damage partitioning in unicellular systems and its effects on aging. Proc Natl Acad Sci USA, 105(48): 18764–18769
https://doi.org/10.1073/pnas.0804550105 pmid: 19020097
61 Erjavec N, Larsson L, Grantham J, Nystr?m T (2007). Accelerated aging and failure to segregate damaged proteins in Sir2 mutants can be suppressed by overproducing the protein aggregation-remodeling factor Hsp104p. Genes Dev, 21(19): 2410–2421
https://doi.org/10.1101/gad.439307 pmid: 17908928
62 Erjavec N, Nystr?m T (2007). Sir2p-dependent protein segregation gives rise to a superior reactive oxygen species management in the progeny of Saccharomyces cerevisiae. Proc Natl Acad Sci USA, 104(26): 10877–10881
https://doi.org/10.1073/pnas.0701634104 pmid: 17581878
63 Eto K, Tsubamoto Y, Terauchi Y, Sugiyama T, Kishimoto T, Takahashi N, Yamauchi N, Kubota N, Murayama S, Aizawa T, Akanuma Y, Aizawa S, Kasai H, Yazaki Y, Kadowaki T (1999). Role of NADH shuttle system in glucose-induced activation of mitochondrial metabolism and insulin secretion. Science, 283(5404): 981–985
https://doi.org/10.1126/science.283.5404.981 pmid: 9974390
64 Evans C, Bogan K L, Song P, Burant C F, Kennedy R T, Brenner C (2010). NAD+ metabolite levels as a function of vitamins and calorie restriction: evidence for different mechanisms of longevity. BMC Chem Biol, 10(1): 2
https://doi.org/10.1186/1472-6769-10-2 pmid: 20175898
65 Fabrizio P, Gattazzo C, Battistella L, Wei M, Cheng C, McGrew K, Longo V D (2005). Sir2 blocks extreme life-span extension. Cell, 123(4): 655–667
https://doi.org/10.1016/j.cell.2005.08.042 pmid: 16286010
66 Fabrizio P, Hoon S, Shamalnasab M, Galbani A, Wei M, Giaever G, Nislow C, Longo V D (2010). Genome-wide screen in Saccharomyces cerevisiae identifies vacuolar protein sorting, autophagy, biosynthetic, and tRNA methylation genes involved in life span regulation. PLoS Genet, 6(7): e1001024
https://doi.org/10.1371/journal.pgen.1001024 pmid: 20657825
67 Fabrizio P, Longo V D (2003). The chronological life span of Saccharomyces cerevisiae. Aging Cell, 2(2): 73–81
https://doi.org/10.1046/j.1474-9728.2003.00033.x pmid: 12882320
68 Fabrizio P, Longo V D (2007). The chronological life span of Saccharomyces cerevisiae. Methods Mol Biol, 371: 89–95
https://doi.org/10.1007/978-1-59745-361-5_8 pmid: 17634576
69 Fabrizio P, Pozza F, Pletcher S D, Gendron C M, Longo V D (2001). Regulation of longevity and stress resistance by Sch9 in yeast. Science, 292(5515): 288–290
https://doi.org/10.1126/science.1059497 pmid: 11292860
70 Flick K M, Spielewoy N, Kalashnikova T I, Guaderrama M, Zhu Q, Chang H C, Wittenberg C (2003). Grr1-dependent inactivation of Mth1 mediates glucose-induced dissociation of Rgt1 from HXT gene promoters. Mol Biol Cell, 14(8): 3230–3241
https://doi.org/10.1091/mbc.E03-03-0135 pmid: 12925759
71 Foresti O, Rodriguez-Vaello V, Funaya C, Carvalho P (2014). Quality control of inner nuclear membrane proteins by the Asi complex. Science, 346(6210): 751–755
https://doi.org/10.1126/science.1255638 pmid: 25236469
72 Forsburg S L, Guarente L (1989). Identification and characterization of HAP4: a third component of the CCAAT-bound HAP2/HAP3 heteromer. Genes Dev, 3(8): 1166–1178
https://doi.org/10.1101/gad.3.8.1166 pmid: 2676721
73 Frye R A (2000). Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun, 273(2): 793–798
https://doi.org/10.1006/bbrc.2000.3000 pmid: 10873683
74 Gallo C M, Smith D L Jr, Smith J S (2004). Nicotinamide clearance by Pnc1 directly regulates Sir2-mediated silencing and longevity. Mol Cell Biol, 24(3): 1301–1312
https://doi.org/10.1128/MCB.24.3.1301-1312.2004 pmid: 14729974
75 Gancedo J M (1998). Yeast carbon catabolite repression. Microbiol Mol Biol Rev, 62(2): 334–361
pmid: 9618445
76 Garavaglia S, D’Angelo I, Emanuelli M, Carnevali F, Pierella F, Magni G, Rizzi M (2002). Structure of human NMN adenylyltransferase. A key nuclear enzyme for NAD homeostasis. J Biol Chem, 277(10): 8524–8530
https://doi.org/10.1074/jbc.M111589200 pmid: 11751893
77 Gauthier S, Coulpier F, Jourdren L, Merle M, Beck S, Konrad M, Daignan-Fornier B, Pinson B (2008). Co-regulation of yeast purine and phosphate pathways in response to adenylic nucleotide variations. Mol Microbiol, 68(6): 1583–1594
https://doi.org/10.1111/j.1365-2958.2008.06261.x pmid: 18433446
78 Ghislain M, Talla E, Fran?ois J M (2002). Identification and functional analysis of the Saccharomyces cerevisiae nicotinamidase gene, PNC1. Yeast, 19(3): 215–224
https://doi.org/10.1002/yea.810 pmid: 11816029
79 Giots F, Donaton M C, Thevelein J M (2003). Inorganic phosphate is sensed by specific phosphate carriers and acts in concert with glucose as a nutrient signal for activation of the protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol, 47(4): 1163–1181
https://doi.org/10.1046/j.1365-2958.2003.03365.x pmid: 12581367
80 Godard P, Urrestarazu A, Vissers S, Kontos K, Bontempi G, van Helden J, André B (2007). Effect of 21 different nitrogen sources on global gene expression in the yeast Saccharomyces cerevisiae. Mol Cell Biol, 27(8): 3065–3086
https://doi.org/10.1128/MCB.01084-06 pmid: 17308034
81 G?rner W, Durchschlag E, Martinez-Pastor M T, Estruch F, Ammerer G, Hamilton B, Ruis H, Schüller C (1998). Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity. Genes Dev, 12(4): 586–597
https://doi.org/10.1101/gad.12.4.586 pmid: 9472026
82 G?rner W, Durchschlag E, Wolf J, Brown E L, Ammerer G, Ruis H, Schüller C (2002). Acute glucose starvation activates the nuclear localization signal of a stress-specific yeast transcription factor. EMBO J, 21(1–2): 135–144
https://doi.org/10.1093/emboj/21.1.135 pmid: 11782433
83 Graeff R, Liu Q, Kriksunov I A, Hao Q, Lee H C (2006). Acidic residues at the active sites of CD38 and ADP-ribosyl cyclase determine nicotinic acid adenine dinucleotide phosphate (NAADP) synthesis and hydrolysis activities. J Biol Chem, 281(39): 28951–28957
https://doi.org/10.1074/jbc.M604370200 pmid: 16861223
84 Grose J H, Bergthorsson U, Roth J R (2005). Regulation of NAD synthesis by the trifunctional NadR protein of Salmonella enterica. J Bacteriol, 187(8): 2774–2782
https://doi.org/10.1128/JB.187.8.2774-2782.2005 pmid: 15805524
85 Guarente L (2013). Introduction: sirtuins in aging and diseases. Methods Mol Biol, 1077: 3–10
https://doi.org/10.1007/978-1-62703-637-5_1 pmid: 24014396
86 Guse A H, Lee H C (2008). NAADP: a universal Ca2+ trigger. Sci Signal, 1(44): re10
https://doi.org/10.1126/scisignal.144re10 pmid: 18984909
87 Hachinohe M, Hanaoka F, Masumoto H (2011). Hst3 and Hst4 histone deacetylases regulate replicative lifespan by preventing genome instability in Saccharomyces cerevisiae. Genes Cells, 16(4): 467–477
https://doi.org/10.1111/j.1365-2443.2011.01493.x pmid: 21401809
88 Hachinohe M, Yamane M, Akazawa D, Ohsawa K, Ohno M, Terashita Y, Masumoto H (2013). A reduction in age-enhanced gluconeogenesis extends lifespan. PLoS ONE, 8(1): e54011
https://doi.org/10.1371/journal.pone.0054011 pmid: 23342062
89 Hahn J S, Thiele D J (2004). Activation of the Saccharomyces cerevisiae heat shock transcription factor under glucose starvation conditions by Snf1 protein kinase. J Biol Chem, 279(7): 5169–5176
https://doi.org/10.1074/jbc.M311005200 pmid: 14612437
90 Hahn S, Guarente L (1988). Yeast HAP2 and HAP3: transcriptional activators in a heteromeric complex. Science, 240(4850): 317–321
https://doi.org/10.1126/science.2832951 pmid: 2832951
91 Hahn S, Young E T (2011). Transcriptional regulation in Saccharomyces cerevisiae: transcription factor regulation and function, mechanisms of initiation, and roles of activators and coactivators. Genetics, 189(3): 705–736
https://doi.org/10.1534/genetics.111.127019 pmid: 22084422
92 Haigis M C, Mostoslavsky R, Haigis K M, Fahie K, Christodoulou D C, Murphy A J, Valenzuela D M, Yancopoulos G D, Karow M, Blander G, Wolberger C, Prolla T A, Weindruch R, Alt F W, Guarente L (2006). SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell, 126(5): 941–954
https://doi.org/10.1016/j.cell.2006.06.057 pmid: 16959573
93 Halme A, Bumgarner S, Styles C, Fink G R (2004). Genetic and epigenetic regulation of the FLO gene family generates cell-surface variation in yeast. Cell, 116(3): 405–415
https://doi.org/10.1016/S0092-8674(04)00118-7 pmid: 15016375
94 Hardie D G (2007). AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol, 8(10): 774–785
https://doi.org/10.1038/nrm2249 pmid: 17712357
95 Hecht A, Strahl-Bolsinger S, Grunstein M (1996). Spreading of transcriptional repressor SIR3 from telomeric heterochromatin. Nature, 383(6595): 92–96
https://doi.org/10.1038/383092a0 pmid: 8779721
96 Hernández H, Aranda C, López G, Riego L, González A (2011). Hap2-3-5-Gln3 determine transcriptional activation of GDH1 and ASN1 under repressive nitrogen conditions in the yeast Saccharomyces cerevisiae. Microbiology, 157(Pt 3): 879–889
https://doi.org/10.1099/mic.0.044974-0 pmid: 21051484
97 Hinnebusch A G (2005). Translational regulation of GCN4 and the general amino acid control of yeast. Annu Rev Microbiol, 59(1): 407–450
https://doi.org/10.1146/annurev.micro.59.031805.133833 pmid: 16153175
98 Hinnebusch A G, Natarajan K (2002). Gcn4p, a master regulator of gene expression, is controlled at multiple levels by diverse signals of starvation and stress. Eukaryot Cell, 1(1): 22–32
https://doi.org/10.1128/EC.01.1.22-32.2002 pmid: 12455968
99 Hong S P, Leiper F C, Woods A, Carling D, Carlson M (2003). Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases. Proc Natl Acad Sci USA, 100(15): 8839–8843
https://doi.org/10.1073/pnas.1533136100 pmid: 12847291
100 Houtkooper R H, Cantó C, Wanders R J, Auwerx J (2010). The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr Rev, 31(2): 194–223
https://doi.org/10.1210/er.2009-0026 pmid: 20007326
101 Hughes A L, Gottschling D E (2012). An early age increase in vacuolar pH limits mitochondrial function and lifespan in yeast. Nature, 492(7428): 261–265
https://doi.org/10.1038/nature11654 pmid: 23172144
102 Imai S, Armstrong C M, Kaeberlein M, Guarente L (2000). Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature, 403(6771): 795–800
https://doi.org/10.1038/35001622 pmid: 10693811
103 Imai S I, Guarente L (2014). NAD and sirtuins in aging and disease. Trends Cell Biol.
104 Ivy J M, Klar A J, Hicks J B (1986). Cloning and characterization of four SIR genes of Saccharomyces cerevisiae. Mol Cell Biol, 6: 688–702
105 Jacinto E, Lorberg A (2008). TOR regulation of AGC kinases in yeast and mammals. Biochem J, 410(1): 19–37
https://doi.org/10.1042/BJ20071518 pmid: 18215152
106 Jazwinski S M (1990). An experimental system for the molecular analysis of the aging process: the budding yeast Saccharomyces cerevisiae. J Gerontol, 45(3): B68–B74
https://doi.org/10.1093/geronj/45.3.B68 pmid: 2186084
107 Jazwinski S M (2000). Aging and longevity genes. Acta Biochim Pol, 47(2): 269–279
pmid: 11051192
108 Jia S H, Li Y, Parodo J, Kapus A, Fan L, Rotstein O D, Marshall J C (2004). Pre-B cell colony-enhancing factor inhibits neutrophil apoptosis in experimental inflammation and clinical sepsis. J Clin Invest, 113(9): 1318–1327
https://doi.org/10.1172/JCI19930 pmid: 15124023
109 Jiang J C, Jaruga E, Repnevskaya M V, Jazwinski S M (2000). An intervention resembling caloric restriction prolongs life span and retards aging in yeast. FASEB J, 14(14): 2135–2137
pmid: 11024000
110 Jouandot D 2nd, Roy A, Kim J H (2011). Functional dissection of the glucose signaling pathways that regulate the yeast glucose transporter gene (HXT) repressor Rgt1. J Cell Biochem, 112(11): 3268–3275
https://doi.org/10.1002/jcb.23253 pmid: 21748783
111 Kaeberlein M, Andalis A A, Fink G R, Guarente L (2002). High osmolarity extends life span in Saccharomyces cerevisiae by a mechanism related to calorie restriction. Mol Cell Biol, 22(22): 8056–8066
https://doi.org/10.1128/MCB.22.22.8056-8066.2002 pmid: 12391171
112 Kaeberlein M, Hu D, Kerr E O, Tsuchiya M, Westman E A, Dang N, Fields S, Kennedy B K (2005a). Increased life span due to calorie restriction in respiratory-deficient yeast. PLoS Genet, 1(5): e69
https://doi.org/10.1371/journal.pgen.0010069 pmid: 16311627
113 Kaeberlein M, Kirkland K T, Fields S, Kennedy B K (2004). Sir2-independent life span extension by calorie restriction in yeast. PLoS Biol, 2(9): E296
https://doi.org/10.1371/journal.pbio.0020296 pmid: 15328540
114 Kaeberlein M, Powers R W 3rd, Steffen K K, Westman E A, Hu D, Dang N, Kerr E O, Kirkland K T, Fields S, Kennedy B K (2005b). Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science, 310(5751): 1193–1196
https://doi.org/10.1126/science.1115535 pmid: 16293764
115 Kamada Y, Fujioka Y, Suzuki N N, Inagaki F, Wullschleger S, Loewith R, Hall M N, Ohsumi Y (2005). Tor2 directly phosphorylates the AGC kinase Ypk2 to regulate actin polarization. Mol Cell Biol, 25(16): 7239–7248
https://doi.org/10.1128/MCB.25.16.7239-7248.2005 pmid: 16055732
116 Kang H J, Jeong S J, Kim K N, Baek I J, Chang M, Kang C M, Park Y S, Yun C W (2014). A novel protein, Pho92, has a conserved YTH domain and regulates phosphate metabolism by decreasing the mRNA stability of PHO4 in Saccharomyces cerevisiae. Biochem J, 457(3): 391–400
https://doi.org/10.1042/BJ20130862 pmid: 24206186
117 Kato M, Lin S J (2014a). Regulation of NAD+ metabolism, signaling and compartmentalization in the yeast Saccharomyces cerevisiae. DNA Repair (Amst), 23: 49–58
https://doi.org/10.1016/j.dnarep.2014.07.009 pmid: 25096760
118 Kato M, Lin S J (2014b). YCL047C/POF1 is a novel nicotinamide mononucleotide adenylyltransferase (NMNAT) in Saccharomyces cerevisiae. J Biol Chem, 289(22): 15577–15587
https://doi.org/10.1074/jbc.M114.558643 pmid: 24759102
119 Keith C T, Schreiber S L (1995). PIK-related kinases: DNA repair, recombination, and cell cycle checkpoints. Science, 270(5233): 50–51
https://doi.org/10.1126/science.270.5233.50 pmid: 7569949
120 Kenyon C (2001). A conserved regulatory system for aging. Cell, 105(2): 165–168
https://doi.org/10.1016/S0092-8674(01)00306-3 pmid: 11336665
121 Kim J H, Brachet V, Moriya H, Johnston M (2006). Integration of transcriptional and posttranslational regulation in a glucose signal transduction pathway in Saccharomyces cerevisiae. Eukaryot Cell, 5(1): 167–173
https://doi.org/10.1128/EC.5.1.167-173.2006 pmid: 16400179
122 Kim J H, Johnston M (2006). Two glucose-sensing pathways converge on Rgt1 to regulate expression of glucose transporter genes in Saccharomyces cerevisiae. J Biol Chem, 281(36): 26144–26149
https://doi.org/10.1074/jbc.M603636200 pmid: 16844691
123 Kornitzer D, Raboy B, Kulka R G, Fink G R (1994). Regulated degradation of the transcription factor Gcn4. EMBO J, 13(24): 6021–6030
pmid: 7813440
124 Kruegel U, Robison B, Dange T, Kahlert G, Delaney J R, Kotireddy S, Tsuchiya M, Tsuchiyama S, Murakami C J, Schleit J, Sutphin G, Carr D, Tar K, Dittmar G, Kaeberlein M, Kennedy B K, Schmidt M (2011). Elevated proteasome capacity extends replicative lifespan in Saccharomyces cerevisiae. PLoS Genet, 7(9): e1002253
https://doi.org/10.1371/journal.pgen.1002253 pmid: 21931558
125 Lamming D W, Latorre-Esteves M, Medvedik O, Wong S N, Tsang F A, Wang C, Lin S J, Sinclair D A (2005). HST2 mediates SIR2-independent life-span extension by calorie restriction. Science, 309(5742): 1861–1864
https://doi.org/10.1126/science.1113611 pmid: 16051752
126 Lamming D W, Wood J G, Sinclair D A (2004). Small molecules that regulate lifespan: evidence for xenohormesis. Mol Microbiol, 53(4): 1003–1009
https://doi.org/10.1111/j.1365-2958.2004.04209.x pmid: 15306006
127 Landry J, Sutton A, Tafrov S T, Heller R C, Stebbins J, Pillus L, Sternglanz R (2000). The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc Natl Acad Sci USA, 97(11): 5807–5811
https://doi.org/10.1073/pnas.110148297 pmid: 10811920
128 Lascaris R, Bussemaker H J, Boorsma A, Piper M, van der Spek H, Grivell L, Blom J (2003). Hap4p overexpression in glucose-grown Saccharomyces cerevisiae induces cells to enter a novel metabolic state. Genome Biol, 4(1): R3
https://doi.org/10.1186/gb-2002-4-1-r3 pmid: 12537548
129 Lee P, Kim M S, Paik S M, Choi S H, Cho B R, Hahn J S (2013). Rim15-dependent activation of Hsf1 and Msn2/4 transcription factors by direct phosphorylation in Saccharomyces cerevisiae. FEBS Lett, 587(22): 3648–3655
https://doi.org/10.1016/j.febslet.2013.10.004 pmid: 24140345
130 Lee Y S, Huang K, Quiocho F A, O’Shea E K (2008). Molecular basis of cyclin-CDK-CKI regulation by reversible binding of an inositol pyrophosphate. Nat Chem Biol, 4(1): 25–32
https://doi.org/10.1038/nchembio.2007.52 pmid: 18059263
131 Lee Y S, Mulugu S, York J D, O’Shea E K (2007). Regulation of a cyclin-CDK-CDK inhibitor complex by inositol pyrophosphates. Science, 316(5821): 109–112
https://doi.org/10.1126/science.1139080 pmid: 17412959
132 Lenburg M E, O’Shea E K (1996). Signaling phosphate starvation. Trends Biochem Sci, 21(10): 383–387
https://doi.org/10.1016/0968-0004(96)10048-7 pmid: 8918192
133 Lewis C A, Parker S J, Fiske B P, McCloskey D, Gui D Y, Green C R, Vokes N I, Feist A M, Vander Heiden M G, Metallo C M (2014). Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells. Mol Cell, 55(2): 253–263
https://doi.org/10.1016/j.molcel.2014.05.008 pmid: 24882210
134 Li B, Skinner C, Castello P R, Kato M, Easlon E, Xie L, Li T, Lu S P, Wang C, Tsang F, Poyton R O, Lin S J (2011). Identification of potential calorie restriction-mimicking yeast mutants with increased mitochondrial respiratory chain and nitric oxide levels. J Aging Res, 2011: 673185
https://doi.org/10.4061/2011/673185 pmid: 21584246
135 Li M, Valsakumar V, Poorey K, Bekiranov S, Smith J S (2013). Genome-wide analysis of functional sirtuin chromatin targets in yeast. Genome Biol, 14(5): R48
https://doi.org/10.1186/gb-2013-14-5-r48 pmid: 23710766
136 Li P L, Zhang Y, Abais J M, Ritter J K, Zhang F (2013). Cyclic ADP-ribose and NAADP in vascular regulation and diseases. Messenger (Los Angel), 2(2): 63–85
https://doi.org/10.1166/msr.2013.1022 pmid: 24749015
137 Lin S J, Defossez P A, Guarente L (2000). Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science, 289(5487): 2126–2128
https://doi.org/10.1126/science.289.5487.2126 pmid: 11000115
138 Lin S J, Ford E, Haigis M, Liszt G, Guarente L (2004). Calorie restriction extends yeast life span by lowering the level of NADH. Genes Dev, 18(1): 12–16
https://doi.org/10.1101/gad.1164804 pmid: 14724176
139 Lin S J, Kaeberlein M, Andalis A A, Sturtz L A, Defossez P A, Culotta V C, Fink G R, Guarente L (2002). Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature, 418(6895): 344–348
https://doi.org/10.1038/nature00829 pmid: 12124627
140 Lin S S, Manchester J K, Gordon J I (2003). Sip2, an N-myristoylated beta subunit of Snf1 kinase, regulates aging in Saccharomyces cerevisiae by affecting cellular histone kinase activity, recombination at rDNA loci, and silencing. J Biol Chem, 278(15): 13390–13397
https://doi.org/10.1074/jbc.M212818200 pmid: 12562756
141 Lin Y Y, Lu J Y, Zhang J, Walter W, Dang W, Wan J, Tao S C, Qian J, Zhao Y, Boeke J D, Berger S L, Zhu H (2009). Protein acetylation microarray reveals that NuA4 controls key metabolic target regulating gluconeogenesis. Cell, 136(6): 1073–1084
https://doi.org/10.1016/j.cell.2009.01.033 pmid: 19303850
142 Liu Z, Thornton J, Spírek M, Butow R A (2008). Activation of the SPS amino acid-sensing pathway in Saccharomyces cerevisiae correlates with the phosphorylation state of a sensor component, Ptr3. Mol Cell Biol, 28(2): 551–563
https://doi.org/10.1128/MCB.00929-07 pmid: 17984223
143 Ljungdahl P O (2009). Amino-acid-induced signalling via the SPS-sensing pathway in yeast. Biochem Soc Trans, 37(Pt 1): 242–247
https://doi.org/10.1042/BST0370242 pmid: 19143640
144 Ljungdahl P O, Daignan-Fornier B (2012). Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. Genetics, 190(3): 885–929
https://doi.org/10.1534/genetics.111.133306 pmid: 22419079
145 Llorente B, Dujon B (2000). Transcriptional regulation of the Saccharomyces cerevisiae DAL5 gene family and identification of the high affinity nicotinic acid permease TNA1 (YGR260w). FEBS Lett, 475(3): 237–241
https://doi.org/10.1016/S0014-5793(00)01698-7 pmid: 10869563
146 Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo J L, Bonenfant D, Oppliger W, Jenoe P, Hall M N (2002). Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell, 10(3): 457–468
https://doi.org/10.1016/S1097-2765(02)00636-6 pmid: 12408816
147 Longo V D (2003). The Ras and Sch9 pathways regulate stress resistance and longevity. Exp Gerontol, 38(7): 807–811
https://doi.org/10.1016/S0531-5565(03)00113-X pmid: 12855292
148 Longo V D, Fabrizio P (2012). Chronological aging in Saccharomyces cerevisiae. Subcell Biochem, 57: 101–121
https://doi.org/10.1007/978-94-007-2561-4_5 pmid: 22094419
149 Lu J Y, Lin Y Y, Sheu J C, Wu J T, Lee F J, Chen Y, Lin M I, Chiang F T, Tai T Y, Berger S L, Zhao Y, Tsai K S, Zhu H, Chuang L M, Boeke J D (2011). Acetylation of yeast AMPK controls intrinsic aging independently of caloric restriction. Cell, 146(6): 969–979
https://doi.org/10.1016/j.cell.2011.07.044 pmid: 21906795
150 Lu S P, Kato M, Lin S J (2009). Assimilation of endogenous nicotinamide riboside is essential for calorie restriction-mediated life span extension in Saccharomyces cerevisiae. J Biol Chem, 284(25): 17110–17119
https://doi.org/10.1074/jbc.M109.004010 pmid: 19416965
151 Lu S P, Lin S J (2010). Regulation of yeast sirtuins by NAD(+) metabolism and calorie restriction. Biochim Biophys Acta, 1804(8): 1567–1575
https://doi.org/10.1016/j.bbapap.2009.09.030 pmid: 19818879
152 Lu S P, Lin S J (2011). Phosphate-responsive signaling pathway is a novel component of NAD+ metabolism in Saccharomyces cerevisiae. J Biol Chem, 286(16): 14271–14281
https://doi.org/10.1074/jbc.M110.217885 pmid: 21349851
153 Lundh F, Mouillon J M, Samyn D, Stadler K, Popova Y, Lagerstedt J O, Thevelein J M, Persson B L (2009). Molecular mechanisms controlling phosphate-induced downregulation of the yeast Pho84 phosphate transporter. Biochemistry, 48(21): 4497–4505
https://doi.org/10.1021/bi9001198 pmid: 19348508
154 Magni G, Amici A, Emanuelli M, Orsomando G, Raffaelli N, Ruggieri S (2004). Structure and function of nicotinamide mononucleotide adenylyltransferase. Curr Med Chem, 11(7): 873–885
https://doi.org/10.2174/0929867043455666 pmid: 15078171
155 Marzluf G A (1997). Molecular genetics of sulfur assimilation in filamentous fungi and yeast. Annu Rev Microbiol, 51(1): 73–96
https://doi.org/10.1146/annurev.micro.51.1.73 pmid: 9343344
156 Matecic M, Smith D L, Pan X, Maqani N, Bekiranov S, Boeke J D, Smith J S (2010). A microarray-based genetic screen for yeast chronological aging factors. PLoS Genet, 6(4): e1000921
https://doi.org/10.1371/journal.pgen.1000921 pmid: 20421943
157 Mayer F V, Heath R, Underwood E, Sanders M J, Carmena D, McCartney R R, Leiper F C, Xiao B, Jing C, Walker P A, Haire L F, Ogrodowicz R, Martin S R, Schmidt M C, Gamblin S J, Carling D (2011). ADP regulates SNF1, the Saccharomyces cerevisiae homolog of AMP-activated protein kinase. Cell Metab, 14(5): 707–714
https://doi.org/10.1016/j.cmet.2011.09.009 pmid: 22019086
158 McCartney R R, Schmidt M C (2001). Regulation of Snf1 kinase. ACTIVATION REQUIRES PHOSPHORYLATION OF THREONINE 210 BY AN UPSTREAM KINASE AS WELL AS A DISTINCT STEP MEDIATED BY THE SNF4 SUBUNIT. J Biol Chem, 276(39): 36460–36466
https://doi.org/10.1074/jbc.M104418200 pmid: 11486005
159 McNabb D S, Pinto I (2005). Assembly of the Hap2p/Hap3p/Hap4p/Hap5p-DNA complex in Saccharomyces cerevisiae. Eukaryot Cell, 4(11): 1829–1839
https://doi.org/10.1128/EC.4.11.1829-1839.2005 pmid: 16278450
160 McNabb D S, Xing Y, Guarente L (1995). Cloning of yeast HAP5: a novel subunit of a heterotrimeric complex required for CCAAT binding. Genes Dev, 9(1): 47–58
https://doi.org/10.1101/gad.9.1.47 pmid: 7828851
161 Medvedik O, Lamming D W, Kim K D, Sinclair D A (2007). MSN2 and MSN4 link calorie restriction and TOR to sirtuin-mediated lifespan extension in Saccharomyces cerevisiae. PLoS Biol, 5(10): e261
https://doi.org/10.1371/journal.pbio.0050261 pmid: 17914901
162 Menoyo S, Ricco N, Bru S, Hernández-Ortega S, Escoté X, Aldea M, Clotet J (2013). Phosphate-activated cyclin-dependent kinase stabilizes G1 cyclin to trigger cell cycle entry. Mol Cell Biol, 33(7): 1273–1284
https://doi.org/10.1128/MCB.01556-12 pmid: 23339867
163 Mense S M, Zhang L (2006). Heme: a versatile signaling molecule controlling the activities of diverse regulators ranging from transcription factors to MAP kinases. Cell Res, 16(8): 681–692
https://doi.org/10.1038/sj.cr.7310086 pmid: 16894358
164 Mesquita A, Weinberger M, Silva A, Sampaio-Marques B, Almeida B, Le?o C, Costa V, Rodrigues F, Burhans W C, Ludovico P (2010). Caloric restriction or catalase inactivation extends yeast chronological lifespan by inducing H2O2 and superoxide dismutase activity. Proc Natl Acad Sci USA, 107(34): 15123–15128
https://doi.org/10.1073/pnas.1004432107 pmid: 20696905
165 Moazed D (2001). Common themes in mechanisms of gene silencing. Mol Cell, 8(3): 489–498
https://doi.org/10.1016/S1097-2765(01)00340-9 pmid: 11583612
166 Moriya H, Johnston M (2004). Glucose sensing and signaling in Saccharomyces cerevisiae through the Rgt2 glucose sensor and casein kinase I. Proc Natl Acad Sci USA, 101(6): 1572–1577
https://doi.org/10.1073/pnas.0305901101 pmid: 14755054
167 Mortimer R K, Johnston J R (1959). Life span of individual yeast cells. Nature, 183(4677): 1751–1752
https://doi.org/10.1038/1831751a0 pmid: 13666896
168 Mouillon J M, Persson B L (2005). Inhibition of the protein kinase A alters the degradation of the high-affinity phosphate transporter Pho84 in Saccharomyces cerevisiae. Curr Genet, 48(4): 226–234
https://doi.org/10.1007/s00294-005-0019-0 pmid: 16160831
169 Murakami C, Delaney J R, Chou A, Carr D, Schleit J, Sutphin G L, An E H, Castanza A S, Fletcher M, Goswami S, Higgins S, Holmberg M, Hui J, Jelic M, Jeong K S, Kim J R, Klum S, Liao E, Lin M S, Lo W, Miller H, Moller R, Peng Z J, Pollard T, Pradeep P, Pruett D, Rai D, Ros V, Schuster A, Singh M, Spector B L, Vander Wende H, Wang A M, Wasko B M, Olsen B, Kaeberlein M (2012). pH neutralization protects against reduction in replicative lifespan following chronological aging in yeast. Cell Cycle, 11(16): 3087–3096
https://doi.org/10.4161/cc.21465 pmid: 22871733
170 Murakami C J, Wall V, Basisty N, Kaeberlein M (2011). Composition and acidification of the culture medium influences chronological aging similarly in vineyard and laboratory yeast. PLoS ONE, 6(9): e24530
https://doi.org/10.1371/journal.pone.0024530 pmid: 21949725
171 Natalini P, Ruggieri S, Raffaelli N, Magni G (1986). Nicotinamide mononucleotide adenylyltransferase. Molecular and enzymatic properties of the homogeneous enzyme from baker’s yeast. Biochemistry, 25(12): 3725–3729
https://doi.org/10.1021/bi00360a037 pmid: 3013296
172 Natarajan K, Meyer M R, Jackson B M, Slade D, Roberts C, Hinnebusch A G, Marton M J (2001). Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol Cell Biol, 21(13): 4347–4368
https://doi.org/10.1128/MCB.21.13.4347-4368.2001 pmid: 11390663
173 Niles B J, Powers T (2014). TOR complex 2-Ypk1 signaling regulates actin polarization via reactive oxygen species. Mol Biol Cell, 25(24): 3962–3972
https://doi.org/10.1091/mbc.E14-06-1122 pmid: 25253719
174 Noda T, Klionsky D J (2008). The quantitative Pho8Delta60 assay of nonspecific autophagy. Methods Enzymol, 451: 33–42
https://doi.org/10.1016/S0076-6879(08)03203-5 pmid: 19185711
175 North B J, Verdin E (2004). Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome Biol, 5(5): 224
https://doi.org/10.1186/gb-2004-5-5-224 pmid: 15128440
176 Ocampo A, Liu J, Barrientos A (2013). NAD+ salvage pathway proteins suppress proteotoxicity in yeast models of neurodegeneration by promoting the clearance of misfolded/oligomerized proteins. Hum Mol Genet, 22(9): 1699–1708
https://doi.org/10.1093/hmg/ddt016 pmid: 23335597
177 Ocampo A, Liu J, Schroeder E A, Shadel G S, Barrientos A (2012). Mitochondrial respiratory thresholds regulate yeast chronological life span and its extension by caloric restriction. Cell Metab, 16(1): 55–67
https://doi.org/10.1016/j.cmet.2012.05.013 pmid: 22768839
178 Ohashi K, Kawai S, Murata K (2013). Secretion of quinolinic acid, an intermediate in the kynurenine pathway, for utilization in NAD+ biosynthesis in the yeast Saccharomyces cerevisiae. Eukaryot Cell, 12(5): 648–653
https://doi.org/10.1128/EC.00339-12 pmid: 23457190
179 Omnus D J, Ljungdahl P O (2014). Latency of transcription factor Stp1 depends on a modular regulatory motif that functions as cytoplasmic retention determinant and nuclear degron. Mol Biol Cell, 25(23): 3823–3833
https://doi.org/10.1091/mbc.E14-06-1140 pmid: 25253722
180 Omnus D J, Pfirrmann T, Andréasson C, Ljungdahl P O (2011). A phosphodegron controls nutrient-induced proteasomal activation of the signaling protease Ssy5. Mol Biol Cell, 22(15): 2754–2765
https://doi.org/10.1091/mbc.E11-04-0282 pmid: 21653827
181 Overton M C, Chinault S L, Blumer K J (2005). Oligomerization of G-protein-coupled receptors: lessons from the yeast Saccharomyces cerevisiae. Eukaryot Cell, 4(12): 1963–1970
https://doi.org/10.1128/EC.4.12.1963-1970.2005 pmid: 16339714
182 Pan Y (2011). Mitochondria, reactive oxygen species, and chronological aging: a message from yeast. Exp Gerontol, 46(11): 847–852
https://doi.org/10.1016/j.exger.2011.08.007 pmid: 21884780
183 Pan Y, Schroeder E A, Ocampo A, Barrientos A, Shadel G S (2011). Regulation of yeast chronological life span by TORC1 via adaptive mitochondrial ROS signaling. Cell Metab, 13(6): 668–678
https://doi.org/10.1016/j.cmet.2011.03.018 pmid: 21641548
184 Panozzo C, Nawara M, Suski C, Kucharczyka R, Skoneczny M, Bécam A M, Rytka J, Herbert C J (2002). Aerobic and anaerobic NAD+ metabolism in Saccharomyces cerevisiae. FEBS Lett, 517(1–3): 97–102
https://doi.org/10.1016/S0014-5793(02)02585-1 pmid: 12062417
185 Parua P K, Ratnakumar S, Braun K A, Dombek K M, Arms E, Ryan P M, Young E T (2010). 14-3-3 (Bmh) proteins inhibit transcription activation by Adr1 through direct binding to its regulatory domain. Mol Cell Biol, 30(22): 5273–5283
https://doi.org/10.1128/MCB.00715-10 pmid: 20855531
186 Pasula S, Jouandot D 2nd, Kim J H (2007). Biochemical evidence for glucose-independent induction of HXT expression in Saccharomyces cerevisiae. FEBS Lett, 581(17): 3230–3234
https://doi.org/10.1016/j.febslet.2007.06.013 pmid: 17586499
187 Peeters T, Louwet W, Geladé R, Nauwelaers D, Thevelein J M, Versele M (2006). Kelch-repeat proteins interacting with the Gα protein Gpa2 bypass adenylate cyclase for direct regulation of protein kinase A in yeast. Proc Natl Acad Sci USA, 103(35): 13034–13039
https://doi.org/10.1073/pnas.0509644103 pmid: 16924114
188 Perrod S, Cockell M M, Laroche T, Renauld H, Ducrest A L, Bonnard C, Gasser S M (2001). A cytosolic NAD-dependent deacetylase, Hst2p, can modulate nucleolar and telomeric silencing in yeast. EMBO J, 20(1–2): 197–209
https://doi.org/10.1093/emboj/20.1.197 pmid: 11226170
189 Persson B L, Lagerstedt J O, Pratt J R, Pattison-Granberg J, Lundh K, Shokrollahzadeh S, Lundh F (2003). Regulation of phosphate acquisition in Saccharomyces cerevisiae. Curr Genet, 43(4): 225–244
https://doi.org/10.1007/s00294-003-0400-9 pmid: 12740714
190 Pinson B, Vaur S, Sagot I, Coulpier F, Lemoine S, Daignan-Fornier B (2009). Metabolic intermediates selectively stimulate transcription factor interaction and modulate phosphate and purine pathways. Genes Dev, 23(12): 1399–1407
https://doi.org/10.1101/gad.521809 pmid: 19528318
191 Popova Y, Thayumanavan P, Lonati E, Agroch?o M, Thevelein J M (2010). Transport and signaling through the phosphate-binding site of the yeast Pho84 phosphate transceptor. Proc Natl Acad Sci USA, 107(7): 2890–2895
https://doi.org/10.1073/pnas.0906546107 pmid: 20133652
192 Powers R W 3rd, Kaeberlein M, Caldwell S D, Kennedy B K, Fields S (2006). Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev, 20(2): 174–184
https://doi.org/10.1101/gad.1381406 pmid: 16418483
193 Preiss J, Handler P (1958 a). Biosynthesis of diphosphopyridine nucleotide. I. Identification of intermediates. J Biol Chem, 233(2): 488–492
pmid: 13563526
194 Preiss J, Handler P (1958 b). Biosynthesis of diphosphopyridine nucleotide. II. Enzymatic aspects. J Biol Chem, 233(2): 493–500
pmid: 13563527
195 Ramsey K M, Mills K F, Satoh A, Imai S (2008). Age-associated loss of Sirt1-mediated enhancement of glucose-stimulated insulin secretion in beta cell-specific Sirt1-overexpressing (BESTO) mice. Aging Cell, 7(1): 78–88
https://doi.org/10.1111/j.1474-9726.2007.00355.x pmid: 18005249
196 Revollo J R, Grimm A A, Imai S (2004). The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyl transferase regulates Sir2 activity in mammalian cells. J Biol Chem, 279(49): 50754–50763
https://doi.org/10.1074/jbc.M408388200 pmid: 15381699
197 Rine J, Herskowitz I (1987). Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae. Genetics, 116(1): 9–22
pmid: 3297920
198 Rodgers J T, Lerin C, Haas W, Gygi S P, Spiegelman B M, Puigserver P (2005). Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature, 434(7029): 113–118
https://doi.org/10.1038/nature03354 pmid: 15744310
199 Rolland F, De Winde J H, Lemaire K, Boles E, Thevelein J M, Winderickx J (2000). Glucose-induced cAMP signalling in yeast requires both a G-protein coupled receptor system for extracellular glucose detection and a separable hexose kinase-dependent sensing process. Mol Microbiol, 38(2): 348–358
https://doi.org/10.1046/j.1365-2958.2000.02125.x pmid: 11069660
200 Roosen J, Engelen K, Marchal K, Mathys J, Griffioen G, Cameroni E, Thevelein J M, De Virgilio C, De Moor B, Winderickx J (2005). PKA and Sch9 control a molecular switch important for the proper adaptation to nutrient availability. Mol Microbiol, 55(3): 862–880
https://doi.org/10.1111/j.1365-2958.2004.04429.x pmid: 15661010
201 Roth S, Kumme J, Schüller H J (2004). Transcriptional activators Cat8 and Sip4 discriminate between sequence variants of the carbon source-responsive promoter element in the yeast Saccharomyces cerevisiae. Curr Genet, 45(3): 121–128
https://doi.org/10.1007/s00294-003-0476-2 pmid: 14685767
202 Rubenstein E M, McCartney R R, Zhang C, Shokat K M, Shirra M K, Arndt K M, Schmidt M C (2008). Access denied: Snf1 activation loop phosphorylation is controlled by availability of the phosphorylated threonine 210 to the PP1 phosphatase. J Biol Chem, 283(1): 222–230
https://doi.org/10.1074/jbc.M707957200 pmid: 17991748
203 Rubio-Texeira M, Van Zeebroeck G, Voordeckers K, Thevelein J M (2010). Saccharomyces cerevisiae plasma membrane nutrient sensors and their role in PKA signaling. FEMS Yeast Res, 10(2): 134–149
https://doi.org/10.1111/j.1567-1364.2009.00587.x pmid: 19849717
204 Samyn D R, Ruiz-Pávon L, Andersson M R, Popova Y, Thevelein J M, Persson B L (2012). Mutational analysis of putative phosphate- and proton-binding sites in the Saccharomyces cerevisiae Pho84 phosphate:H(+) transceptor and its effect on signalling to the PKA and PHO pathways. Biochem J, 445(3): 413–422
https://doi.org/10.1042/BJ20112086 pmid: 22587366
205 Sancak Y, Peterson T R, Shaul Y D, Lindquist R A, Thoreen C C, Bar-Peled L, Sabatini D M (2008). The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science, 320(5882): 1496–1501
https://doi.org/10.1126/science.1157535 pmid: 18497260
206 Sanz P (2003). Snf1 protein kinase: a key player in the response to cellular stress in yeast. Biochem Soc Trans, 31(Pt 1): 178–181
https://doi.org/10.1042/BST0310178 pmid: 12546680
207 Sasaki Y, Araki T, Milbrandt J (2006). Stimulation of nicotinamide adenine dinucleotide biosynthetic pathways delays axonal degeneration after axotomy. J Neurosci, 26(33): 8484–8491
https://doi.org/10.1523/JNEUROSCI.2320-06.2006 pmid: 16914673
208 Sauve A A, Schramm V L (2003). Sir2 regulation by nicotinamide results from switching between base exchange and deacetylation chemistry. Biochemistry, 42(31): 9249–9256
https://doi.org/10.1021/bi034959l pmid: 12899610
209 Scheckhuber C Q, Erjavec N, Tinazli A, Hamann A, Nystr?m T, Osiewacz H D (2007). Reducing mitochondrial fission results in increased life span and fitness of two fungal ageing models. Nat Cell Biol, 9(1): 99–105
https://doi.org/10.1038/ncb1524 pmid: 17173038
210 Schleit J, Johnson S C, Bennett C F, Simko M, Trongtham N, Castanza A, Hsieh E J, Moller R M, Wasko B M, Delaney J R, Sutphin G L, Carr D, Murakami C J, Tocchi A, Xian B, Chen W, Yu T, Goswami S, Higgins S, Jeong K S, Kim J R, Klum S, Liao E, Lin M S, Lo W, Miller H, Olsen B, Peng Z J, Pollard T, Pradeep P, Pruett D, Rai D, Ros V, Singh M, Spector B L, Wende H V, An E H, Fletcher M, Jelic M, Rabinovitch P S, Maccoss M J, Han J D, Kennedy B K, Kaeberlein M (2013). Molecular mechanisms underlying genotype-dependent responses to dietary restriction. Aging Cell, 12(6): 1050–1061
211 Schmeisser K, Mansfeld J, Kuhlow D, Weimer S, Priebe S, Heiland I, Birringer M, Groth M, Segref A, Kanfi Y, Price N L, Schmeisser S, Schuster S, Pfeiffer A F, Guthke R, Platzer M, Hoppe T, Cohen H Y, Zarse K, Sinclair D A, Ristow M, Klum S, Liao E, Lin M S, Lo W, Miller H, Olsen B, Peng Z J, Pollard T, Pradeep P, Pruett D, Rai D, Ros V, Singh M, Spector B L, Wende H V, An E H, Fletcher M, Jelic M, Rabinovitch P S, Maccoss M J, Han J D, Kennedy B K, Kaeberlein M (2013). Role of sirtuins in lifespan regulation is linked to methylation of nicotinamide. Nat Chem Biol, 9(11): 693–700
https://doi.org/10.1038/nchembio.1352 pmid: 24077178
212 Schmidt M T, Smith B C, Jackson M D, Denu J M (2004). Coenzyme specificity of Sir2 protein deacetylases: implications for physiological regulation. J Biol Chem, 279(38): 40122–40129
https://doi.org/10.1074/jbc.M407484200 pmid: 15269219
213 Schmidt-Brauns J, Herbert M, Kemmer G, Kraiss A, Schl?r S, Reidl J (2001). Is a NAD pyrophosphatase activity necessary for Haemophilus influenzae type b multiplication in the blood stream? Int J Med Microbiol, 291(3): 219–225
https://doi.org/10.1078/1438-4221-00122 pmid: 11554562
214 Schüller H J (2003). Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae. Curr Genet, 43(3): 139–160
pmid: 12715202
215 Schulz T J, Zarse K, Voigt A, Urban N, Birringer M, Ristow M (2007). Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab, 6(4): 280–293
https://doi.org/10.1016/j.cmet.2007.08.011 pmid: 17908557
216 Shama S, Lai C Y, Antoniazzi J M, Jiang J C, Jazwinski S M (1998). Heat stress-induced life span extension in yeast. Exp Cell Res, 245(2): 379–388
https://doi.org/10.1006/excr.1998.4279 pmid: 9851879
217 Shimada K, Filipuzzi I, Stahl M, Helliwell S B, Studer C, Hoepfner D, Seeber A, Loewith R, Movva N R, Gasser S M (2013). TORC2 signaling pathway guarantees genome stability in the face of DNA strand breaks. Mol Cell, 51(6): 829–839
https://doi.org/10.1016/j.molcel.2013.08.019 pmid: 24035500
218 Shirra M K, McCartney R R, Zhang C, Shokat K M, Schmidt M C, Arndt K M (2008). A chemical genomics study identifies Snf1 as a repressor of GCN4 translation. J Biol Chem, 283(51): 35889–35898
https://doi.org/10.1074/jbc.M805325200 pmid: 18955495
219 Shirra M K, Rogers S E, Alexander D E, Arndt K M (2005). The Snf1 protein kinase and Sit4 protein phosphatase have opposing functions in regulating TATA-binding protein association with the Saccharomyces cerevisiae INO1 promoter. Genetics, 169(4): 1957–1972
https://doi.org/10.1534/genetics.104.038075 pmid: 15716495
220 Sies H (1982). Metabolic Compartmentation. Orlando, FL, Academic Press
221 Smets B, De Snijder P, Engelen K, Joossens E, Ghillebert R, Thevissen K, Marchal K, Winderickx J (2008). Genome-wide expression analysis reveals TORC1-dependent and-independent functions of Sch9. FEMS Yeast Res, 8(8): 1276–1288
https://doi.org/10.1111/j.1567-1364.2008.00432.x pmid: 18759743
222 Smith D L Jr, McClure J M, Matecic M, Smith J S (2007). Calorie restriction extends the chronological lifespan of Saccharomyces cerevisiae independently of the Sirtuins. Aging Cell, 6(5): 649–662
https://doi.org/10.1111/j.1474-9726.2007.00326.x pmid: 17711561
223 Smith J S, Boeke J D (1997). An unusual form of transcriptional silencing in yeast ribosomal DNA. Genes Dev, 11(2): 241–254
https://doi.org/10.1101/gad.11.2.241 pmid: 9009206
224 Smith J S, Brachmann C B, Celic I, Kenna M A, Muhammad S, Starai V J, Avalos J L, Escalante-Semerena J C, Grubmeyer C, Wolberger C, Boeke J D (2000). A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family. Proc Natl Acad Sci USA, 97(12): 6658–6663
https://doi.org/10.1073/pnas.97.12.6658 pmid: 10841563
225 Soontorngun N, Larochelle M, Drouin S, Robert F, Turcotte B (2007). Regulation of gluconeogenesis in Saccharomyces cerevisiae is mediated by activator and repressor functions of Rds2. Mol Cell Biol, 27(22): 7895–7905
https://doi.org/10.1128/MCB.01055-07 pmid: 17875938
226 Sporty J, Lin S J, Kato M, Ognibene T, Stewart B, Turteltaub K, Bench G (2009). Quantitation of NAD+ biosynthesis from the salvage pathway in Saccharomyces cerevisiae. Yeast, 26(7): 363–369
https://doi.org/10.1002/yea.1671 pmid: 19399913
227 Staschke K A, Dey S, Zaborske J M, Palam L R, McClintick J N, Pan T, Edenberg H J, Wek R C (2010). Integration of general amino acid control and target of rapamycin (TOR) regulatory pathways in nitrogen assimilation in yeast. J Biol Chem, 285(22): 16893–16911
https://doi.org/10.1074/jbc.M110.121947 pmid: 20233714
228 Steffen K K, McCormick M A, Pham K M, MacKay V L, Delaney J R, Murakami C J, Kaeberlein M, Kennedy B K (2012). Ribosome deficiency protects against ER stress in Saccharomyces cerevisiae. Genetics, 191(1): 107–118
https://doi.org/10.1534/genetics.111.136549 pmid: 22377630
229 Strahl-Bolsinger S, Hecht A, Luo K, Grunstein M (1997). SIR2 and SIR4 interactions differ in core and extended telomeric heterochromatin in yeast. Genes Dev, 11(1): 83–93
https://doi.org/10.1101/gad.11.1.83 pmid: 9000052
230 Sturgill T W, Cohen A, Diefenbacher M, Trautwein M, Martin D E, Hall M N (2008). TOR1 and TOR2 have distinct locations in live cells. Eukaryot Cell, 7(10): 1819–1830
https://doi.org/10.1128/EC.00088-08 pmid: 18723607
231 Sun J, Kale S P, Childress A M, Pinswasdi C, Jazwinski S M (1994). Divergent roles of RAS1 and RAS2 in yeast longevity. J Biol Chem, 269(28): 18638–18645
pmid: 8034612
232 Sutherland C M, Hawley S A, McCartney R R, Leech A, Stark M J, Schmidt M C, Hardie D G (2003). Elm1p is one of three upstream kinases for the Saccharomyces cerevisiae SNF1 complex. Curr Biol, 13(15): 1299–1305
https://doi.org/10.1016/S0960-9822(03)00459-7 pmid: 12906789
233 Sutton A, Heller R C, Landry J, Choy J S, Sirko A, Sternglanz R (2001). A novel form of transcriptional silencing by Sum1-1 requires Hst1 and the origin recognition complex. Mol Cell Biol, 21(10): 3514–3522
https://doi.org/10.1128/MCB.21.10.3514-3522.2001 pmid: 11313477
234 Swinnen E, Wanke V, Roosen J, Smets B, Dubouloz F, Pedruzzi I, Cameroni E, De Virgilio C, Winderickx J (2006). Rim15 and the crossroads of nutrient signalling pathways in Saccharomyces cerevisiae. Cell Div, 1(1): 3
https://doi.org/10.1186/1747-1028-1-3 pmid: 16759348
235 Tanny J C, Kirkpatrick D S, Gerber S A, Gygi S P, Moazed D (2004). Budding yeast silencing complexes and regulation of Sir2 activity by protein-protein interactions. Mol Cell Biol, 24(16): 6931–6946
https://doi.org/10.1128/MCB.24.16.6931-6946.2004 pmid: 15282295
236 Thevelein J M, Cauwenberg L, Colombo S, Donation M, Dumortier F, Kraakman L, Lemaire K, Ma P, Nauwelaers D, Rolland F, Teunissen A, Versele M, Wera S, Winderickx J, Wera S, Winderickx J, De Winde J H, Van Dijck P (2000). Nutrient-induced signal transduction through the protein kinase A pathway and its role in the control of metabolism, stress resistance, and growth in yeast. Enzyme Microb Technol, 26(9–10): 819–825
https://doi.org/10.1016/S0141-0229(00)00177-0 pmid: 10862891
237 Todisco S, Agrimi G, Castegna A, Palmieri F (2006). Identification of the mitochondrial NAD+ transporter in Saccharomyces cerevisiae. J Biol Chem, 281(3): 1524–1531
https://doi.org/10.1074/jbc.M510425200 pmid: 16291748
238 Tsang F, James C, Kato M, Myers V, Ilyas I, Tsang M, Lin S J (2015). Reduced Ssy1-Ptr3-Ssy5 (SPS) signaling extends replicative life span by enhancing NAD+ homeostasis in Saccharomyces cerevisiae. J Biol Chem, 290(20):12753–12764
239 Ueda Y, Oshima Y (1975). A constitutive mutation, phoT, of the repressible acid phosphatase synthesis with inability to transport inorganic phosphate in Saccharomyces cerevisiae. Mol Gen Genet, 136: 255–259
240 Unal E, Kinde B, Amon A (2011). Gametogenesis eliminates age-induced cellular damage and resets life span in yeast. Science, 332(6037): 1554–1557
https://doi.org/10.1126/science.1204349 pmid: 21700873
241 Urban J, Soulard A, Huber A, Lippman S, Mukhopadhyay D, Deloche O, Wanke V, Anrather D, Ammerer G, Riezman H, Broach J R, De Virgilio C, Hall M N, Loewith R (2007). Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol Cell, 26(5): 663–674
https://doi.org/10.1016/j.molcel.2007.04.020 pmid: 17560372
242 van der Veer E, Nong Z, O’Neil C, Urquhart B, Freeman D, Pickering J G (2005). Pre-B-cell colony-enhancing factor regulates NAD+-dependent protein deacetylase activity and promotes vascular smooth muscle cell maturation. Circ Res, 97(1): 25–34
https://doi.org/10.1161/01.RES.0000173298.38808.27 pmid: 15947248
243 van Oevelen C J, van Teeffelen H A, van Werven F J, Timmers H T (2006). Snf1p-dependent Spt-Ada-Gcn5-acetyltransferase (SAGA) recruitment and chromatin remodeling activities on the HXT2 and HXT4 promoters. J Biol Chem, 281(7): 4523–4531
https://doi.org/10.1074/jbc.M509330200 pmid: 16368692
244 Veatch J R, McMurray M A, Nelson Z W, Gottschling D E (2009). Mitochondrial dysfunction leads to nuclear genome instability via an iron-sulfur cluster defect. Cell, 137(7): 1247–1258
https://doi.org/10.1016/j.cell.2009.04.014 pmid: 19563757
245 Vickers M F, Yao S Y, Baldwin S A, Young J D, Cass C E (2000). Nucleoside transporter proteins of Saccharomyces cerevisiae. Demonstration of a transporter (FUI1) with high uridine selectivity in plasma membranes and a transporter (FUN26) with broad nucleoside selectivity in intracellular membranes. J Biol Chem, 275(34): 25931–25938
https://doi.org/10.1074/jbc.M000239200 pmid: 10827169
246 Vlahakis A, Graef M, Nunnari J, Powers T (2014). TOR complex 2-Ypk1 signaling is an essential positive regulator of the general amino acid control response and autophagy. Proc Natl Acad Sci USA, 111(29): 10586–10591
https://doi.org/10.1073/pnas.1406305111 pmid: 25002487
247 Vlahakis A, Powers T (2014). A role for TOR complex 2 signaling in promoting autophagy. Autophagy, 10(11): 2085–2086
https://doi.org/10.4161/auto.36262 pmid: 25426890
248 Voordeckers K, Kimpe M, Haesendonckx S, Louwet W, Versele M, Thevelein J M (2011). Yeast 3-phosphoinositide-dependent protein kinase-1 (PDK1) orthologs Pkh1-3 differentially regulate phosphorylation of protein kinase A (PKA) and the protein kinase B (PKB)/S6K ortholog Sch9. J Biol Chem, 286(25): 22017–22027
https://doi.org/10.1074/jbc.M110.200071 pmid: 21531713
249 Wang C, Skinner C, Easlon E, Lin S J (2009). Deleting the 14-3-3 protein Bmh1 extends life span in Saccharomyces cerevisiae by increasing stress response. Genetics, 183(4): 1373–1384
https://doi.org/10.1534/genetics.109.107797 pmid: 19805817
250 Wang J, Jiang J C, Jazwinski S M (2010). Gene regulatory changes in yeast during life extension by nutrient limitation. Exp Gerontol, 45(7–8): 621–631
https://doi.org/10.1016/j.exger.2010.02.008 pmid: 20178842
251 Wanke V, Cameroni E, Uotila A, Piccolis M, Urban J, Loewith R, De Virgilio C (2008). Caffeine extends yeast lifespan by targeting TORC1. Mol Microbiol, 69(1): 277–285
https://doi.org/10.1111/j.1365-2958.2008.06292.x pmid: 18513215
252 Wanke V, Pedruzzi I, Cameroni E, Dubouloz F, De Virgilio C (2005). Regulation of G0 entry by the Pho80-Pho85 cyclin-CDK complex. EMBO J, 24(24): 4271–4278
https://doi.org/10.1038/sj.emboj.7600889 pmid: 16308562
253 Wedaman K P, Reinke A, Anderson S, Yates J 3rd, McCaffery J M, Powers T (2003). Tor kinases are in distinct membrane-associated protein complexes in Saccharomyces cerevisiae. Mol Biol Cell, 14(3): 1204–1220
https://doi.org/10.1091/mbc.E02-09-0609 pmid: 12631735
254 Wei M, Fabrizio P, Hu J, Ge H, Cheng C, Li L, Longo V D (2008). Life span extension by calorie restriction depends on Rim15 and transcription factors downstream of Ras/PKA, Tor, and Sch9. PLoS Genet, 4(1): e13
https://doi.org/10.1371/journal.pgen.0040013 pmid: 18225956
255 Weinberger M, Feng L, Paul A, Smith D L Jr, Hontz R D, Smith J S, Vujcic M, Singh K K, Huberman J A, Burhans W C (2007). DNA replication stress is a determinant of chronological lifespan in budding yeast. PLoS ONE, 2(8): e748
https://doi.org/10.1371/journal.pone.0000748 pmid: 17710147
256 Weindruch W, Walford R L (1998). The retardation of aging and diseases by dietary restriction. Springfield, Illinois, USA, Charles C. Thomas
257 Wek R C, Jackson B M, Hinnebusch A G (1989). Juxtaposition of domains homologous to protein kinases and histidyl-tRNA synthetases in GCN2 protein suggests a mechanism for coupling GCN4 expression to amino acid availability. Proc Natl Acad Sci USA, 86(12): 4579–4583
https://doi.org/10.1073/pnas.86.12.4579 pmid: 2660141
258 Wiederhold E, Gandhi T, Permentier H P, Breitling R, Poolman B, Slotboom D J (2009). The yeast vacuolar membrane proteome. Mol Cell Proteomics, 8(2): 380–392
https://doi.org/10.1074/mcp.M800372-MCP200 pmid: 19001347
259 Wilson J M, Le V Q, Zimmerman C, Marmorstein R, Pillus L (2006). Nuclear export modulates the cytoplasmic Sir2 homologue Hst2. EMBO Rep, 7(12): 1247–1251
https://doi.org/10.1038/sj.embor.7400829 pmid: 17110954
260 Wogulis M, Chew E R, Donohoue P D, Wilson D K (2008). Identification of formyl kynurenine formamidase and kynurenine aminotransferase from Saccharomyces cerevisiae using crystallographic, bioinformatic and biochemical evidence. Biochemistry, 47(6): 1608–1621
https://doi.org/10.1021/bi701172v pmid: 18205391
261 Wu Z, Liu S Q, Huang D (2013). Dietary restriction depends on nutrient composition to extend chronological lifespan in budding yeast Saccharomyces cerevisiae. PLoS ONE, 8(5): e64448
https://doi.org/10.1371/journal.pone.0064448 pmid: 23691220
262 Wykoff D D, O’Shea E K (2001). Phosphate transport and sensing in Saccharomyces cerevisiae. Genetics, 159(4): 1491–1499
pmid: 11779791
263 Xiao B, Heath R, Saiu P, Leiper F C, Leone P, Jing C, Walker P A, Haire L, Eccleston J F, Davis C T, Martin S R, Carling D, Gamblin S J (2007). Structural basis for AMP binding to mammalian AMP-activated protein kinase. Nature, 449(7161): 496–500
https://doi.org/10.1038/nature06161 pmid: 17851531
264 Xie J, Pierce M, Gailus-Durner V, Wagner M, Winter E, Vershon A K (1999). Sum1 and Hst1 repress middle sporulation-specific gene expression during mitosis in Saccharomyces cerevisiae. EMBO J, 18(22): 6448–6454
https://doi.org/10.1093/emboj/18.22.6448 pmid: 10562556
265 Xu Y F, Létisse F, Absalan F, Lu W, Kuznetsova E, Brown G, Caudy A A, Yakunin A F, Broach J R, Rabinowitz J D (2013). Nucleotide degradation and ribose salvage in yeast. Mol Syst Biol, 9(1): 665
https://doi.org/10.1038/msb.2013.21 pmid: 23670538
266 Yang J, Dungrawala H, Hua H, Manukyan A, Abraham L, Lane W, Mead H, Wright J, Schneider B L (2011). Cell size and growth rate are major determinants of replicative lifespan. Cell Cycle, 10(1): 144–155
https://doi.org/10.4161/cc.10.1.14455 pmid: 21248481
267 Yao Y, Tsuchiyama S, Yang C, Bulteau A L, He C, Robison B, Tsuchiya M, Miller D, Briones V, Tar K, Potrero A, Friguet B, Kennedy B K, Schmidt M (2015). Proteasomes, Sir2, and Hxk2 form an interconnected aging network that impinges on the AMPK/Snf1-regulated transcriptional repressor Mig1. PLoS Genet, 11(1): e1004968
https://doi.org/10.1371/journal.pgen.1004968 pmid: 25629410
268 Young J D, Yao S Y, Sun L, Cass C E, Baldwin S A (2008). Human equilibrative nucleoside transporter (ENT) family of nucleoside and nucleobase transporter proteins. Xenobiotica, 38(7 – 8 ): 995–1021
https://doi.org/10.1080/00498250801927427 pmid: 18668437
269 Zaborske J M, Narasimhan J, Jiang L, Wek S A, Dittmar K A, Freimoser F, Pan T, Wek R C (2009). Genome-wide analysis of tRNA charging and activation of the eIF2 kinase Gcn2p. J Biol Chem, 284(37): 25254–25267
https://doi.org/10.1074/jbc.M109.000877 pmid: 19546227
270 Zaborske J M, Wu X, Wek R C, Pan T (2010). Selective control of amino acid metabolism by the GCN2 eIF2 kinase pathway in Saccharomyces cerevisiae. BMC Biochem, 11(1): 29
https://doi.org/10.1186/1471-2091-11-29 pmid: 20684782
271 Zaman S, Lippman S I, Schneper L, Slonim N, Broach J R (2009). Glucose regulates transcription in yeast through a network of signaling pathways. Mol Syst Biol, 5: 245
https://doi.org/10.1038/msb.2009.2 pmid: 19225458
272 Zargari A, Boban M, Heessen S, Andréasson C, Thyberg J, Ljungdahl P O (2007). Inner nuclear membrane proteins Asi1, Asi2, and Asi3 function in concert to maintain the latent properties of transcription factors Stp1 and Stp2. J Biol Chem, 282(1): 594–605
https://doi.org/10.1074/jbc.M609201200 pmid: 17085444
273 Zhai R G, Zhang F, Hiesinger P R, Cao Y, Haueter C M, Bellen H J (2008). NAD synthase NMNAT acts as a chaperone to protect against neurodegeneration. Nature, 452(7189): 887–891
https://doi.org/10.1038/nature06721 pmid: 18344983
274 Zhang T, Péli-Gulli M P, Yang H, De Virgilio C, Ding J (2012). Ego3 functions as a homodimer to mediate the interaction between Gtr1-Gtr2 and Ego1 in the ego complex to activate TORC1. Structure, 20(12): 2151–2160
https://doi.org/10.1016/j.str.2012.09.019 pmid: 23123112
275 Zitomer R S, Lowry C V (1992). Regulation of gene expression by oxygen in Saccharomyces cerevisiae. Microbiol Rev, 56(1): 1–11
pmid: 1579104
276 Zuin A, Carmona M, Morales-Ivorra I, Gabrielli N, Vivancos A P, Ayté J, Hidalgo E (2010). Lifespan extension by calorie restriction relies on the Sty1 MAP kinase stress pathway. EMBO J, 29(5): 981–991
https://doi.org/10.1038/emboj.2009.407 pmid: 20075862
[1] Kailash Ramlaul, Christopher H. S. Aylett. Signal integration in the (m)TORC1 growth pathway[J]. Front. Biol., 2018, 13(4): 237-262.
[2] Catherine C. Y. CHANG, Jie SUN, Ta-Yuan CHANG. Membrane-bound O-acyltransferases (MBOAT)[J]. Front Biol, 2011, 6(3): 177-182.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed