Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2015, Vol. 10 Issue (5) : 448-457    https://doi.org/10.1007/s11515-015-1370-2
RESEARCH ARTICLE
Reckoning the SIX1 mutation’s effects in branchio-oto-renal syndrome — A bioinformatics approach
B. Preethi,V. Shanthi,K. Ramanathan()
Industrial Biotechnology Division, School of Bio Sciences and Technology, VIT University, Vellore − 632014, Tamil Nadu, India
 Download: PDF(1606 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Branchio-oto-renal syndrome (BOR) is autosomal dominant disorder which generates hearing impairment and kidney failures in affected individuals. The disease genomic maps were drawn back in recent years, demonstrating, missense mutations responsible in disease were located in SIX1, EYA1 and EYA2 genes. We try to uncover molecular biology of the syndrome with bioinformatics perspective, taking SIX1 and EYA2 protein interaction at center point. The study initiated with 23 natural mutations of SIX1 gene. They were first analyzed with prediction servers like SIFT, PolyPhen2, I Mutant, SNPs&GO, PHD-SNP and Panther, to identify their impact on their structural stability and function. Subsequently it narrowed down to seven consistent with our quest. They were analyzed on IUPred disorder prediction server. Later SIX1 and its all mutant proteins were docked with EYA2 protein using GRAMM-X server. The binding affinity of docked structures was analyzed using DFIRE2 algorithm. The results justify the earlier wet laboratory studies and indicate the reason behind them. Finally we summarize that the proven inactivity of all other mutants is due to the structural disorder created by mutations, hence usual molecular interaction is hindered; strangely protein interaction takes place at DNA binding site of SIX1 mutants.

Keywords branchio-oto-renal syndrome (BOR)      hearing loss      damaging mutations      SIX1      EYA2      protein-protein interactions     
Corresponding Author(s): K. Ramanathan   
Just Accepted Date: 21 August 2015   Online First Date: 30 September 2015    Issue Date: 30 October 2015
 Cite this article:   
B. Preethi,V. Shanthi,K. Ramanathan. Reckoning the SIX1 mutation’s effects in branchio-oto-renal syndrome — A bioinformatics approach[J]. Front. Biol., 2015, 10(5): 448-457.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-015-1370-2
https://academic.hep.com.cn/fib/EN/Y2015/V10/I5/448
Fig.1  Docked complexes of the native and mutant SIX1 with EYA2 protein.
S.No Uniprot ID and rs ID Amino acid change Tolerance index Predictions PSIC Predictions I Mutant 2.0 Predictions
1 Q15475 V17E 0 Deleterious 0.999 Probably damaging −0.03 Destabilizing
2 Q15475 H73P 0.01 Deleterious 0.621 Possibly damaging 0.36 Stabilizing
3 Q15475 V106G 0 Deleterious 1 Probably damaging −4.2 Destabilizing
4 Q15475 R112C 0 Deleterious 1 Probably damaging −1.31 Destabilizing
5 Q15475 P249L 0.69 Non-deleterious 0.001 Benign −0.95 Destabilizing
6 Q15475 R99C 0 Deleterious 1 Probably damaging −1.07 Destabilizing
7 Q15475 R110Q 0 Deleterious 1 Probably damaging −0.97 Destabilizing
8 Q15475 R110W 0 Deleterious 1 Probably Damaging −0.37 Destabilizing
9 Q15475 W122R 0 Deleterious 0.97 Probably damaging −1.85 Destabilizing
10 Q15475 Y129C 0 Deleterious 1 Probably damaging 0.13 Stabilizing
11 rs374638294 P211L 0.28 Non-deleterious 0 Benign 0.72 Stabilizing
12 rs371998997 V168I 0.07 Non-deleterious 0.987 Probably damaging −0.26 Destabilizing
13 rs370259896 L260Q 0.09 Non-deleterious 0.025 Benign 0.24 Stabilizing
14 rs368974927 P249Q 0.32 Non-deleterious 0.242 Benign −1.93 Destabilizing
15 rs200835641 A95V 0 Deleterious 0.984 Probably damaging 0.98 Stabilizing
16 rs200205240 T252A 0.95 Non-deleterious 0 Benign −0.37 Destabilizing
17 rs149265761 D227E 0.61 Non-deleterious 0 Benign 0.64 Stabilizing
18 rs149166341 H44Q 0.87 Non-deleterious 0.006 Benign −0.12 Destabilizing
19 rs146357380 E28D 0.84 Non-deleterious 0.022 Benign 0.54 Stabilizing
20 rs146129487 E217K 0.91 Non-deleterious 0.704 Possibly damaging −0.49 Destabilizing
21 rs144481204 D227Y 0.01 Deleterious 0.874 Possibly damaging 0.44 Stabilizing
22 rs143516729 T165I 0.45 Non-deleterious 0.155 Benign −0.35 Destabilizing
23 rs142301715 N193I 0.24 Non-deleterious 0.138 Benign 0.73 Stabilizing
Tab.1  List of variants predicted to be functionally significant by SIFT, PolyPhen 2.0 and I Mutant 2.0
S.No Amino acid change PHD-SNP probability PANTHER probability SNP&GO probability Prediction
1 V17E 0.98 0.962 0.991 Disease
2 R99C 0.984 0.987 0.991 Disease
3 V106G 0.939 0.972 0.989 Disease
4 R110Q 0.965 0.976 0.99 Disease
5 R110W 0.978 0.995 0.992 Disease
6 R112C 0.986 0.993 0.993 Disease
7 W122R 0.989 0.985 0.993 Disease
Tab.2  List of variants that were predicted to be functionally significant by SNP&Go, PHD-SNP and PANTHER, mutants in bold letter are significantly deleterious and highly damaging
Fig.2  Order and disorder prediction from protein sequence, based on IUPred and ANCHOR algorithm. (A) SIX1 wild type, (B) V17E and (C) R99C.
Fig.3  Order and disorder prediction from protein sequence, based on IUPred and ANCHOR algorithm. (A) V106G (B) R110Q and (C) R110W.
Fig.4  Order and disorder prediction from protein sequence, based on IUPred and ANCHOR algorithm. (A) R112C and (B) W122R.
S.No Docked protein complexes Main chain-main chain interactions Main chain-side chain interactions Side chain-side chain interactions Total number of interactions
1 SIX1-EYA2 2 5 2 9
2 V17E-EYA2 2 4 0 6
3 R99C-EYA2 0 10 7 17
4 V106G-EYA2 0 10 7 17
5 R110Q-EYA2 0 10 7 17
6 R110W-EYA2 1 2 7 10
7 R112C-EYA2 1 10 7 18
8 W122R-EYA2 0 10 11 21
Tab.3  List of intermolecular hydrogen bonds essential for the stability of SIX1-EYA2 docked complex.
S.No Docked protein complexes Number of ionic interactions Total number of interactions Free energy of binding (kcal/mol)
1 SIX1-EYA2 1 9 −843.913
2 V17E-EYA2 1 6 −841.117
3 R99C-EYA2 5 17 −854.855
4 V106G-EYA2 5 17 −854.141
5 R110Q-EYA2 5 17 −854.932
6 R110W-EYA2 1 10 −640.758
7 R112C-EYA2 6 18 −855.918
8 W122R-EYA2 6 21 −852.954
Tab.4  Details of number of ionic interactions, total interactions and binding energy of docked complex
Fig.5  Showing the similarity pattern between normalized free energy, number of total interactions and number of ionic interactions in corresponding docked files.
Fig.6  Visualization of ionic interactions between Native and Mutant SIX1 protein and EYA2.
S.No Docked protein complexes Number of ionic interactions POS (SIX1) RES POS (EYA2) RES
1 SIX1-EYA2 1 41 ASP 210 LYS
2 V17E-EYA2 1 41 ASP 210 LYS
3 R99C-EYA2 5 12 GLU 210 LYS
153 GLU 223 ARG
183 GLU 111 ARG
42 HIS 108 ASP
152 ARG 1 GLU
4 V106G-EYA2 5 12 GLU 210 LYS
153 GLU 223 ARG
183 GLU 111 ARG
42 HIS 108 ASP
152 ARG 1 GLU
5 R110Q-EYA2 5 12 GLU 210 LYS
153 GLU 223 ARG
183 GLU 111 ARG
42 HIS 108 ASP
152 ARG 1 GLU
6 R110W-EYA2 1 185 LYS 125 GLU
7 R112C-EYA2 6 12 GLU 210 LYS
47 GLU 111 ARG
153 GLU 223 ARG
183 GLU 111 ARG
42 HIS 108 ASP
152 ARG 1 GLU
8 W122R-EYA2 6 12 GLU 210 LYS
47 GLU 111 ARG
153 GLU 223 ARG
183 GLU 111 ARG
42 HIS 108 ASP
152 ARG 1 GLU
Tab.5  Elaborated Ionic interactions in the docked protein complexes
1 Abdelhak  S, Kalatzis  V, Heilig  R, Compain  S, Samson  D, Vincent  C, Weil  D, Cruaud  C, Sahly  I, Leibovici  M, Bitner-Glindzicz  M, Francis  M, Lacombe  D, Vigneron  J, Charachon  R, Boven  K, Bedbeder  P, Van Regemorter  N, Weissenbach  J, Petit  C (1997). A human homologue of the Drosophila eyes absent gene underlies branchio-oto-renal (BOR) syndrome and identifies a novel gene family. Nat Genet, 15(2): 157–164
https://doi.org/10.1038/ng0297-157
2 Adzhubei  I A, Schmidt  S, Peshkin  L, Ramensky  V E, Gerasimova  A, Bork  P, Kondrashov  A S, Sunyaev  S R (2010). A method and server for predicting damaging missense mutations. Nat Methods, 7(4): 248–249
https://doi.org/10.1038/nmeth0410-248
3 Bairoch  A, Apweiler  R (1996). The SWISS-PROT protein sequence data bank and its new supplement TREMBL. Nucleic Acids Res, 24(1): 21–25
https://doi.org/10.1093/nar/24.1.21
4 Calabrese  R, Capriotti  E, Fariselli  P, Martelli  P L, Casadio  R (2009). Functional annotations improve the predictive score of human disease-related mutations in proteins. Hum Mutat, 30(8): 1237–1244
https://doi.org/10.1002/humu.21047
5 Capriotti  E, Altman  R B, Bromberg  Y (2013). Collective judgment predicts disease-associated single nucleotide variants. BMC Genomics, 14(Suppl 3): 3
https://doi.org/10.1186/1471-2164-14-S3-S2
6 Capriotti  E, Calabrese  R, Casadio  R (2006). Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information. Bioinformatics, 22(22): 2729–2734
https://doi.org/10.1093/bioinformatics/btl423
7 Capriotti  E, Fariselli  P, Casadio  R (2005). I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res, 33(Web Server): W306–W310
https://doi.org/10.1093/nar/gki375
8 Christensen  K L, Patrick  A N, McCoy  E L, Ford  H L (2008). The six family of homeobox genes in development and cancer. Adv Cancer Res, 101: 93–126
https://doi.org/10.1016/S0065-230X(08)00405-3
9 Dosztányi  Z, Csizmok  V, Tompa  P, Simon  I (2005a). IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics, 21(16): 3433–3434
https://doi.org/10.1093/bioinformatics/bti541
10 Dosztányi  Z, Csizmók  V, Tompa  P, Simon  I (2005b). The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. J Mol Biol, 347(4): 827–839
https://doi.org/10.1016/j.jmb.2005.01.071
11 Dosztányi  Z, Mészáros  B, Simon  I (2009). ANCHOR: web server for predicting protein binding regions in disordered proteins. Bioinformatics, 25(20): 2745–2746
https://doi.org/10.1093/bioinformatics/btp518
12 Fraser  F C, Aymé  S, Halal  F, Sproule  J, Opitz  J M (1983). Autosomal dominant duplication of the renal collecting system, hearing loss, and external ear anomalies: a new syndrome?  Am J Med Genet, 14(3): 473–478
https://doi.org/10.1002/ajmg.1320140311
13 Fraser  F C, Ling  D, Clogg  D, Nogrady  B, Gorlin  R J (1978). Genetic aspects of the BOR syndrome − branchial fistulas, ear pits, hearing loss, and renal anomalies. Am J Med Genet, 2(3): 241–252
https://doi.org/10.1002/ajmg.1320020305
14 Fraser  F C, Sproule  J R, Halal  F, Optiz  J M (1980). Frequency of the branchio-oto-renal (BOR) syndrome in children with profound hearing loss. Am J Med Genet, 7(3): 341–349
https://doi.org/10.1002/ajmg.1320070316
15 Kawakami  K, Sato  S, Ozaki  H, Ikeda  K (2000). Six family genes − structure and function as transcription factors and their roles in development. BioEssays, 22(7): 616–626
https://doi.org/10.1002/1521-1878(200007)22:7<616::AID-BIES4>3.0.CO;2-R
16 Kochhar  A, Fischer  S M, Kimberling  W J, Smith  R J H (2007). Branchio-oto-renal syndrome. Am J Med Genet A, 143(14): 1671–1678
https://doi.org/10.1002/ajmg.a.31561
17 Kumar  P, Henikoff  S, Ng  P C (2009). Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc, 4(8): 1073–1081
https://doi.org/10.1038/nprot.2009.86
18 Kumar  S, Deffenbacher  K, Marres  H A, Cremers  C W, Kimberling  W J (2000). Genomewide search and genetic localization of a second gene associated with autosomal dominant branchio-oto-renal syndrome: clinical and genetic implications. Am J Hum Genet, 66(5): 1715–1720
https://doi.org/10.1086/302890
19 Larkin  M A, Blackshields  G, Brown  N P, Chenna  R, McGettigan  P A, McWilliam  H, Valentin  F, Wallace  I M, Wilm  A, Lopez  R, Thompson  J D, Gibson  T J, Higgins  D G (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21): 2947–2948
https://doi.org/10.1093/bioinformatics/btm404
20 Mészáros  B, Simon  I, Dosztányi  Z (2009). Prediction of protein binding regions in disordered proteins. PLOS Comput Biol, 5(5): e1000376
https://doi.org/10.1371/journal.pcbi.1000376
21 Ng  P C, Henikoff  S (2003). SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res, 31(13): 3812–3814
https://doi.org/10.1093/nar/gkg509
22 Patrick  A N, Schiemann  B J, Yang  K, Zhao  R, Ford  H L (2009). Biochemical and functional characterization of six SIX1 Branchio-oto-renal syndrome mutations. J Biol Chem, 284(31): 20781–20790
https://doi.org/10.1074/jbc.M109.016832
23 Ruf  R G, Xu  P X, Silvius  D, Otto  E A, Beekmann  F, Muerb  U, Kumar  S, Neuhaus  T J, Kemper  M J, Raymond  R M, Brophy  P D, Berkman  J, Gattas  M, Hyland  V, Ruf  E M, Schwartz  C, Chang  E H, Smith  R J, Stratakis  C A, Weil  D, Petit  C, Hildebrandt  F (2004). Six1 mutations cause branchio-oto-renal syndrome by disruption of Eya1- Six1-DNA complexes. Proc Natl Acad Sci USA, 101(21): 8090–8095
https://doi.org/10.1073/pnas.0308475101
24 Schwede  T, Kopp  J, Guex  N, Peitsch  M C (2003). SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res, 31(13): 3381–3385
https://doi.org/10.1093/nar/gkg520
25 Thomas  P D, Campbell  M J, Kejariwal  A, Mi  H, Karlak  B, Daverman  R, Diemer  K, Muruganujan  A, Narechania  A (2003a). PANTHER: a library of protein families and subfamilies indexed by function. Genome Res, 13(9): 2129–2141
https://doi.org/10.1101/gr.772403
26 Thomas  P D, Kejariwal  A, Campbell  M J, Mi  H, Diemer  K, Guo  N, Ladunga  I, Ulitsky-Lazareva  B, Muruganujan  A, Rabkin  S, Vandergriff  J A, Doremieux  O (2003b). PANTHER: a browsable database of gene products organized by biological function, using curated protein family and subfamily classification. Nucleic Acids Res, 31(1): 334–341
https://doi.org/10.1093/nar/gkg115
27 Tina  K G, Bhadra  R, Srinivasan  N (2007). PIC: Protein Interactions Calculator. Nucleic Acids Res, 35(Web Server): W473–W476
https://doi.org/10.1093/nar/gkm423
28 Tovchigrechko  A, Vakser  I A (2005). Development and testing of an automated approach to protein docking. Proteins, 60(2): 296–301
https://doi.org/10.1002/prot.20573
29 Tovchigrechko  A, Vakser  I A (2006). GRAMM-X public web server for protein-protein docking. Nucleic Acids Res, 34(Web Server): W310–W314
https://doi.org/10.1093/nar/gkl206
[1] Rini Jacob,Anbalagan Moorthy. Targeting secret handshakes of biological processes for novel drug development[J]. Front. Biol., 2016, 11(2): 132-140.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed