Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2015, Vol. 10 Issue (6) : 495-502    https://doi.org/10.1007/s11515-015-1381-z
RESEARCH ARTICLE
Role of gap junctions between keratinocyte and melanocyte in melanogenesis
Divya Padma1,2,Kapaettu Satyamoorthy1,Kumar M.R. Bhat2,*()
1. Division of Biotechnology, School of Life Sciences, Manipal University, Manipal-576104, India
2. Department of Anatomy, Kasturba Medical College, Manipal University, Manipal-576104, India
 Download: PDF(1248 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The process of melanogenesis in melanocytes and the transport of melanin in the form of melanosomes to the neighboring keratinocytes are the key steps in human skin pigmentation. Keratinocytes and melanocytes interact in intricate manner to maintain the homeostasis. The present study was designed to understand the role of cell-cell interaction through the gap junctions between melanocytes and keratinocytes on melanogenesis. We show that, inhibition of the gap junctional activity between human keratinocytes and melanocytes in a coculture system using gap junction blocker lowers the expression of key regulatory genes of melanogenesis such as tyrosinase and microphthalmia-associated transcription factor (MITF). This was followed by concurrent decrease in tyrosinase protein levels and activity. Our results show the preliminary evidence for the regulation of melanogenesis in melanocytes through direct gap junctional communication by keratinocytes. Deciphering the mechanism and factors involved in the process would uncover the significance of gap junctions in melanogenesis.

Keywords melanocyte      keratinocyte      melanogenesis      gap junctions      cell communication     
Corresponding Author(s): Kumar M.R. Bhat   
Just Accepted Date: 30 December 2015   Online First Date: 14 January 2016    Issue Date: 26 January 2016
 Cite this article:   
Divya Padma,Kapaettu Satyamoorthy,Kumar M.R. Bhat. Role of gap junctions between keratinocyte and melanocyte in melanogenesis[J]. Front. Biol., 2015, 10(6): 495-502.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-015-1381-z
https://academic.hep.com.cn/fib/EN/Y2015/V10/I6/495
Fig.1  Cytotoxicity of oleamide. Oleamide toxicity in (A) keratinocyte and (B) melanocytes. A concentration of oleamide above 125 µM was found to be toxic. **, p<0.01 ; ***, p<0.001 in comparison with untreated group.
Fig.2  Micrographs of stained keratinocytes and melanocytes. Human keratinocytes stained with Calcein (A) Fluorescence, (B)bright-field image. Human melanocytes stained with Dil (C) Fluorescence (D) bright-field image. Coculture of keratinocytes and melanocytes (E) stained with Calcein (fluorescence) (F) stained with Dil (fluorescence) and (G) bright-field image. White circles are marking Dil stained melanocyte interacting with Calcein stained keratinocytes, observed under (E) blue excitation filter (450-480nm) (F) green excitation filter (510–550nm) and (G) bright-field in fluorescence microscope.
Fig.3  Gap junctional activity between keratinocyte and melanocyte–flow cytometry assay. Quadrant2 (Q2) cells are double positive (positive for both Calcein and Dil) indicating the dye transfer from donor (keratinocytes) to recipient (melanocytes) cells. (A) Control, (B) + 25µM of oleamide, (C) + 50µM of oleamide, (D) + 100µM of oleamide. (E) Dose dependent decrease in the double stained cells i.e. decreased gap junctional activity was observed in oleamide treated cocultures (F). *, p<0.05 and **, p<0.01
Fig.4  Gap junctional activity between melanocytes—flow cytometric analysis. Quadrant 2 (Q2) represents the cells which aredouble positive (positive for both Calcein and Dil) which in turn indicates the dye transfer from donor melanocytes (Calcein stained cells) to recipient melanocytes (Dil stained cells). (A) Control, (B) + 25µM of oleamide, (C) + 50µM of oleamide, (D) + 100µM of oleamide. (E) Addition of oleamide to the culture containing Calcein stained andDil stained melanocytes did not show any significant changes in the gap junctional activity.
Fig.5  Effect of oleamide on transcriptional level of MITF (A) and TYR (B) in melanocytes and coculture of keratinocytes and melanocytes. No significant change was observed in theexpression level of MITF and TYR in melanocytes when treated with oleamide but in coculture of keratinocytes and melanocytes, there was a significant decrease in expression level of MITF (***, p<0.001) and tyrosinase (**, p <0.01) in comparison with untreated control group.
Fig.6  Western blot analysis to show the tyrosinase protein level. Level of tyrosinase protein in the cell lysate (A) from melanocytes alone (B) from coculture of melanocyte and keratinocytes with or without addition of oleamide. (C) Graphical representation to show the reduction in the expression of tyrosinase protein. Addition of oleamide significantly reduced the expression of tyrosinase protein in coculture of keratinocytes and melanocytes and not in the culture containing only melanocytes. The data represents the mean of two experiments with standard error (*, p<0.05 and **, p<0.01).
Fig.7  Effect of oleamide on tyrosinase enzyme activity. (A) No significant change in tyrosinase enzyme activity was found when melanocytes alone were treated with oleamide. However, significant reduction in the tyrosinase enzyme activity was found when coculture of keratinocytes and melanocytes were treated with oleamide. (B) Addition of oleamide to the melanocyte lysate did not alter the tyrosinase enzyme activity indicating no direct inhibitory effect of oleamide on tyrosinase enzyme activity. However, when the known inhibitor of tyrosinase activity, the Kojic acid was added to the melanocyte lysate we observed significant reduction in the tyrosinase activity.*, p<0.05, **, p<0.01 in comparison with control group.
1 Boger  D L, Patterson  J E, Guan  X, Cravatt  B F, Lerner  R A, Gilula  N B (1998). Chemical requirements for inhibition of gap junction communication by the biologically active lipid oleamide. Proc Natl Acad Sci USA, 95(9): 4810–4815
https://doi.org/10.1073/pnas.95.9.4810 pmid: 9560184
2 Costin  G E, Hearing  V J (2007). Human skin pigmentation: melanocytes modulate skin color in response to stress. FASEB J, 21(4): 976–994
https://doi.org/10.1096/fj.06-6649rev pmid: 17242160
3 Dbouk  H A, Mroue  R M, El-Sabban  M E, Talhouk  R S (2009). Connexins: a myriad of functions extending beyond assembly of gap junction channels. Cell Commun Signal, 7(1): 4
https://doi.org/10.1186/1478-811X-7-4 pmid: 19284610
4 Evans  W H, Martin  P E (2002). Gap junctions: structure and function. Mol Membr Biol, 19(2): 121–136
https://doi.org/10.1080/09687680210139839 pmid: 12126230
5 Fonseca  P C, Nihei  O K, Savino  W, Spray  D C, Alves  L A (2006). Flow cytometry analysis of gap junction-mediated cell-cell communication: advantages and pitfalls. Cytometry A, 69(6): 487–493
https://doi.org/10.1002/cyto.a.20255 pmid: 16646046
6 Goldberg  G S, Valiunas  V, Brink  P R (2004). Selective permeability of gap junction channels. Biochim Biophys Acta, 1662(1-2): 96–101
https://doi.org/10.1016/j.bbamem.2003.11.022 pmid: 15033581
7 Gu  S, Yu  X S, Yin  X, Jiang  J X (2003). Stimulation of lens cell differentiation by gap junction protein connexin 45.6. Invest Ophthalmol Vis Sci, 44(5): 2103–2111
https://doi.org/10.1167/iovs.02-1045 pmid: 12714649
8 Hirobe  T (2005). Role of keratinocyte-derived factors involved in regulating the proliferation and differentiation of mammalian epidermal melanocytes. Pigment Cell Res, 18(1): 2–12
https://doi.org/10.1111/j.1600-0749.2004.00198.x pmid: 15649147
9 Hsu  M, Andl  T, Li  G, Meinkoth  J L, Herlyn  M (2000). Cadherin repertoire determines partner-specific gap junctional communication during melanoma progression. J Cell Sci, 113(Pt 9): 1535–1542
pmid: 10751145
10 Meşe  G, Richard  G, White  T W (2007). Gap junctions: basic structure and function. J Invest Dermatol, 127(11): 2516–2524
https://doi.org/10.1038/sj.jid.5700770 pmid: 17934503
11 Otręba  M, Rok  J, Buszman  E, Wrześniok  D (2012). Regulation of melanogenesis: the role of cAMP and MITF. Postepy Hig Med Dosw (Online), 66: 33–40
pmid: 22371403
12 Park  H Y, Kosmadaki  M, Yaar  M, Gilchrest  B A (2009). Cellular mechanisms regulating human melanogenesis. Cell Mol Life Sci, 66(9): 1493–1506
https://doi.org/10.1007/s00018-009-8703-8 pmid: 19153661
13 Roméro-Graillet  C, Aberdam  E, Biagoli  N, Massabni  W, Ortonne  J P, Ballotti  R (1996). Ultraviolet B radiation acts through the nitric oxide and cGMP signal transduction pathway to stimulate melanogenesis in human melanocytes. J Biol Chem, 271(45): 28052–28056
https://doi.org/10.1074/jbc.271.45.28052 pmid: 8910416
14 Sherman  A, Rinzel  J (1991). Model for synchronization of pancreatic beta-cells by gap junction coupling. Biophys J, 59(3): 547–559
https://doi.org/10.1016/S0006-3495(91)82271-8 pmid: 1646657
15 Suadicani  S O, Flores  C E, Urban-Maldonado  M, Beelitz  M, Scemes  E (2004). Gap junction channels coordinate the propagation of intercellular Ca2+ signals generated by P2Y receptor activation. Glia, 48(3): 217–229
https://doi.org/10.1002/glia.20071 pmid: 15390120
16 Watanabe  M, Iwashita  M, Ishii  M, Kurachi  Y, Kawakami  A, Kondo  S, Okada  N (2006). Spot pattern of leopard Danio is caused by mutation in the zebrafish connexin41.8 gene. EMBO Rep, 7(9): 893–897
https://doi.org/10.1038/sj.embor.7400757 pmid: 16845369
17 Watanabe  M, Kondo  S (2012). Changing clothes easily: connexin41.8 regulates skin pattern variation. Pigment Cell Melanoma Res, 25(3): 326–330
https://doi.org/10.1111/j.1755-148X.2012.00984.x pmid: 22313791
18 Zhou  J Z, Jiang  J X (2014). Gap junction and hemichannel-independent actions of connexins on cell and tissue functions—an update. FEBS Lett, 588(8): 1186–1192
https://doi.org/10.1016/j.febslet.2014.01.001 pmid: 24434539
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed