Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2016, Vol. 11 Issue (2) : 109-118    https://doi.org/10.1007/s11515-016-1397-z
REVIEW
Real-time imaging of single synaptic vesicles in live neurons
Chenglong Yu1,Min Zhang1,Xianan Qin2,Xiaofeng Yang1,Hyokeun Park1,2,3,*()
1. Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
2. Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
3. State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
 Download: PDF(1240 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Recent advances in fluorescence microscopy have provided researchers with powerful new tools to visualize cellular processes occurring in real time, giving researchers an unprecedented opportunity to address many biological questions that were previously inaccessible. With respect to neurobiology, these real-time imaging techniques have deepened our understanding of molecular and cellular processes, including the movement and dynamics of single proteins and organelles in living cells. In this review, we summarize recent advances in the field of real-time imaging of single synaptic vesicles in live neurons.

Keywords single synaptic vesicle      real-time imaging      exocytosis      tracking     
Corresponding Author(s): Hyokeun Park   
Just Accepted Date: 18 April 2016   Online First Date: 09 May 2016    Issue Date: 17 May 2016
 Cite this article:   
Chenglong Yu,Min Zhang,Xianan Qin, et al. Real-time imaging of single synaptic vesicles in live neurons[J]. Front. Biol., 2016, 11(2): 109-118.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-016-1397-z
https://academic.hep.com.cn/fib/EN/Y2016/V11/I2/109
Fig.1  Early examples of monitoring exocytosis of single synaptic vesicles. (A) Exocytosis of single vesicles loaded with FM 1-43 in presynaptic ribbon terminals. (A1) The experimental scheme. Total internal reflection fluorescence microscopy (TIRFM) is used to illuminate the sample. (A2) A newly arriving vesicle enters the active zone during stimulation and nearly fully releases FM 1-43. The open symbols correspond to the images shown above. The scale bar represents 0.5 microns. Modified from (Zenisek et al., 2000). (B) Two distinct fusion modes can be triggered by stimulation with a single action potential (AP). (B1) Images (above) and a corresponding time course showing full-collapse fusion triggered by a single AP. Note that the synaptic vesicle released its entire FM 1-43 contents in one step. (B2) Images and a corresponding time course showing kiss-and-run fusion triggered by a single AP. Note that the synaptic vesicle released only a fraction of its FM 1-43 contents. Modified from (Aravanis et al., 2003).
Fig.2  Kiss-and-run fusion and full-collapse fusion detected by the fluorescence change of a single quantum dot. (A) Kiss-and-run is revealed by a 15% increase in fluorescence intensity triggered by the transient opening of the fusion pore in a synaptic vesicle loaded with a single quantum dot (shown as an “uptick” in the red trace). (A1) Schematic diagram depicting the increase in fluorescence upon exposure to the extracellular solution (pH ~7.3). (A2) The change in the quantum dot’s fluorescence signal during kiss-and-run events (red arrows in the trace and red bars in the histogram) and upon full-collapse fusion (the blue arrow in the trace and the blue bars in the histogram). Modified from (Zhang et al., 2009). (B) Kiss-and-run fusion was detected by the partial quenching of fluorescence of a single quantum dot inside a vesicle. The images and corresponding fluorescence trace indicate that a single quantum dot residing inside a vesicle undergoing kiss-and-run fusion was partially quenched by trypan blue in the extracellular solution. During the kiss-and-run event, the fluorescence signal dropped partially (indicated by the red arrow), then was completely quenched upon full-collapse fusion (indicated by the black arrow). The scale bar represents 0.8 microns. Modified from (Park et al., 2012).
Fig.3  Tracking single synaptic vesicles. (A) Representative images of a synaptic vesicle loaded with a single quantum dot, a presynaptic terminal containing FM 4-64?labeled vesicles, and a postsynaptic compartment labeled with GFP-tagged PSD-95 (PSD-95-GFP). The graph below shows a three-dimensional trace of the quantum dot-loaded vesicle, showing that this vesicle moved from the center of the presynaptic terminal to the synaptic cleft, where it underwent exocytosis. The scale bar represents 0.8 microns. (B) Three-dimensional trace of one single synaptic vesicle that moved from one synapse to another synapse, and then underwent exocytosis. Modified from (Park et al., 2012). (C) Differential mobility of single synaptic vesicles labeled with the styryl dye SGC5 either by spontaneous activity or by evoked activity. (C1) Images and the corresponding trace of a single synaptic vesicle labeled by evoked activity. (C2) Images and the corresponding trace of a synaptic vesicle labeled by spontaneous activity. Vesicles labeled by evoked activity were more mobile than vesicles labeled by spontaneous activity. Modified from (Peng et al., 2012).
Fig.4  Figure box2 Point-spread functions (PSFs) of Cy3 labeled DNA. The expanded PSF had a width of 287 nm, photon counting of 14200 and signal to noise ratio of 32. The localization accuracy in the example was 1.3 nm. Modified from (Yildiz et al., 2003).
Fig.5  Figure box3 Schematics of stimulated emission depletion (STED) microscopy. The depletion laser creates a donut-like beam pattern using a phase mask and selectively suppresses fluorescent molecules at the periphery. Fluorescent molecules in the tiny central region are allowed to emit photons.
1 Alabi A A, Tsien R W (2012). Synaptic vesicle pools and dynamics. Cold Spring HarbPerspectBiol, 4(8): a013680
pmid: 22745285
2 Alabi A A, Tsien R W (2013). Perspectives on kiss-and-run: role in exocytosis, endocytosis, and neurotransmission. Annu Rev Physiol, 75: 393–422
pmid: 23245563
3 Andreae L C, Fredj N B, Burrone J (2012). Independent vesicle pools underlie different modes of release during neuronal development. J Neurosci, 32(5): 1867–1874
pmid: 22302825
4 Aravanis A M, Pyle J L, Tsien R W (2003). Single synaptic vesicles fusing transiently and successively without loss of identity. Nature, 423(6940): 643–647
pmid: 12789339
5 Atasoy D, Ertunc M, Moulder K L, Blackwell J, Chung C, Su J, Kavalali E T (2008). Spontaneous and evoked glutamate release activates two populations of NMDA receptors with limited overlap. J Neurosci, 28(40): 10151–10166
pmid: 18829973
6 Axelrod D, Thompson N L, Burghardt T P (1983). Total internal inflection fluorescent microscopy. J Microsc, 129(Pt 1): 19–28
pmid: 6827590
7 Baba K, Nishida K (2012).Single-molecule tracking in living cells using single quantum dot applications. Theranostics, 2(7): 655–667
pmid: 22896768
8 Balaji J, Ryan T A (2007). Single-vesicle imaging reveals that synaptic vesicle exocytosis and endocytosis are coupled by a single stochastic mode. Proc Natl Acad Sci U S A, 104(51): 20576–20581
pmid: 18077369
9 Barroso M M(2011). Quantum Dots in Cell Biology. J Histochem Cytochem, 59: 237–251
10 Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincott-Schwartz J, Hess H F (2006). Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313(5793): 1642–1645
pmid: 16902090
11 Bianchini P, Peres C, Oneto M, Galiani S, Vicidomini G, Diaspro A (2015). STED nanoscopy: a glimpse into the future. Cell Tissue Res, 360(1): 143–150
pmid: 25743695
12 Blum C, Meixner A J, Subramaniam V (2004). Room temperature spectrally resolved single-molecule spectroscopy reveals new spectral forms and photophysical versatility of aequorea green fluorescent protein variants. Biophys J, 87(6): 4172–4179
pmid: 15454402
13 Bottrill M, Green M (2011). Some aspects of quantum dot toxicity. Chem Commun (Camb), 47(25): 7039–7050
pmid: 21475767
14 Buxbaum A R, Yoon Y J, Singer R H, Park H Y (2015). Single-molecule insights into mRNA dynamics in neurons. Trends Cell Biol, 25(8): 468–475
pmid: 26052005
15 Chang Y P, Pinaud F, Antelman J, Weiss S (2008). Tracking bio-molecules in live cells using quantum dots. J Biophotonics, 1(4): 287–298
pmid: 19343652
16 Chater T E, Goda Y (2014). The role of AMPA receptors in postsynaptic mechanisms of synaptic plasticity. Front Cell Neurosci, 8: 401
pmid: 25505875
17 Chéreau R, Tønnesen J, Nägerl U V (2015). STED microscopy for nanoscale imaging in living brain slices. Methods, 88: 57–66
pmid: 26070997
18 Choquet D, Triller A (2013).The dynamic synapse. Neuron, 80(3): 691–703
pmid: 24183020
19 Chung C, Barylko B, Leitz J, Liu X, Kavalali E T (2010). Acute dynamin inhibition dissects synaptic vesicle recycling pathways that drive spontaneous and evoked neurotransmission. J Neurosci, 30(4): 1363–1376
pmid: 20107062
20 Coelho M, Maghelli N, Tolić-Nørrelykke I M (2013). Single-molecule imaging in vivo: the dancing building blocks of the cell. Integr Biol (Camb), 5(5): 748–758
pmid: 23525260
21 Dahan M, Lévi S, Luccardini C, Rostaing P, Riveau B, Triller A (2003). Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science, 302(5644): 442–445
pmid: 14564008
22 Darcy K J, Staras K, Collinson L M, Goda Y (2006). Constitutive sharing of recycling synaptic vesicles between presynaptic boutons. Nat Neurosci, 9(3): 315–321
pmid: 16462738
23 Deniz A A, Mukhopadhyay S, Lemke E A (2008). Single-molecule biophysics: at the interface of biology, physics and chemistry. J R Soc Interface, 5(18): 15–45
pmid: 17519204
24 DePina A S, Wöllert T, Langford G M (2007). Membrane associated nonmuscle myosin II functions as a motor for actin-based vesicle transport in clam oocyte extracts. Cell Motil Cytoskeleton, 64(10): 739–755
pmid: 17630664
25 Dreosti E, Lagnado L (2011). Optical reporters of synaptic activity in neural circuits. Exp Physiol, 96(1): 4–12
pmid: 20870730
26 Duzdevich D, Greene E C (2013). Towards physiological complexity with in vitro single-molecule biophysics. Philos Trans R SocLond B BiolSci, 368(1611): 20120271
pmid: 23267187
27 Fernandez-Alfonso T, Ryan T A (2008). A heterogeneous “resting” pool of synaptic vesicles that is dynamically interchanged across boutons in mammalian CNS synapses. Brain Cell Biol, 36(1-4): 87–100
pmid: 18941900
28 Fernández-Suárez M, Ting A Y (2008). Fluorescent probes for super-resolution imaging in living cells. Nat Rev Mol Cell Biol, 9(12): 929–943
pmid: 19002208
29 Fioravante D, Regehr W G (2011). Short-term forms of presynaptic plasticity. Curr Opin Neurobiol, 21(2): 269–274
pmid: 21353526
30 Gandhi S P, Stevens C F (2003). Three modes of synaptic vesicular recycling revealed by single-vesicle imaging. Nature, 423(6940): 607–613
pmid: 12789331
31 Giepmans B N, Adams S R, Ellisman M H, Tsien R Y (2006). The fluorescent toolbox for assessing protein location and function. Science, 312(5771): 217–224
pmid: 16614209
32 Groc L, Choquet D (2006). AMPA and NMDA glutamate receptor trafficking: multiple roads for reaching and leaving the synapse. Cell Tissue Res, 326(2): 423–438
pmid: 16847641
33 Gu H, Lazarenko R M, Koktysh D, Iacovitti L, Zhang Q (2015). A Stem Cell-Derived Platform for Studying Single Synaptic Vesicles in Dopaminergic Synapses. Stem Cells Transl Med, 4(8): 887–893
pmid: 26025981
34 Gust A, Zander A, Gietl A, Holzmeister P, Schulz S, Lalkens B, Tinnefeld P, Grohmann D (2014). A starting point for fluorescence-based single-molecule measurements in biomolecular research. Molecules, 19(10): 15824–15865
pmid: 25271426
35 Haas B L, Matson J S, DiRita V J, Biteen J S (2014). Imaging live cells at the nanometer-scale with single-molecule microscopy: obstacles and achievements in experiment optimization for microbiology. Molecules, 19(8): 12116–12149
pmid: 25123183
36 Harke B, Keller J, Ullal C K, Westphal V, Schönle A, Hell S W (2008). Resolution scaling in STED microscopy. Opt Express, 16(6): 4154–4162
pmid: 18542512
37 Hell S W, Wichmann J (1994). Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett, 19(11): 780–782
pmid: 19844443
38 Herzog E, Nadrigny F, Silm K, Biesemann C, Helling I, Bersot T, Steffens H, Schwartzmann R, Nägerl U V, El Mestikawy S, Rhee J, Kirchhoff F, Brose N (2011). In vivo imaging of intersynaptic vesicle exchange using VGLUT1 Venus knock-in mice. J Neurosci, 31(43): 15544–15559
pmid: 22031900
39 Howarth M, Liu W, Puthenveetil S, Zheng Y, Marshall L F, Schmidt M M, Wittrup K D, Bawendi M G, Ting A Y (2008). Monovalent, reduced-size quantum dots for imaging receptors on living cells. Nat Methods, 5(5): 397–399
pmid: 18425138
40 Hua Y, Sinha R, Martineau M, Kahms M, Klingauf J (2010). A common origin of synaptic vesicles undergoing evoked and spontaneous fusion. Nat Neurosci, 13(12): 1451–1453
pmid: 21102448
41 Ifrim M F, Williams K R, Bassell G J (2015). Single-molecule imaging of PSD-95 mRNA translation in dendrites and its dysregulation in a mouse model of fragile X syndrome. J Neurosci, 35(18): 7116–7130
pmid: 25948262
42 Jahn R, Fasshauer D (2012). Molecular machines governing exocytosis of synaptic vesicles. Nature, 490(7419): 201–207
pmid: 23060190
43 Joo C, Balci H, Ishitsuka Y, Buranachai C, Ha T (2008).Advances in single-molecule fluorescence methods for molecular biology. Annu Rev Biochem, 77: 51–76
pmid: 18412538
44 Kamin D, Lauterbach M A, Westphal V, Keller J, Schönle A, Hell S W, Rizzoli S O (2010). High- and low-mobility stages in the synaptic vesicle cycle. Biophys J, 99(2): 675–684
pmid: 20643088
45 Kavalali E T (2015). The mechanisms and functions of spontaneous neurotransmitter release. Nat Rev Neurosci, 16(1): 5–16
pmid: 25524119
46 Kavalali E T, Jorgensen E M (2014). Visualizing presynaptic function. Nat Neurosci, 17(1): 10–16
pmid: 24369372
47 Kharazia V N, Weinberg R J (1997). Tangential synaptic distribution of NMDA and AMPA receptors in rat neocortex. NeurosciLett, 238(1-2): 41–44
pmid: 9464650
48 Kural C, Kim H, Syed S, Goshima G, Gelfand V I, Selvin P R (2005). Kinesin and dynein move a peroxisome in vivo: a tug-of-war or coordinated movement? Science, 308(5727): 1469–1472
pmid: 15817813
49 Kusumi A, Tsunoyama T A, Hirosawa K M, Kasai R S, Fujiwara T K (2014).Tracking single molecules at work in living cells. Nat ChemBiol, 10(7): 524–532
pmid: 24937070
50 Kwakowsky A, Potapov D, Abrahám I M (2013).Tracking of single receptor molecule mobility in neuronal membranes: a quick theoretical and practical guide. J Neuroendocrinol, 25(11): 1231–1237
pmid: 23927034
51 Lavis L D, Raines R T (2014). Bright building blocks for chemical biology. ACS ChemBiol, 9(4): 855–866
pmid: 24579725
52 Lee S, Jung K J, Jung H S, Chang S (2012). Dynamics of multiple trafficking behaviors of individual synaptic vesicles revealed by quantum-dot based presynaptic probe. PLoS One, 7(5): e38045
pmid: 22666444
53 Leitz J, Kavalali E T (2011). Ca²⁺ influx slows single synaptic vesicle endocytosis. J Neurosci, 31(45): 16318–16326
pmid: 22072683
54 Leitz J, Kavalali E T (2014). Fast retrieval and autonomous regulation of single spontaneously recycling synaptic vesicles. Elife, 3: e03658
pmid: 25415052
55 Levi V, Gratton E (2007). Exploring dynamics in living cells by tracking single particles. Cell Biochem Biophys, 48(1): 1–15
pmid: 17703064
56 Liu G (2003). Presynaptic control of quantal size: kinetic mechanisms and implications for synaptic transmission and plasticity. Curr Opin Neurobiol, 13(3): 324–331
pmid: 12850217
57 Liu Z, Lavis L D, Betzig E (2015). Imaging live-cell dynamics and structure at the single-molecule level. Mol Cell, 58(4): 644–659
pmid: 26000849
58 Loy K, Welzel O, Kornhuber J, Groemer T W (2014). Common strength and localization of spontaneous and evoked synaptic vesicle release sites. Mol Brain, 7: 23
pmid: 24694031
59 Mahler B, Spinicelli P, Buil S, Quelin X, Hermier J P, Dubertret B (2008). Towards non-blinking colloidal quantum dots. Nat Mater, 7(8): 659–664
pmid: 18568030
60 Makino H, Malinow R (2009). AMPA receptor incorporation into synapses during LTP: the role of lateral movement and exocytosis. Neuron, 64(3): 381–390
pmid: 19914186
61 Manzo C, Garcia-Parajo M F (2015). A review of progress in single particle tracking: from methods to biophysical insights. Rep Prog Phys, 78(12): 124601
pmid: 26511974
62 Maschi D, Klyachko V A (2015).A nanoscale resolution view on synaptic vesicle dynamics. Synapse, 69(5): 256–267
pmid: 25522061
63 Mattoussi H, Palui G, Na H B (2012). Luminescent quantum dots as platforms for probing in vitro and in vivo biological processes. Adv Drug Deliv Rev, 64(2): 138–166
pmid: 21982955
64 Maysinger D, Ji J, Hutter E, Cooper E (2015). Nanoparticle-based and bioengineered probes and sensors to detect physiological and pathological biomarkers in neural cells. Front Neurosci, 9: 480
pmid: 26733793
65 Medintz I L, Uyeda H T, Goldman E R, Mattoussi H (2005). Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater, 4(6): 435–446
pmid: 15928695
66 Michalet X, Colyer R A, Scalia G, Ingargiola A, Lin R, Millaud J E, Weiss S, Siegmund O H, Tremsin A S, Vallerga J V, Cheng A, Levi M, Aharoni D, Arisaka K, Villa F, Guerrieri F, Panzeri F, Rech I, Gulinatti A, Zappa F, Ghioni M, Cova S (2013). Development of new photon-counting detectors for single-molecule fluorescence microscopy. Philos Trans R SocLond B Biol Sci, 368(1611): 20120035
pmid: 23267185
67 Michalet X, Pinaud F F, Bentolila L A, Tsay J M, Doose S, Li J J, Sundaresan G, Wu A M, Gambhir S S, Weiss S (2005). Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 307(5709): 538–544
pmid: 15681376
68 Midorikawa M, Sakaba T (2015). Imaging exocytosis of single synaptic vesicles at a fast CNS presynaptic terminal. Neuron, 88(3): 492–498
pmid: 26539890
69 Miesenböck G, De Angelis D A, Rothman J E (1998). Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature, 394(6689): 192–195
pmid: 9671304
70 Mochida S (2011). Activity-dependent regulation of synaptic vesicle exocytosis and presynaptic short-term plasticity. Neurosci Res, 70(1): 16–23
pmid: 21453732
71 Monico C, Capitanio M, Belcastro G, Vanzi F, Pavone F S (2013). Optical methods to study protein-DNA interactions in vitro and in living cells at the single-molecule level. Int J Mol Sci, 14(2): 3961–3992
pmid: 23429188
73 Müller T, Schumann C, Kraegeloh A (2012). STED microscopy and its applications: new insights into cellular processes on the nanoscale. Chemphyschem, 13(8): 1986–2000
pmid: 22374829
74 Murthy V N, De Camilli P (2003). Cell biology of the presynaptic terminal. Annu Rev Neurosci, 26: 701–728
pmid: 14527272
75 Nan X, Sims P A, Chen P, Xie X S (2005). Observation of individual microtubule motor steps in living cells with endocytosed quantum dots. J Phys Chem B, 109(51): 24220–24224
pmid: 16375416
76 Neupane B, Ligler F S, Wang G (2014). Review of recent developments in stimulated emission depletion microscopy: applications on cell imaging. J Biomed Opt, 19(8): 080901
pmid: 25121478
77 Opazo P, Sainlos M, Choquet D (2012). Regulation of AMPA receptor surface diffusion by PSD-95 slots. Curr Opin Neurobiol, 22(3): 453–460
pmid: 22051694
78 Park H, Hanson G T, Duff S R, Selvin P R (2004). Nanometre localization of single ReAsH molecules. J Microsc, 216(Pt 3): 199–205
pmid: 15566490
79 Park H, Li Y, Tsien R W (2012). Influence of synaptic vesicle position on release probability and exocytotic fusion mode. Science, 335(6074): 1362–1366
pmid: 22345401
82 Park H, Toprak E, Selvin P R (2007). Single-molecule fluorescence to study molecular motors. Q Rev Biophys, 40(1): 87–111
pmid: 17666122
83 Pechstein A, Shupliakov O (2010). Taking a back seat: synaptic vesicle clustering in presynaptic terminals. Front Synaptic Neurosci, 2: 143
pmid: 21423529
84 Peng A, Rotman Z, Deng P Y, Klyachko V A (2012).Differential motion dynamics of synaptic vesicles undergoing spontaneous and activity-evoked endocytosis. Neuron, 73(6): 1108–1115
pmid: 22445339
85 Ramirez D M, Kavalali E T (2011).Differential regulation of spontaneous and evoked neurotransmitter release at central synapses. Curr Opin Neurobiol, 21(2): 275–282
pmid: 21334193
86 Ratnayaka A, Marra V, Branco T, Staras K (2011). Extrasynaptic vesicle recycling in mature hippocampal neurons. Nat Commun, 2: 531
pmid: 22068598
87 Regehr W G (2012). Short-term presynaptic plasticity . Cold Spring Harb Perspect Biol, 4(7): a005702
pmid: 22751149
88 Rust M J, Bates M, Zhuang X (2006). Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods, 3(10): 793–795
pmid: 16896339
89 Sakaba T (2006). Roles of the fast-releasing and the slowly releasing vesicles in synaptic transmission at the calyx of Held. J Neurosci, 26(22): 5863–5871
pmid: 16738227
90 Sara Y, Bal M, Adachi M, Monteggia L M, Kavalali E T (2011). Use-dependent AMPA receptor block reveals segregation of spontaneous and evoked glutamatergic neurotransmission. J Neurosci, 31(14): 5378–5382
pmid: 21471372
91 Smith A M, Nie S (2010). Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc Chem Res, 43(2): 190–200
pmid: 19827808
92 Staras K, Branco T, Burden J J, Pozo K, Darcy K, Marra V, Ratnayaka A, Goda Y (2010). A vesicle superpool spans multiple presynaptic terminals in hippocampal neurons. Neuron, 66(1): 37–44
pmid: 20399727
93 Steyer J A, Almers W (2001). A real-time view of life within 100 nm of the plasma membrane. Nat Rev Mol Cell Biol, 2(4): 268–275
pmid: 11283724
94 Südhof T C (2004). The synaptic vesicle cycle. Annu Rev Neurosci, 27: 509–547
pmid: 15217342
95 Südhof T C(2008). Neurotransmitter release. Handb Exp Pharmacol, (184): 1–21
96 Takamori S, Holt M, Stenius K, Lemke E A, Grønborg M, Riedel D, Urlaub H, Schenck S, Brügger B, Ringler P, Møller S A, Rammner B, Gräter F, Hub J S, De Groot B L, Mieskes G, Moriyama Y, Klingauf J, Grubmüller H, Heuser J, Wieland F, Jahn R (2006). Molecular anatomy of a trafficking organelle. Cell, 127(4): 831–846
pmid: 17110340
97 Tardin C, Cognet L, Bats C, Lounis B, Choquet D (2003). Direct imaging of lateral movements of AMPA receptors inside synapses. EMBO J, 22(18): 4656–4665
pmid: 12970178
98 Tatavarty V, Ifrim M F, Levin M, Korza G, Barbarese E, Yu J, Carson J H (2012). Single-molecule imaging of translational output from individual RNA granules in neurons. MolBiol Cell, 23(5): 918–929
pmid: 22219377
99 Thompson R E, Larson D R, Webb W W (2002). Precise nanometer localization analysis for individual fluorescent probes. Biophys J, 82(5): 2775–2783
pmid: 11964263
100 Triller A, Choquet D (2008).New concepts in synaptic biology derived from single-molecule imaging. Neuron, 59(3): 359–374
pmid: 18701063
101 Warshaw D M, Kennedy G G, Work S S, Krementsova E B, Beck S, Trybus K M (2005). Differential labeling of myosin V heads with quantum dots allows direct visualization of hand-over-hand processivity. Biophys J, 88(5): L30–L32
pmid: 15764654
102 Westphal V, Rizzoli S O, Lauterbach M A, Kamin D, Jahn R, Hell S W (2008). Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science, 320(5873): 246–249
pmid: 18292304
103 Wilhelm B G, Groemer T W, Rizzoli S O (2010). The same synaptic vesicles drive active and spontaneous release. Nat Neurosci, 13(12): 1454–1456
pmid: 21102450
104 Willig K I, Rizzoli S O, Westphal V, Jahn R, Hell S W (2006). STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature, 440(7086): 935–939
pmid: 16612384
105 Wu Y, Yeh F L, Mao F, Chapman E R (2009). Biophysical characterization of styryl dye-membrane interactions. Biophys J, 97(1): 101–109
pmid: 19580748
106 Xia T, Li N, Fang X (2013). Single-molecule fluorescence imaging in living cells. Annu Rev PhysChem, 64: 459–480
pmid: 23331306
107 Xie X S, Trautman J K (1998). Optical studies of single molecules at room temperature. Annu Rev PhysChem, 49: 441–480
pmid: 15012434
108 Yang Y, Calakos N (2013). Presynaptic long-term plasticity. Front Synaptic Neurosci, 5: 8
pmid: 24146648
109 Yildiz A, Forkey J N, McKinney S A, Ha T, Goldman Y E, Selvin P R (2003).Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science, 300(5628): 2061–2065
pmid: 12791999
110 Yildiz A, Selvin P R (2005). Fluorescence imaging with one nanometer accuracy: application to molecular motors. Acc Chem Res, 38(7): 574–582
pmid: 16028892
111 Zenisek D, Steyer J A, Almers W (2000). Transport, capture and exocytosis of single synaptic vesicles at active zones. Nature, 406(6798): 849–854
pmid: 10972279
112 Zhang Q, Cao Y Q, Tsien R W (2007). Quantum dots provide an optical signal specific to full collapse fusion of synaptic vesicles. Proc Natl Acad Sci U S A, 104(45): 17843–17848
pmid: 17968015
113 Zhang Q, Li Y, Tsien R W (2009). The dynamic control of kiss-and-run and vesicular reuse probed with single nanoparticles. Science, 323(5920): 1448–1453
pmid: 19213879
114 Zhang R, Rothenberg E, Fruhwirth G, Simonson P D, Ye F, Golding I, Ng T, Lopes W, Selvin P R (2011). Two-photon 3D FIONA of individual quantum dots in an aqueous environment. Nano Lett, 11(10):4074–4078
115 Zhou X, Wang L (2010). Uses of single-particle tracking in living cells. Drug Discov Ther, 4(2): 62–69
pmid: 22491162
116 Zhu Y, Xu J, Heinemann S F (2009). Two pathways of synaptic vesicle retrieval revealed by single-vesicle imaging. Neuron, 61(3): 397–411
pmid: 19217377
[1] Soumyashree DAS, Shiyan YU, Ryotaro SAKAMORI, Ewa Stypulkowski, Nan GAO. Wntless in Wnt secretion: molecular, cellular and genetic aspects[J]. Front Biol, 2012, 7(6): 587-593.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed