Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2017, Vol. 12 Issue (3) : 199-209    https://doi.org/10.1007/s11515-017-1449-z
RESEARCH ARTICLE
Analysis of curcumin interaction with human serum albumin using spectroscopic studies with molecular simulation
Turban Kar1, Pijush Basak2, Srikanta Sen3, Rittik Kumar Ghosh1, Maitree Bhattacharyya1,2()
1. Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata-700019, West Bengal, India
2. Jagadis Bose National Science Talent Search, Kolkata-700107, India
3. 229A/230, Mira Tower, Lake Town, Block-A, Kolkata-700089, India
 Download: PDF(1298 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

BACKGROUND: Curcumin has emerged to be utilized as a superb beneficial agent, due to its naturally occurring anti-oxidant, anti-inflammatory and anti-carcinogenic property.

METHODS: The interaction of curcumin with human serum albumin, the main in vivo transporter of exogenous substances, was investigated using absorption spectroscopy, steady-state fluorescence, excited state life-time studies and circular dichroism spectroscopy.

RESULTS: Isothermal titration calorimetry techniques inferred one class of binding site with binding constant ~1.74×105 M−1 revealing a strong interaction. The binding profile was analyzed through the evaluation of the thermodynamic parameters, which indicated the involvement of hydrophobic interactions (burial of non-polar group). Fluorescence lifetime of tryptophan residue was observed to decrease to 1.94 ns from 2.84 ns in presence of Curcumin. Percentage of α helicity of human serum albumin was also reduced significantly upon binding with curcumin as evidenced by circular dichroism measurement leading to conformational modification of the protein molecule.

CONCLUSIONS: On the basis of such complementary results, it may be concluded that curcumin shows strong binding affinity for human serum albumin, probably at the hydrophobic cavities of the protein and at or around the tryptophan residue. Molecular Docking analysis of HSA and curcumin provided light on the number of binding sites at an atomic level, which were already determined at a molecular level in spectroscopic measurements. Our study unfolds the modes of interaction of curcumin with human serum albumin in the light of different biophysical techniques and molecular modeling analysis.

Keywords curcumin      human serum albumin      fluorescence quenching      conformational change      thermodynamic parameters     
Corresponding Author(s): Maitree Bhattacharyya   
Online First Date: 26 May 2017    Issue Date: 19 June 2017
 Cite this article:   
Turban Kar,Pijush Basak,Srikanta Sen, et al. Analysis of curcumin interaction with human serum albumin using spectroscopic studies with molecular simulation[J]. Front. Biol., 2017, 12(3): 199-209.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-017-1449-z
https://academic.hep.com.cn/fib/EN/Y2017/V12/I3/199
Fig.1  Fluorescence spectra of human serum albumin (15 µM) in presence of increasing amounts of curcumin; concentration corresponds from 0 µM to 650 µM. Axis acronyms –X axis (a.u. – arbitrary units); Y axis (nm – nanometers).
Fig.2  Panel (A) and (B) represent Stern–Volmer and modified Stern–Volmer plots of F0/F and log [(F0F)/F] vs. concentration of curcumin where the concentration of human serum albumin remains fixed at 15 µM.
Protein Ligand SV equation R2 Ksv (103mol1) Modified SV log [( F0F)/F)] = logKa + n log [Q] R2 Binding
constant
Ka(103mol1)
No. of binding
site
Human serum albumin Curcumin y = 375.36x−0.3012 0.9554 0.35 y= 1.4024x + 3.1522 0.992 1.419 1.402
Tab.1  Quenching constant and curcumin binding parameters to HSA
Fig.3  The fluorescence lifetime decay profiles of the (A) protein-curcumin complex and (B) native HSA; Axis acronyms –X axis (ns – nanoseconds).
Protein t1 t2 t3 Average ( t) c2
Human serum albumin Native
Curcumin-HSA complex
0.30
0.80
1.37
1.67
6.85
3.34
2.84
1.93
1.21
1.40
Tab.2  Fluorescence life time decay profile of Tryptophan in human serum albumin in absence and presence of curcumin
Fig.4  Isothermal titration calorimetric profiles for the binding of curcumin to Human serum albumin. The top panel (A) represents raw data for the sequential injection of curcumin solution (80 µM) into HSA (3 µM) solution. The lower panels (B) show the integrated heat results after correction of heat of dilution against the mole ratio of Human serum albumin /curcumin. The points (closed squares) were fitted to a one-site model and the solid lines represent the best-fit results.
Protein Ligand Binding constant
(103mol−1)
Enthalpy change
(kcal/mol)
Entropy change
(kcal/mol)
Free energy change (Δ G)
( kcal/mol)
Process
Human serum albumin Curcumin 1.11 −37.55 ×10 6 −12.68 × 10 6 −6.06 van Der Waal’s interaction and hydrogen bonding
Tab.3  Thermodynamic parameters for HSA-Curcumin interaction derived by ITC method
Fig.5  Circular dichroism spectra of HSA observed at 25°C in presence of increasing concentration of curcumin (0 µM to 650 µM). Axis acronyms –X axis (nm – nanometers); Y axis (mdeg – millidegrees).
Concentration of curcumin (M) α-helix
(%)
0
4.343 ×104
4.886 ×104
5.429 ×104
5.972 ×104
6.515 ×104
51
47.6
47.4
46.5
45.3
43.3
Tab.4  Estimation of secondary structure content of human serum albumin with gradually varying concentration of curcumin
Fig.6  The docked structures of (A) the keto form and (B) the enol form are shown. The keto-curcumin is shown in cyan ball and stick model and the enol-curcumin is shown in yellow ball and stick model. The Human serum albumin structure is represented in line-ribbon style.
Fig.7  The docked structures of (A) the keto form and (B) the enol form with its protein neighborhood are shown. The curcumin variants are shown as ball and stick model. The Human serum albumin neighborhood is represented in wireframe style.
Fig.8  Comparison of the binding modes of the two forms of curcumin. The keto-form is represented as ball and stick while the enol-form as shown in stick form.
Molecule name Δ Gbinding(kcal/mol) Ki
(μM)
Ki (μM)
experimental
Curcumin
(keto form)
Curcumin
(enol form)
−7.32
−6.92
4.3
8.4
1.79
Tab.5  The best binding energies and the computed binding constants obtained by the docking runs for two different forms of curcumin. The values have been obtained using molecular docking platform (Autodock 4.0)
HSA-Curcumin (keto) HSA-Curcumin (enol)
HSA Curcumin HAS Curcumin
1
2
ΔSASA (Å 2)
ΔG (kcal/mol)
−387.0
−2.33
−539.4
−3.89
−370.4
−2.26
−539.4
−3.77
Tab.6  Change in SASA values for HSA and curcumin molecule due to complex formation and the free energy change due to complex formation
1 Aggarwal B B, Kumar  A, Bharti A C  (2003). Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res, 23(1A): 363–398
pmid: 12680238
2 Aggarwal M L, Chacko  K M, Kuruvilla  B T (2016). Systematic and comprehensive investigation of the toxicity of curcuminoidessential oil complex: A bioavailable turmeric formulation. Mol Med Rep, 13(1): 592–604
pmid: 26648561
3 Airinei A, Tigoianu  R I, Rusu  E, Dorohoi D O  (2011). Fluorescence quenching of anthracene by nitroaromatic compounds. Dig J Nanomater Biostruct, 6(3): 1265–1272
4 Basak P, Debnath  T, Banerjee R ,  Bhattacharyya M  (2016). Selective binding of divalent cations towardheme proteins. Front Biol, 11(1): 32–42
https://doi.org/10.1007/s11515-016-1388-0
5 Basak P, Pattanayak  R, Bhattacharyya M  (2015). Transition metal induced conformational change of heme proteins. Spectrosc Lett, 48(5): 324–330
https://doi.org/10.1080/00387010.2014.881380
6 Baskaran N, Manoharan  S, Balakrishnan S ,  Pugalendhi P  (2010). Chemopreventive potential of ferulic acid in 7,12-dimethylbenz[a]anthracene-induced mammary carcinogenesis in Sprague-Dawley rats. Eur J Pharmacol, 637(1-3): 22–29
https://doi.org/10.1016/j.ejphar.2010.03.054 pmid: 20385116
7 Biovia D S (2016). Discovery Studio Modeling Environment, Release 2017.DassaultSystèmes, San Diego, CA
8 Brooks B R, Bruccoleri  R E, Olafson  B D, States  D J, Swaminathan  S, Karplus M  (1983). CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem, 4(2): 187–217
https://doi.org/10.1002/jcc.540040211
9 Cheng Z J, Zhao  H M, Xu  Q Y, Liu  R (2013). Investigation of the interaction between indigotin and two serum albumins by spectroscopic approaches. JPA, 3(4): 257–269
10 Dickinson D A ,  Levonen A L ,  Moellering D R ,  Arnold E K ,  Zhang H ,  Darley-Usmar V M ,  Forman H J  (2004). Human glutamate cysteine ligase gene regulation through the electrophile response element. Free Radic Biol Med, 37(8): 1152–1159
https://doi.org/10.1016/j.freeradbiomed.2004.06.011 pmid: 15451055
11 Forli S, Huey  R, Pique M E ,  Sanner M F ,  Goodsell D S ,  Olson A J  (2016). Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat Protoc, 11(5): 905–919
https://doi.org/10.1038/nprot.2016.051 pmid: 27077332
12 Gupta S C, Prasad  S, Kim J H ,  Patchva S ,  Webb L J ,  Priyadarsini I K ,  Aggarwal B B  (2011). Multitargeting by curcumin as revealed by molecular interaction studies. Nat Prod Rep, 28(12): 1937–1955
https://doi.org/10.1039/c1np00051a pmid: 21979811
13 Hou T, Zhang  W, Huang Q ,  Xu X (2005). An extended aqueous solvation model based on atom-weighted solvent accessible surface areas: SAWSA v2.0 model. J Mol Model, 11(1): 26–40
https://doi.org/10.1007/s00894-004-0214-9 pmid: 15565273
14 Lee H Y, Kim  S W, Lee  G H, Choi  M K, Jung  H W, Kim  Y J, Kwon  H J, Chae  H J (2016). Turmeric extract and its active compound, curcumin, protect against chronic CCl4-induced liver damage by enhancing antioxidation. BMC Complement Altern Med, 16(1): 316
https://doi.org/10.1186/s12906-016-1307-6 pmid: 27561811
15 Lehrer S S (1971). Solute perturbation of protein fluorescence. The quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry, 10(17): 3254–3263
https://doi.org/10.1021/bi00793a015 pmid: 5119250
16 Leung M H, Kee  T W (2009). Effective stabilization of curcumin by association to plasma proteins: human serum albumin and fibrinogen. Langmuir, 25(10): 5773–5777
https://doi.org/10.1021/la804215v pmid: 19320475
17 Maciążek-Jurczyk M ,  Maliszewska M ,  Pożycka J ,  Równicka-Zubik J ,  Góra A ,  Sułkowska A  (2013). Tamoxifen and curcumin binding to serum albumin.Spectroscopic study. J Mol Struct, 1044: 194–200 
https://doi.org/10.1016/j.molstruc.2012.11.024
18 Masone D, Chanforan  C (2015). Study on the interaction of artificial and natural food colorants with human serum albumin: A computational point of view. Comput Biol Chem, 56: 152–158
https://doi.org/10.1016/j.compbiolchem.2015.04.006 pmid: 25935119
19 Mazaheri M, Moosavi-Movahedi  A A, Saboury  A A, Rezaei  M H, Shourian  M, Farhadi M ,  Sheibani N  (2015). Curcumin mitigates the fibrillation of human serum albumin and diminishes the formation of reactive oxygen species. Protein Pept Lett, 22(4): 348–353
https://doi.org/10.2174/0929866522666150209150004 pmid: 25666039
20 Mothi N, Muthu  S A, Kale  A, Ahmad B  (2015). Curcumin promotes fibril formation in F isomer of human serum albumin via amorphous aggregation. Biophys Chem, 207: 30–39
https://doi.org/10.1016/j.bpc.2015.08.002 pmid: 26298484
21 Pattanayak R, Basak  P, Sen S ,  Bhattacharyya M  (2016). Interaction of KRAS G-quadruplex with natural polyphenols: A spectroscopic analysis with molecular modeling. Int J Biol Macromol, 89: 228–237
https://doi.org/10.1016/j.ijbiomac.2016.04.074 pmid: 27130653
22 Prasad P, Khan  I, Kondaiah P ,  Chakravarty A R  (2013). Mitochondria-targeting oxidovanadium(IV) complex as a near-IR light photocytotoxic agent. Chemistry, 19(51): 17445–17455
https://doi.org/10.1002/chem.201303487 pmid: 24227284
23 Sahoo B K, Ghosh  K S, Dasgupta  S (2009). Molecular interactions of isoxazolcurcumin with human serum albumin: spectroscopic and molecular modeling studies. Biopolymers, 91(2): 108–119
https://doi.org/10.1002/bip.21092 pmid: 18814316
24 Salzano A M, Renzone  G, Scaloni A ,  Torreggiani A ,  Ferreri C ,  Chatgilialoglu C  (2011). Human serum albumin modifications associated with reductive radical stress. Mol Biosyst, 7(3): 889–898
https://doi.org/10.1039/C0MB00223B pmid: 21161094
25 Semiz G, Çelik  G, Gönen E ,  Semiz A  (2016). Essential oil composition, antioxidant activity and phenolic content of endemic Teucrium alyssifolium Staph. (Lamiaceae). Nat Prod Res, 30(19): 2225–2229
https://doi.org/10.1080/14786419.2016.1149703 pmid: 26918276
26 Siddiqi M K, Alam  P, Chaturvedi S K ,  Khan R H  (2016). Anti-amyloidogenic behavior and interaction of Diallylsulfide with Human Serum Albumin. Int J Biol Macromol, 92: 1220–1228
https://doi.org/10.1016/j.ijbiomac.2016.08.035 pmid: 27527697
27 Siddiqi M K, Alam  P, Chaturvedi S K ,  Khan R H  (2016). Anti-amyloidogenic behavior and interaction of Diallylsulfide with Human Serum Albumin. Int J Biol Macromol, 92: 1220–1228
https://doi.org/10.1016/j.ijbiomac.2016.08.035 pmid: 27527697
28 Singh D V, Bharti  S K, Agarwal  S, Roy R ,  Misra K  (2014). Study of interaction of human serum albumin with curcumin by NMR and docking. J Mol Model, 20(8): 2365
https://doi.org/10.1007/s00894-014-2365-7 pmid: 25031079
29 Stocker R (2016). Antioxidant defenses in human blood plasma and extra-cellular fluids. Arch Biochem Biophys, 595: 136–139
https://doi.org/10.1016/j.abb.2015.11.021 pmid: 27095230
30 Stocker R (2016). Antioxidant defenses in human blood plasma and extra-cellular fluids. Arch Biochem Biophys, 595: 136–139
https://doi.org/10.1016/j.abb.2015.11.021 pmid: 27095230
31 Sudlow G, Birkett  D J, Wade  D N (1975). The characterization of two specific drug binding sites on human serum albumin. Mol Pharmacol, 11(6): 824–832
pmid: 1207674
32 Zaidi N, Ajmal  M R, Rabbani  G, Ahmad E ,  Khan R H  (2013). A comprehensive insight into binding of hippuric acid to human serum albumin: a study to uncover its impaired elimination through hemodialysis. PLoS One, 8(8): e71422
https://doi.org/10.1371/journal.pone.0071422 pmid: 23951159
33 Zhang Y, Golub  L M, Johnson  F, Wishnia A  (2012). pKa, zinc- and serum albumin-binding of curcumin and two novel biologically-active chemically-modified curcumins. Curr Med Chem, 19(25): 4367–4375
pmid: 22830351
[1] Pijush Basak,Tanay Debnath,Rajat Banerjee,Maitree Bhattacharyya. Selective binding of divalent cations toward heme proteins[J]. Front. Biol., 2016, 11(1): 32-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed