Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2017, Vol. 12 Issue (4) : 271-279    https://doi.org/10.1007/s11515-017-1458-y
RESEARCH ARTICLE
Copper-induced liver fibrosis affects the behavior of bone marrow cells in primary culture
Anatoliy I. Bozhkov(), Eugeniy G. Ivanov, Yuliya A. Kuznetsova, Svetlana L. Ohiienko, Anastasiya Yu. Bondar’
Research Institute of Biology of V.N. Karazin Kharkov National University, sq. Svobody, 4, 61022 Kharkov, Ukraine
 Download: PDF(555 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

BACKGROUND:The present study investigated the effects of low-molecular-weight components of bovine colostrum (LMCC), which were administeredper os, on the differentiation, growth, and survival of cells obtained from the bone marrow of rats in primary culture.

METHODS: Bone marrow cells (BMCs) were obtained from both the rat femurs and were cultured in medium 199 supplemented with antibiotics (8% streptomycin and 8% gentamycin) and 20% inactivated fetal calf serum. In addition, the number of BMCs was counted and their morphotypes were determined.

RESULTS: Animals were treated with copper (Cu) sulfate to induce liver fibrosis. Subsequent treatment with LMCC eliminated growth inhibition and normalized the bodyweight and temperature of animals with Cu-induced liver fibrosis. The number of lymphocytes in the bone marrow of animals with Cu-induced liver fibrosis was significantly higher than that in the bone marrow of control animals. The number of neutrophils in untreated animals with liver fibrosis and LMCC-treated animals with liver fibrosis was lower than that in control animals. Neutrophils obtained from untreated animals with liver fibrosis and LMCC-treated animals with liver fibrosis underwent two-times faster degradationin vitro than neutrophils obtained from control animals.

CONCLUSIONS: Our results indicate that LMCC affects the distribution of different morphological types of BMCs but does not prevent their degradationin vitro, which was two-times faster than that of BMCs obtained from control animals.

Keywords bone marrow cells      bone marrow      colostrum      liver fibrosis     
Corresponding Author(s): Anatoliy I. Bozhkov   
Online First Date: 09 August 2017    Issue Date: 13 September 2017
 Cite this article:   
Anatoliy I. Bozhkov,Eugeniy G. Ivanov,Yuliya A. Kuznetsova, et al. Copper-induced liver fibrosis affects the behavior of bone marrow cells in primary culture[J]. Front. Biol., 2017, 12(4): 271-279.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-017-1458-y
https://academic.hep.com.cn/fib/EN/Y2017/V12/I4/271
Fig.1  Scheme showing the sequential administration of Cu sulfate at a dose of 1 mg/100 g liver weight, with 48-h intervals between each administration for inducing liver fibrosis (group 2).Triple LMCC administrationper os was performed at 24-h intervals between each administration (group 3).Control animals were injected with saline instead of Cu sulfate (group 1). BMCs were obtained by anesthetizing the animals in all the experimental groups with ether
Fig.2  Bodyweight and body temperature of control animals (1), animals with Cu-induced fibrosis (2), and animals with Cu-induced fibrosis treated with LMCC at a dose 0.05 g/100 g bodyweight (3) or 0.1 g/100 g bodyweight (4) (А).Changes in the rectal temperature of control animals (1), animals with Cu-induced fibrosis (2), and animals with fibrosis treated with LMCC at a dose 0.1 g/100 g bodyweight (B).
Fig.3  Number of BMCs in primary culture from days 1 to 4 of cultivation in medium 199 supplemented with 20% fetal calf serum. BMCs were obtained from control animals (1), animals with Cu-induced liver fibrosis (2), and animals with Cu-induced fibrosis treated with a triple dose of LMCC administered at 24-h intervals (3).
Fig.4  Number of different BMC morphotypes cell suspension (A) and total number of identified cells (B) in control animals, animals with liver fibrosis, and animals with fibrosis treated with a triple dose of LMCC (0.1 g/100 g bodyweightper os) administered at 24-h intervals. On axis: 1, stab neutrophils; 2, metamyelocytes; 3, lymphocytes; 4, segmented neutrophils; 5, myelocytes; 6, eosinophils; 7, basophils; and 8, monocytes.
Fig.5  Number of lymphocytes obtained from the bone marrow of control animals (1), animals with Cu-induced liver fibrosis (2), and animals with Cu-induced fibrosis treated with a triple dose of LMCC administered at 24-h intervals (3) from days 1 to 4 of cultivation.
Fig.6  Numbers of myelocytes (A) and metamyelocytes (B) obtained from the bone marrow of control animals (1), animals with Cu-induced liver fibrosis (2), and animals with Cu-induced fibrosis treated with a triple dose of LMCC administered at 24-h intervals (3)duringin vitro cultivation.
Fig.7  Numbers of stab (A) and segmented (B) neutrophils obtained from the bone marrow of intact animals (1), animals with Cu-induced liver fibrosis (2), and animals with Cu-induced liver fibrosis treated with a triple dose of LMCC (0.1 g/100 g bodyweightper os) administered at 24-h intervals(3) during in vitro cultivation.
1 Al-Nbaheen M, Vishnubalaji  R, Ali D ,  Bouslimi A ,  Al-Jassir F ,  Megges M ,  Prigione A ,  Adjaye J ,  Kassem M ,  Aldahmash A  (2013). Human stromal (mesenchymal) stem cells from bone marrow, adipose tissue and skin exhibit differences in molecular phenotype and differentiation potential. Stem Cell Rev, 9(1): 32–43
https://doi.org/10.1007/s12015-012-9365-8 pmid: 22529014
2 Alaribe F N, Mazzoni  E, Rigolin G M ,  Rizzotto L ,  Maniero S ,  Pancaldi C ,  Manfrini M ,  Martini F ,  Tognon M G  (2013). Extended lifespan of normal human B lymphocytes experimentally infected by SV40 or transfected by SV40 large T antigen expression vector. Leuk Res, 37(6): 681–689
https://doi.org/10.1016/j.leukres.2013.02.003 pmid: 23473917
3 Bagwe S, Tharappel  L J P, Kaur  G, Buttar H S  (2015). Bovine colostrum: an emerging nutraceutical. J Complement Integr Med, 12(3): 175–185
https://doi.org/10.1515/jcim-2014-0039 pmid: 25781716
4 Blach-Olszewska Z, Zaczynska  E, Gustaw-Rothenberg K, Avila-Rodrigues M ,  Barreto G E ,  Leszek J ,  Aliev G  (2015). The Innate Immunity in Alzheimer Disease- Relevance to Pathogenesis and Therapy. Curr Pharm Des, 21(25): 3582–3588
https://doi.org/10.2174/1381612821666150710144829 pmid: 26166611
5 Bozhkov A, Padalko  V, Dlubovskaya V ,  Menzianova N  (2010). Resistance to heavy metal toxicity in organisms under chronic exposure. Indian J Exp Biol, 48(7): 679–696
pmid: 20929052
6 Bozhkov A I, Kabachnyy  V I, Kolot  N V, Bondar’  A Yu, Chumak  I V (2014). Hormesis effect and the influence of ultra-low glycosides doses on the bone marrow cells proliferative activity in culture. Journal of Harmonized Research in Pharmacy, 3: 154–166
7 Bozhkov A I, Klimova  E M, Nikitchenko  Y V, Davydov  V V, Zvyagintseva  O V, Kurguzova  N I, Sidorov  V I, Naglov  A V (2014). Stem cells take part in regulation of prooxidant activity and immunity at liver fibrosis. American Journal of Biomedical and Life Sciences: Special Issue: Mechanisms of Protection Against Oxidative Stress, 2: 5–12
8 Bozhkov A I, Linkevich  O S, Ivanov  E G, Klimova  O M and Mohammad  A Y (2016). Low molecular weight components of colostrums regulate the activity of cellular component of the immune system in animals with Cu-induced liver fibrosis. International Journal of Current Research, 8: 44129–44137
9 Bozhkov A I, Sidorov  V I, Kurguzova  N I, Dlubovskaia  V L (2014). Metabolic memory enhances hormesis effect to the copper ions in age-depended manner. Adv Gerontol, 27(1): 72–80
pmid: 25051761
10 Cichoż-Lach H ,  Michalak A  (2014). Oxidative stress as a crucial factor in liver diseases. World J Gastroenterol, 20(25): 8082–8091
https://doi.org/10.3748/wjg.v20.i25.8082 pmid: 25009380
11 Conneely M, Berry  D P, Murphy  J P, Lorenz  I, Doherty M L ,  Kennedy E  (2014). Effect of feeding colostrum at different volumes and subsequent number of transition milk feeds on the serum immunoglobulin G concentration and health status of dairy calves. J Dairy Sci, 97(11): 6991–7000
https://doi.org/10.3168/jds.2013-7494 pmid: 25200772
12 Conneely M, Berry  D P, Sayers  R, Murphy J P ,  Lorenz I ,  Doherty M L ,  Kennedy E  (2013). Factors associated with the concentration of immunoglobulin G in the colostrum of dairy cows. Animal, 7(11): 1824–1832
https://doi.org/10.1017/S1751731113001444 pmid: 23916317
13 Council Directive 86/609/EEC of 24 November 1986 on the approximation of laws, regulations and administrative provisions of the Member States regarding the protection of animals used for experimental and other scientific purposes. Council of European Communities; L 358:0001–0028.
14 Ding L, Morrison  S J (2013). Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature, 495(7440): 231–235
https://doi.org/10.1038/nature11885 pmid: 23434755
15 Folch J, Petrov  D, Ettcheto M ,  Abad S, Sánchez-López  E, García M L ,  Olloquequi J ,  Beas-Zarate C ,  Auladell C ,  Camins A  (2016). Current Research Therapeutic Strategies for Alzheimer’s Disease Treatment. Neural Plast, 2016: 8501693
https://doi.org/10.1155/2016/8501693 pmid: 26881137
16 Ganai A A, Husain  M (2017). Genistein attenuates D-GalN induced liver fibrosis/chronic liver damage in rats by blocking the TGF-β/Smad signaling pathways. Chem Biol Interact, 261: 80–85
https://doi.org/10.1016/j.cbi.2016.11.022 pmid: 27876602
17 Greim H, Kaden  D A, Larson  R A, Palermo  C M, Rice  J M, Ross  D, Snyder R  (2014). The bone marrow niche, stem cells, and leukemia: impact of drugs, chemicals, and the environment. Ann N Y Acad Sci, 1310(1): 7–31
https://doi.org/10.1111/nyas.12362 pmid: 24495159
18 Javazon E H, Beggs  K J, Flake  A W (2004). Mesenchymal stem cells: paradoxes of passaging. Exp Hematol, 32(5): 414–425
https://doi.org/10.1016/j.exphem.2004.02.004 pmid: 15145209
19 Kidd S, Spaeth  E, Watson K ,  Burks J ,  Lu H, Klopp  A, Andreeff M ,  Marini F C  (2012). Origins of the tumor microenvironment: quantitative assessment of adipose-derived and bone marrow-derived stroma. PLoS One, 7(2): e30563
https://doi.org/10.1371/journal.pone.0030563 pmid: 22363446
20 Kochs L, Wegener  S, Sühnel A ,  Voigt K ,  Zettl U K  (2014). The use of complementary and alternative medicine in patients with multiple sclerosis: a longitudinal study. Complement Ther Med, 22(1): 166–172
https://doi.org/10.1016/j.ctim.2013.11.006 pmid: 24559832
21 Kolaczkowska E, Kubes  P (2013). Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol, 13(3): 159–175
https://doi.org/10.1038/nri3399 pmid: 23435331
22 Krause D S, Fulzele  K, Catic A ,  Sun C C ,  Dombkowski D ,  Hurley M P ,  Lezeau S ,  Attar E ,  Wu J Y ,  Lin H Y ,  Divieti-Pajevic P ,  Hasserjian R P ,  Schipani E ,  Van Etten R A ,  Scadden D T  (2013). Differential regulation of myeloid leukemias by the bone marrow microenvironment. Nat Med, 19(11): 1513–1517
https://doi.org/10.1038/nm.3364 pmid: 24162813
38 Kurguzova N I ,  Bozhkov A I ,  Nikitchenko Y V ,  Al Begai MA Y ,  Goltvyansky A V ,  Alsardia MM A ,  Bozhkov A A  (2015). Interconnection of antitoxic and antioxidant systems of the organism under the action of natural low molecular complex – fungidolAm J Biomed Life Sci, 2: 25–32
23 Natalia Igorevna Kurguzova ,  Anatoliy Ivanovich Bozhkov ,  Yuriy Viktorovich Nikitchenko ,  Mohammad Ali Yousef Al Begai ,  Anatoliy Vladimirovich Goltvyansky ,  Mohammad Morshed  Ayed Alsardia ,  Andrew  Anatolievich Bozhkov  (2015). Interconnection of Antitoxic and Antioxidant Systems of the Organism under the Action of Natural Low Molecular Complex – Fungidol. American Journal of Biomedical and Life Sciences. Special Issue: Mechanisms of Protection against Oxidative Stress; 2: 25–32
39 Mathias R, Müller  K, Sangild P T ,  Husby S  (2014). Clinical applications of bovine colostrum therapy: a systematic review. Nutr Rew, 72: 273–254
24 Meena L (2013). Colostrum- its Composition, Benefits as a Nutraceutical- A Review. Curr Res Nutr Food Sci, 1(1): 37–47
https://doi.org/10.12944/CRNFSJ.1.1.04
25 Morrison S J, Scadden  D T (2014). The bone marrow niche for haematopoietic stem cells. Nature, 505(7483): 327–334
https://doi.org/10.1038/nature12984 pmid: 24429631
26 Nwajei F, Konopleva  M (2013). The bone marrow microenvironment as niche retreats for hematopoietic and leukemic stem cells. Adv Hematol, 2013: 953982
https://doi.org/10.1155/2013/953982 pmid: 23365579
27 Ratajczak M Z ,  Kucia M ,  Majka M ,  Reca R, Ratajczak  J (2004). Heterogeneous populations of bone marrow stem cells--are we spotting on the same cells from the different angles? Folia Histochem Cytobiol, 42(3): 139–146
pmid: 15493574
28 Rathe M, Müller  K, Sangild P T ,  Husby S  (2014). Clinical applications of bovine colostrum therapy: a systematic review. Nutr Rev, 72(4): 237–254
https://doi.org/10.1111/nure.12089 pmid: 24571383
29 Sánchez-Soto E ,  Ponce-Ramos R ,  Hernández-Gutiérrez R, Gutiérrez-Ortega A, Álvarez A H ,  Martínez-Velázquez M, Absalón A E ,  Ortiz-Lazareno P ,  Limón-Flores A ,  Estrada-Chávez C ,  Herrera-Rodríguez S E  (2017). Colostrum proinflammatory cytokines as biomarkers of bovine immune response to bovine tuberculosis (bTB). Microb Pathog, 103: 57–64
https://doi.org/10.1016/j.micpath.2016.12.007 pmid: 28007592
30 Sánchez-Valle V ,  Chávez-Tapia N C ,  Uribe M ,  Méndez-Sánchez N  (2012). Role of oxidative stress and molecular changes in liver fibrosis: a review. Curr Med Chem, 19(28): 4850–4860
https://doi.org/10.2174/092986712803341520 pmid: 22709007
31 Schepers K, Pietras  E M, Reynaud  D, Flach J ,  Binnewies M ,  Garg T, Wagers  A J, Hsiao  E C, Passegué  E (2013). Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche. Cell Stem Cell, 13(3): 285–299
https://doi.org/10.1016/j.stem.2013.06.009 pmid: 23850243
32 Spahr L, Chalandon  Y, Terraz S ,  Kindler V ,  Rubbia-Brandt L ,  Frossard J L ,  Breguet R ,  Lanthier N ,  Farina A ,  Passweg J ,  Becker C D ,  Hadengue A  (2013). Autologous bone marrow mononuclear cell transplantation in patients with decompensated alcoholic liver disease: a randomized controlled trial. PLoS One, 8(1): e53719
https://doi.org/10.1371/journal.pone.0053719 pmid: 23341981
33 Sprent J, Tough  D F (1994). Lymphocyte life-span and memory. Science, 265(5177): 1395–1400
https://doi.org/10.1126/science.8073282 pmid: 8073282
34 Terai S, Takami  T, Yamamoto N ,  Fujisawa K ,  Ishikawa T ,  Urata Y ,  Tanimoto H ,  Iwamoto T ,  Mizunaga Y ,  Matsuda T ,  Oono T, Marumoto  M, Burganova G ,  Fernando Quintanilha L ,  Hidaka I ,  Marumoto Y ,  Saeki I ,  Uchida K ,  Yamasaki T ,  Tani K, Taura  Y, Fujii Y ,  Nishina H ,  Okita K ,  Sakaida I  (2014). Status and prospects of liver cirrhosis treatment by using bone marrow-derived cells and mesenchymal cells. Tissue Eng Part B Rev, 20(3): 206–210
https://doi.org/10.1089/ten.teb.2013.0527 pmid: 24450831
35 Terato K, Do  C T, Shionoya  H (2015). Slipping through the Cracks: Linking low immune function and intestinal bacterial imbalance to the etiology of rheumatoid arthritis. Autoimmune Dis, 2015: 636207
https://doi.org/10.1155/2015/636207 pmid: 25861466
36 Yoshihiro U, Tomohito  K, Toshihide S ,  Ken H, Hisatsugu  Y, Daisuke K ,  Kentaro K ,  Toshio I ,  Martin M ,  Ken T, Akio  H, Akiteru G ,  Tomohiro O  (2015). Degalactosylated/Desialylated Bovine Colostrum Induces Macrophage Phagocytic Activity Independently of Inflammatory Cytokine Production. Anticancer Research August; 35: 4487–4492.
37 Yagi H, Tan  J, Tuan R S  (2013). Polyphenols suppress hydrogen peroxide-induced oxidative stress in human bone-marrow derived mesenchymal stem cells. J Cell Biochem, 114(5): 1163–1173
https://doi.org/10.1002/jcb.24459 pmid: 23192437
[1] Shirin Ferdowsi,Shirin Azizidoost,Nasim Ghafari,Najmaldin Saki. Cytogenetic changes of mesenchymal stem cells in the neoplastic bone marrow niche in leukemia[J]. Front. Biol., 2016, 11(4): 305-310.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed