Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2018, Vol. 13 Issue (3) : 208-214    https://doi.org/10.1007/s11515-018-1496-0
RESEARCH ARTICLE
Isolation and characterization of marine biofilm forming bacteria from a ship’s hull
Kavitha S1, Vimala Raghavan2()
1. School of Biosciences and Technology, Vellore Institute of Technology, Vellore-632-014, Tamil Nadu, India
2. Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore-632 014, Tamil Nadu, India
 Download: PDF(2609 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

BACKGROUND: Diverse aquatic microorganisms are capable of colonizing living and non-living surfaces leading to the formation of biofilms. Commonly visualized as a slimy layer, these biofilms are filled with hundreds of other microorganisms compared to free living planktonic cells. Microbial surface colonization and surface-associated metabolic activities also exert several macroscale deleterious effects, including biofouling, biocorrosion and the persistence and transmission of harmful or pathogenic microorganisms and virulence determinants. The present study deals with the isolation and screening of marine bacteria for biofilm formation. The screened isolates were characterized and identified as Psychrobacter celer, Psychrobacter alimentarius and Kocuria rhizophila by 16S rRNA sequencing.

METHODS: Biofilm forming bacteria were isolated by spread plate technique and subjected to screening by microtiter plate assay. The potent biofilm formers were identified by molecular characterization using 16S rRNA gene sequencing.

RESULTS: Twelve bacterial isolates were obtained by pour plate technique and subjected to biofilm assay. Among the 12 isolates three isolates which showed maximum biofilm formation were subjected to molecular characterizationby 16S rRNA gene sequencing method. The isolates were identified as Psychrobacter celer, Psychrobacter alimentarius and Kocuria rhizophila. The EPS produced by the three biofilm forming bacteria was extracted and the protein and carbohydrate content determined.

CONCLUSION: Among the isolates screened, isolate 8 (Kocuria rhizophila) produced maximum protein and carbohydrate which was also in accordance with the results of microtiter plate assay.

Keywords biofilm      MTP assay      extracellular polymeric substances      16S rRNA gene sequencing      Psychrobacter      Kocuria     
Corresponding Author(s): Vimala Raghavan   
Online First Date: 12 July 2018    Issue Date: 31 July 2018
 Cite this article:   
Kavitha S,Vimala Raghavan. Isolation and characterization of marine biofilm forming bacteria from a ship’s hull[J]. Front. Biol., 2018, 13(3): 208-214.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-018-1496-0
https://academic.hep.com.cn/fib/EN/Y2018/V13/I3/208
Fig.1  Microtiter plate assay of Isolate 3, Isolate 4 and Isolate 8.
Fig.2  Screening of biofilm forming bacteria by Micro Titer Plate assay.
Characteristics Isolate 3 Isolate 4 Isolate 8
Cell shape Cocci Cocci Cocci
Gram stain (-) ve (-) ve ( + ) ve
Gelatin (-) ve (-) ve (-) ve
Urease (-) ve (-) ve (-) ve
Nitrate reduction (-) ve (-) ve (-) ve
Tab.1  Morphological and biochemical characterization of biofilm forming bacteria
Fig.3  Phylogenetic analysis of biofilm forming bacteria. (a) Psychrobacter celer, (b). Psychrobacter alimentarius, (c) Koucuria rhizophila.
Fig.4  Scanning electron microscopic images (a)P.celer, (b) P. alimentarius and (c)K. rhizophila.
Bacterial isolates Protein content
(µg/ml)
Total carbohydrate
content (µg/ml)
Isolate 3 (P. celer) 1152 102.5
Isolate 4 (P. alimentarius) 980 87.3
Isolate 8 (K. rhizophila) 1265 142.6
Tab.2  Chemical analysis of extracellular polymeric matrix produced by biofilm forming bacteria
1 Aiassa V, Barnes A I, Albesa I (2010). Resistance to ciprofloxacin by enhancement of antioxidant defenses in biofilm and planktonic Proteus mirabilis. Biochem Biophys Res Commun, 393(1): 84–88
https://doi.org/10.1016/j.bbrc.2010.01.083
2 An Y H, Friedman R J (2000). Handbook of bacterial adhesion: principles, methods, and applications. Totowa, N.J. Humana Press.
3 Anwar H, Strap J L, Costerton J W (1992). Eradication of biofilm cells of Staphylococcus aureus with tobramycin and cephalexin. Can J Microbiol, 38(7): 618–625
https://doi.org/10.1139/m92-102
4 Beech I B, Sunner J (2004). Biocorrosion: towards understanding interactions between biofilms and metals. Curr Opin Biotechnol, 15(3): 181–186
https://doi.org/10.1016/j.copbio.2004.05.001
5 Beveridge T J, Makin S A, Kadurugamuwa J L, Li Z (1997). Interactions between biofilms and the environment. FEMS Microbiol Rev, 20(3-4): 291–303
https://doi.org/10.1111/j.1574-6976.1997.tb00315.x
6 Chaudhary A, Gupta L K, Gupta J K, Banerjee U C (1997). Studies on slime-forming organisms of a paper mill-slime production and its control. J Ind Microbiol Biotechnol, 18(5): 348–352
https://doi.org/10.1038/sj.jim.2900393
7 Costerton J W, Lewandowski Z, Caldwell D E, Korber D R, Lappin-Scott H M (1995). Microbial biofilms. Annu Rev Microbiol, 49(1): 711–745
https://doi.org/10.1146/annurev.mi.49.100195.003431
8 Costerton J W, Lewandowski Z, DeBeer D, Caldwell D, Korber D, James G (1994). Biofilms, the customized microniche. J Bacteriol, 176(8): 2137–2142
https://doi.org/10.1128/jb.176.8.2137-2142.1994
9 Cottingham K L, Chiavelli D A, Taylor R K (2003). Environmental microbe and human pathogen: the ecology and microbiology of Vibrio cholerae. Front Ecol Environ, 1(2): 80–86
https://doi.org/10.1890/1540-9295(2003)001[0080:EMAHPT]2.0.CO;2
10 Dang H Y, Chen R P, Wang L, Shao S D, Dai L Q, Ye Y, Guo L Z, Huang G Q, Klotz M G (2011). Molecular characterization of putative bio corroding microbiota with a novel niche detection of Epsilon- and Zetaproteobacteria in Pacific Ocean coastal seawaters. Environ Microbiol, 13(11): 3059–3074
https://doi.org/10.1111/j.1462-2920.2011.02583.x
11 Dang H Y, Lovell C R (2000). Bacterial primary colonization and early succession on surfaces in marine waters as determined by amplified rRNA gene restriction analysis and sequence analysis of 16S rRNA genes. Appl Environ Microbiol, 66(2): 467–475
https://doi.org/10.1128/AEM.66.2.467-475.2000
12 Davey M E, O’Toole G A (2000). Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev, 64(4): 847–867
https://doi.org/10.1128/MMBR.64.4.847-867.2000
13 Decho A W (2000). Microbial biofilms in intertidal systems: an overview. Cont Shelf Res, 20(10-11): 1257–1273
https://doi.org/10.1016/S0278-4343(00)00022-4
14 Eighmyi T T, Maratea D, Bishop P L (1983). Electron microscopic examination of wastewater biofilm formation and structured components. Appl Environ Microbiol, 45: 1921–1931
15 Feron D, Dupont I (1995). Marine biofilms on stainless steels: effects on the corrosion behaviour in: Developments in marine corrosion Ed. Campbell, S. A., Campbell, N., Walsh F. C. Publishers-Royal Society of Chemistry, Cambridge.
16 Flemming H C, Neu T R, Wozniak D J (2007). The EPS matrix: the “house of biofilm cells. J Bacteriol, 189(22): 7945–7947
https://doi.org/10.1128/JB.00858-07
17 Hall-Stoodley L, Costerton J W, Stoodley P (2004). Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol, 2(2): 95–108
https://doi.org/10.1038/nrmicro821
18 Huq A, Whitehouse C A, Grim C J, Alam M, Colwell R R (2008). Biofilms in water, its role and impact in human disease transmission. Curr Opin Biotechnol, 19(3): 244–247
https://doi.org/10.1016/j.copbio.2008.04.005
19 Jordjevic D, Wiedmann M, McLandsborough L A (2002). Microtiter plate assay for assessment of Listeria monocytogenes biofilm formation. Appl Environ Microbiol, 68(6): 2950–2958
https://doi.org/10.1128/AEM.68.6.2950-2958.2002
20 Li Y H, Tang N, Aspiras M B, Lau P C, Lee J H, Ellen R P, Cvitkovitch D G (2002). A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. J Bacteriol, 184(10): 2699–2708
https://doi.org/10.1128/JB.184.10.2699-2708.2002
21 Manca M C, Lama L, Improta R, Esposito E, Gambacorta A, Nicolaus B (1996). Chemical composition of two exopolysaccharides from Bacillus thermoantarcticus. Appl Environ Microbiol, 62: 3265–3269
22 Newman D K, Banfield J F (2002). Geomicrobiology: how molecular-scale interactions underpin biogeochemical systems. Science, 296(5570): 1071–1077
https://doi.org/10.1126/science.1010716
23 Pandit S, Kim J E, Jung K H, Chang K W, Jeon J G (2011). Effect of sodium fluoride on the virulence factors and composition of Streptococcus mutans biofilms. Arch Oral Biol, 56(7): 643–649
https://doi.org/10.1016/j.archoralbio.2010.12.012
24 Pitt T L, Malnick H, Shah J, Chattaway M A, Keys C J, Cooke F J, Shah H N (2007). Characterisation of Exiguobacterium aurantiacum isolates from blood cultures of six patients. Clin Microbiol Infect, 13(9): 946–948
https://doi.org/10.1111/j.1469-0691.2007.01779.x
25 Priest F G (1993). Systematics and ecology of Bacillus. In: Losick R, Hoch J A, Sonenshein A L, editors. Bacillus subtilis and other gram-positive bacteria: biochemistry physiology and molecular genetics. Washington (DC): ASM Press. p. 3–16
26 Sakurai K, Yoshikawa H (2012). Isolation and identification of bacteria able to form biofilms from deep subsurface environments. J Nucl Sci Technol, 49(3): 287–292
https://doi.org/10.1080/00223131.2012.660015
27 Salta M, Wharton J A, Blache Y, Stokes K R, Briand J F (2013). Marine biofilms on artificial surfaces: structure and dynamics. Environ Microbiol, 15: 2879–2893
28 Sass A M, Sass H, Coolen M J L, Cypionka H, Overmann J (2001). Microbial communities in the chemocline of a hypersaline deep-sea basin (Urania Basin, Mediterranean Sea). Appl Environ Microbiol, 67(12): 5392–5402
https://doi.org/10.1128/AEM.67.12.5392-5402.2001
29 Sollankorva S P, Neubauer P, Azeredo J (2008). Pseudomonas fluorescens biofilms subjected to phage phiIBB-PF7A. BMC Biotechnol, 8: 1–2
30 Sonak S, Bhosle N (1995). Observations on biofilm bacteria isolated from aluminum panels immersed in estuarine waters. Biofouling, 8(3): 243–254
https://doi.org/10.1080/08927019509378277
31 Steinberg P D, De Nys R, Kjelleberg S (2002). Chemical cues for surface colonization. J Chem Ecol, 28(10): 1935–1951
https://doi.org/10.1023/A:1020789625989
32 Trevors J T (2011). Hypothesized origin of microbial life in a prebiotic gel and the transition to a living biofilm and microbial mats. C R Biol, 334(4): 269–272
https://doi.org/10.1016/j.crvi.2011.02.010
33 Verhoef R, Waard P, de, Schols H A (2002). Structural elucidation of the EPS of slime producing Brevundimonas vesicularis sp. isolated from a paper machine. Carbohydr Res, 337(20): 1821–1831
https://doi.org/10.1016/S0008-6215(02)00280-X
34 Watnick P, Kolter R (2000). Biofilm, city of microbes. J Bacteriol, 182(10): 2675–2679
https://doi.org/10.1128/JB.182.10.2675-2679.2000
35 Wrangstadh M, Szewzyk U, Ostling J S, Kjelleberg S (1990). Starvation-specific formation of a peripheral exopolysaccharide by a marine Pseudomonas sp., strain S9. Appl Environ Microbiol, 56: 2065–2072
36 Xu M, Wang P, Wang F, Xiao X (2005). Microbial diversity at a deep-sea station of the Pacific nodule province. Biodivers Conserv, 14(14): 3363–3380
https://doi.org/10.1007/s10531-004-0544-z
37 Yang S, Sugawara S, Monodane T, Nishijima M, Adachi Y, Akashi S, Miyake K, Hase S, Takada H (2001). Micrococcus luteus teichuronic acids activate human and murine monocytic cells in a CD14- and toll-like receptor 4-dependent manner. Infect Immun, 69(4): 2025–2030
https://doi.org/10.1128/IAI.69.4.2025-2030.2001
[1] Hansa Jain. Antibacterial effect of bestatin during periodontitis[J]. Front. Biol., 2016, 11(5): 387-390.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed