Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2012, Vol. 7 Issue (6) : 587-593    https://doi.org/10.1007/s11515-012-1200-8
REVIEW
Wntless in Wnt secretion: molecular, cellular and genetic aspects
Soumyashree DAS, Shiyan YU, Ryotaro SAKAMORI, Ewa Stypulkowski, Nan GAO()
Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
 Download: PDF(234 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Throughout the animal kingdom, Wnt-triggered signal transduction pathways play fundamental roles in embryonic development and tissue homeostasis. Wnt proteins are modified as glycolipoproteins and are secreted into the extracellular environment as morphogens. Recent studies on the intracellular trafficking of Wnt proteins demonstrate multiple layers of regulation along its secretory pathway. These findings have propelled a great deal of interest among researchers to further investigate the molecular mechanisms that control the release of Wnts and hence the level of Wnt signaling. This review is dedicated to Wntless, a putative G-protein coupled receptor that transports Wnts intracellularly for secretion. Here, we highlight the conclusions drawn from the most recent cellular, molecular and genetic studies that affirm the role of Wntless in the secretion of Wnt proteins.

Keywords Wntless, Gpr177, Wnt      trafficking, secretion, exocytosis, retromer     
Corresponding Author(s): GAO Nan,Email:ngao@andromeda.rutgers.edu   
Issue Date: 01 December 2012
 Cite this article:   
Soumyashree DAS,Shiyan YU,Ryotaro SAKAMORI, et al. Wntless in Wnt secretion: molecular, cellular and genetic aspects[J]. Front Biol, 2012, 7(6): 587-593.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-012-1200-8
https://academic.hep.com.cn/fib/EN/Y2012/V7/I6/587
Fig.1  The putative structure of Wntless protein with specific protein-interaction domains highlighted.
Fig.2  The putative role of Wntless in the transport of Wnts through the secretory pathway in the Wnt-producing cell.
1 Attar N, Cullen P J (2010). The retromer complex. Adv Enzyme Regul , 50(1): 216–236
doi: 10.1016/j.advenzreg.2009.10.002 pmid:19900471
2 B?nziger C, Soldini D, Schütt C, Zipperlen P, Hausmann G, Basler K (2006). Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell , 125(3): 509–522
doi: 10.1016/j.cell.2006.02.049 pmid:16678095
3 Bartscherer K, Pelte N, Ingelfinger D, Boutros M (2006). Secretion of Wnt ligands requires Evi, a conserved transmembrane protein. Cell , 125(3): 523–533
doi: 10.1016/j.cell.2006.04.009 pmid:16678096
4 Belenkaya T Y, Wu Y, Tang X, Zhou B, Cheng L, Sharma Y V, Yan D, Selva E M, Lin X (2008). The retromer complex influences Wnt secretion by recycling wntless from endosomes to the trans-Golgi network. Dev Cell , 14(1): 120–131
doi: 10.1016/j.devcel.2007.12.003 pmid:18160348
5 Brault V, Moore R, Kutsch S, Ishibashi M, Rowitch D H, McMahon A P, Sommer L, Boussadia O, Kemler R (2001). Inactivation of the beta-catenin gene by Wnt1-Cre-mediated deletion results in dramatic brain malformation and failure of craniofacial development. Development , 128(8): 1253–1264
pmid:11262227
6 Carlton J, Bujny M, Peter B J, Oorschot V M, Rutherford A, Mellor H, Klumperman J, McMahon H T, Cullen P J (2004). Sorting nexin-1 mediates tubular endosome-to-TGN transport through coincidence sensing of high- curvature membranes and 3-phosphoinositides. Curr Biol , 14(20): 1791–1800
doi: 10.1016/j.cub.2004.09.077 pmid:15498486
7 Carlton J G, Bujny M V, Peter B J, Oorschot V M, Rutherford A, Arkell R S, Klumperman J, McMahon H T, Cullen P J (2005). Sorting nexin-2 is associated with tubular elements of the early endosome, but is not essential for retromer-mediated endosome-to-TGN transport. J Cell Sci , 118(19): 4527–4539
doi: 10.1242/jcs.02568 pmid:16179610
8 Carpenter A C, Rao S, Wells J M, Campbell K, Lang R A (2010). Generation of mice with a conditional null allele for Wntless. Genesis , 48(9): 554–558
doi: 10.1002/dvg.20651 pmid:20614471
9 Ching W, Hang H C, Nusse R (2008). Lipid-independent secretion of a Drosophila Wnt protein. J Biol Chem , 283(25): 17092–17098
doi: 10.1074/jbc.M802059200 pmid:18430724
10 Clevers H (2006). Wnt/beta-catenin signaling in development and disease. Cell , 127(3): 469–480
doi: 10.1016/j.cell.2006.10.018 pmid:17081971
11 Coombs G S, Yu J, Canning C A, Veltri C A, Covey T M, Cheong J K, Utomo V, Banerjee N, Zhang Z H, Jadulco R C, Concepcion G P, Bugni T S, Harper M K, Mihalek I, Jones C M, Ireland C M, Virshup D M (2010). WLS-dependent secretion of WNT3A requires Ser209 acylation and vacuolar acidification. J Cell Sci , 123(19): 3357–3367
doi: 10.1242/jcs.072132 pmid:20826466
12 Franch-Marro X, Wendler F, Guidato S, Griffith J, Baena-Lopez A, Itasaki N, Maurice M M, Vincent J P (2008). Wingless secretion requires endosome-to-Golgi retrieval of Wntless/Evi/Sprinter by the retromer complex. Nat Cell Biol , 10(2): 170–177
doi: 10.1038/ncb1678 pmid:18193037
13 Fu J, Ivy Yu H M, Maruyama T, Mirando A J, Hsu W (2011). Gpr177/mouse Wntless is essential for Wnt-mediated craniofacial and brain development. Dev Dyn , 240(2): 365–371
doi: 10.1002/dvdy.22541 pmid:21246653
14 Fu J, Jiang M, Mirando A J, Yu H M, Hsu W (2009). Reciprocal regulation of Wnt and Gpr177/mouse Wntless is required for embryonic axis formation. Proc Natl Acad Sci USA , 106(44): 18598–18603
doi: 10.1073/pnas.0904894106 pmid:19841259
15 Galli L M, Barnes T L, Secrest S S, Kadowaki T, Burrus L W (2007). Porcupine-mediated lipid-modification regulates the activity and distribution of Wnt proteins in the chick neural tube. Development , 134(18): 3339–3348
doi: 10.1242/dev.02881 pmid:17720697
16 Gasnereau I, Herr P, Chia P Z, Basler K, Gleeson PA (2011). Identification of an endocytosis motif in an intracellular loop of Wntless, essential for its recycling and the control of Wnt signalling. J Biol Chem , 286: 43324–43333
17 Goodman R M, Thombre S, Firtina Z, Gray D, Betts D, Roebuck J, Spana E P, Selva E M (2006). Sprinter: a novel transmembrane protein required for Wg secretion and signaling. Development , 133(24): 4901–4911
doi: 10.1242/dev.02674 pmid:17108000
18 Harterink M, Port F, Lorenowicz M J, McGough I J, Silhankova M, Betist M C, van Weering J R, van Heesbeen R G, Middelkoop T C, Basler K, Cullen P J, Korswagen H C (2011). A SNX3-dependent retromer pathway mediates retrograde transport of the Wnt sorting receptor Wntless and is required for Wnt secretion. Nat Cell Biol , 13(8): 914–923
doi: 10.1038/ncb2281 pmid:21725319
19 Herr P, Basler K (2011). Porcupine-mediated lipidation is required for Wnt recognition by Wls. Dev Biol , 361(2): 392–402
20 Ikeya M, Lee S M, Johnson J E, McMahon A P, Takada S (1997). Wnt signalling required for expansion of neural crest and CNS progenitors. Nature , 389(6654): 966–970
doi: 10.1038/40146 pmid:9353119
21 Jin J, Kittanakom S, Wong V, Reyes B A, Van Bockstaele E J, Stagljar I, Berrettini W, Levenson R (2010). Interaction of the mu-opioid receptor with GPR177 (Wntless) inhibits Wnt secretion: potential implications for opioid dependence. BMC Neurosci , 11(1): 33
doi: 10.1186/1471-2202-11-33 pmid:20214800
22 Komekado H, Yamamoto H, Chiba T, Kikuchi A (2007). Glycosylation and palmitoylation of Wnt-3a are coupled to produce an active form of Wnt-3a. Genes Cells , 12(4): 521–534
doi: 10.1111/j.1365-2443.2007.01068.x pmid:17397399
23 Korkut C, Ataman B, Ramachandran P, Ashley J, Barria R, Gherbesi N, Budnik V (2009). Trans-synaptic transmission of vesicular Wnt signals through Evi/Wntless. Cell , 139(2): 393–404
doi: 10.1016/j.cell.2009.07.051 pmid:19837038
24 Kurayoshi M, Yamamoto H, Izumi S, Kikuchi A (2007). Post-translational palmitoylation and glycosylation of Wnt-5a are necessary for its signalling. Biochem J , 402(3): 515–523
doi: 10.1042/BJ20061476 pmid:17117926
25 Liu P, Wakamiya M, Shea M J, Albrecht U, Behringer R R, Bradley A (1999). Requirement for Wnt3 in vertebrate axis formation. Nat Genet , 22(4): 361–365
doi: 10.1038/11932 pmid:10431240
26 Logan C Y, Nusse R (2004). The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol , 20(1): 781–810
doi: 10.1146/annurev.cellbio.20.010403.113126 pmid:15473860
27 MacDonald B T, Tamai K, He X (2009). Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell , 17(1): 9–26
doi: 10.1016/j.devcel.2009.06.016 pmid:19619488
28 McMahon A P, Bradley A (1990). The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell , 62(6): 1073–1085
doi: 10.1016/0092-8674(90)90385-R pmid:2205396
29 Pan C L, Baum P D, Gu M, Jorgensen E M, Clark S G, Garriga G (2008). C. elegans AP-2 and retromer control Wnt signaling by regulating mig-14/Wntless. Dev Cell , 14(1): 132–139
doi: 10.1016/j.devcel.2007.12.001 pmid:18160346
30 Port F, Kuster M, Herr P, Furger E, B?nziger C, Hausmann G, Basler K (2008). Wingless secretion promotes and requires retromer-dependent cycling of Wntless. Nat Cell Biol , 10(2): 178–185
doi: 10.1038/ncb1687 pmid:18193032
31 Rojas R, van Vlijmen T, Mardones G A, Prabhu Y, Rojas A L, Mohammed S, Heck A J, Raposo G, van der Sluijs P, Bonifacino J S (2008). Regulation of retromer recruitment to endosomes by sequential action of Rab5 and Rab7. J Cell Biol , 183(3): 513–526
doi: 10.1083/jcb.200804048 pmid:18981234
32 Seaman M N (2005). Recycle your receptors with retromer. Trends Cell Biol , 15(2): 68–75
doi: 10.1016/j.tcb.2004.12.004 pmid:15695093
33 Silhankova M, Port F, Harterink M, Basler K, Korswagen H C (2010). Wnt signalling requires MTM-6 and MTM-9 myotubularin lipid-phosphatase function in Wnt-producing cells. EMBO J , 29(24): 4094–4105
doi: 10.1038/emboj.2010.278 pmid:21076391
34 Stefater J A 3rd, Lewkowich I, Rao S, Mariggi G, Carpenter A C, Burr A R, Fan J, Ajima R, Molkentin J D, Williams B O, Wills-Karp M, Pollard J W, Yamaguchi T, Ferrara N, Gerhardt H, Lang R A (2011). Regulation of angiogenesis by a non-canonical Wnt-Flt1 pathway in myeloid cells. Nature , 474(7352): 511–515
doi: 10.1038/nature10085 pmid:21623369
35 Takada R, Satomi Y, Kurata T, Ueno N, Norioka S, Kondoh H, Takao T, Takada S (2006). Monounsaturated fatty acid modification of Wnt protein: its role in Wnt secretion. Dev Cell , 11(6): 791–801
doi: 10.1016/j.devcel.2006.10.003 pmid:17141155
36 Tanaka K, Kitagawa Y, Kadowaki T (2002). Drosophila segment polarity gene product porcupine stimulates the posttranslational N-glycosylation of wingless in the endoplasmic reticulum. J Biol Chem , 277(15): 12816–12823
doi: 10.1074/jbc.M200187200 pmid:11821428
37 Tanaka K, Okabayashi K, Asashima M, Perrimon N, Kadowaki T (2000). The evolutionarily conserved porcupine gene family is involved in the processing of the Wnt family. Eur J Biochem , 267(13): 4300–4311
doi: 10.1046/j.1432-1033.2000.01478.x pmid:10866835
38 Tang X, Fan X, Lin X (2011). Regulation of Wnt Secretion and Distribution. Springer Science+Business Media, LLC 2011 , 19–33
39 Temkin P, Lauffer B, J?ger S, Cimermancic P, Krogan N J, von Zastrow M (2011). SNX27 mediates retromer tubule entry and endosome-to-plasma membrane trafficking of signalling receptors. Nat Cell Biol , 13(6): 717–721
doi: 10.1038/ncb2252 pmid:21602791
40 Thomas K R, Capecchi M R (1990). Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature , 346(6287): 847–850
doi: 10.1038/346847a0 pmid:2202907
41 van den Heuvel M, Harryman-Samos C, Klingensmith J, Perrimon N, Nusse R (1993). Mutations in the segment polarity genes wingless and porcupine impair secretion of the wingless protein. EMBO J , 12(13): 5293–5302
pmid:8262072
42 Wassmer T, Attar N, Bujny M V, Oakley J, Traer C J, Cullen P J (2007). A loss-of-function screen reveals SNX5 and SNX6 as potential components of the mammalian retromer. J Cell Sci , 120(1): 45–54
doi: 10.1242/jcs.03302 pmid:17148574
43 Willert K, Brown J D, Danenberg E, Duncan A W, Weissman I L, Reya T, Yates J R 3rd, Nusse R (2003). Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature , 423(6938): 448–452
doi: 10.1038/nature01611 pmid:12717451
44 Yang P T, Lorenowicz M J, Silhankova M, Coudreuse D Y, Betist M C, Korswagen H C (2008). Wnt signaling requires retromer-dependent recycling of MIG-14/Wntless in Wnt-producing cells. Dev Cell , 14(1): 140–147
doi: 10.1016/j.devcel.2007.12.004 pmid:18160347
45 Zhai L, Chaturvedi D, Cumberledge S (2004). Drosophila wnt-1 undergoes a hydrophobic modification and is targeted to lipid rafts, a process that requires porcupine. J Biol Chem , 279(32): 33220– 33227
doi: 10.1074/jbc.M403407200 pmid:15166250
46 Zhang P, Wu Y, Belenkaya T Y, and Lin X (2011). SNX3 controls Wingless/Wnt secretion through regulating retromer-dependent recycling of Wntless. Cell Res , 21(12):1677–1690
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed