Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2017, Vol. 12 Issue (2) : 151-162    https://doi.org/10.1007/s11515-016-1441-z
RESEARCH ARTICLE
Antioxidative properties of phenolic compounds isolated from the fungal endophytes of Zingiber nimmonii (J. Graham) Dalzell.
Madhuchhanda Das1, Harischandra Sripathy Prakash2, Monnanda Somaiah Nalini1()
1. Department of Studies in Botany, University of Mysore, Manasagangotri, Mysore – 570 006, Karnataka, India
2. Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore – 570 006, Karnataka, India
 Download: PDF(4599 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

BACKGROUND: The microbes living in planta termed ‘endophytes’ is bestowed with the potential to produce bioactive substances. The aim of this investigation was focused on the isolation and molecular identification of the fungal endophytes fromZingiber nimmonii (J. Graham) Dalzell., an endemic medicinal plant species of the ‘Western ghats’, a hotspot location in southern India and characterization of the secondary metabolites responsible for the antioxidant and DNA protective capacity using chromatography and mass spectrometry techniques.

METHODS: Endophytic fungi were isolated and identified by sequencing the Internal Transcribed Spacer (ITS). The secondary metabolites were extracted with ethyl acetate and evaluated for the total phenolic, flavonoid and antioxidant capacities. The isolates with potential antioxidative property were further analyzed for the DNA protection ability and the presence of bioactive phenolic compounds by High Performance Liquid Chromatography (HPLC) and Electrospray Ionization-Mass Spectroscopy/Mass Spectroscopy (ESI-MS/MS) techniques.

RESULTS: Endophytic fungi belonging to 11 different taxa were identified. The total phenolic content of the extracts ranged from 10.8±0.7 to 81.6±6.0 mg gallic acid equivalent/g dry extract. Flavonoid was present in eight extracts in the range of 5.2±0.5 to 24.3±0.9 mg catechin equivalents/g dry extract.Bipolaris specifera, Alternaria tenuissima, Aspergillus terreus, Nectria haematococca and Fusarium chlamydosporum extracts exhibited a potentially high antioxidant capacity. Characterization of the extracts revealed an array of phenolic acids and flavonoids.N. haematococcaand F. chlamydosporum extracts contained quercetin and showed DNA protection ability.

CONCLUSION: This study is the first comprehensive report on the fungal endophytes from Z. nimmonii, as potential sources of antioxidative and DNA protective compounds. The study indicates that Z. nimmonii endophytes are potential sources of antioxidants over the plant itself.

Keywords endophytic fungi      Zingiber      Western Ghats      phenolic acids      flavonoid      DNA protection     
Corresponding Author(s): Monnanda Somaiah Nalini   
Online First Date: 16 February 2017    Issue Date: 14 April 2017
 Cite this article:   
Madhuchhanda Das,Harischandra Sripathy Prakash,Monnanda Somaiah Nalini. Antioxidative properties of phenolic compounds isolated from the fungal endophytes of Zingiber nimmonii (J. Graham) Dalzell.[J]. Front. Biol., 2017, 12(2): 151-162.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-016-1441-z
https://academic.hep.com.cn/fib/EN/Y2017/V12/I2/151
Fig.1  Z. nimmonii (J. Graham) Dalzell., from the Western Ghats. (A) Aerial portion; (B) Roots and spikes arising directly from root stock; (C) Flower with yellow lip.
Tab.1  Taxonomic identification,percent colonization and relative frequency of the fungal endophytes isolated fromZ. nimmonii.
Fig.2  Total phenolic content (TPC) and total flavonoid content of fungal endophytes. Data are reported as mean±SD of three independent analyses (n = 3). Values with the different letters in the data labels are significantly different (p<0.05).
Tab.2  Antioxidant capacity of fungal endophytes isolated from Z. nimmonii
Fig.3  Light micrography of fungal endophytes with high antioxidant capacity at 40X. (A) B. specifera; (B) A. tenuissima; (C) A. terreus; (D) F. chlamydosporum; (E) Chlamydospores of F. chlamydosporum; (F) Hyphal coil of F. chlamydosporum; (G) N. hematococca.
Fig.4  DNA protection assay of extracts from respective endophytic fungus.
Tab.3  Concentration (mg/g of extract) of various phenolic compounds in five selected extracts of endophytes
Fig.5  HPLC chromatograms of phenolics. (A) Separation of phenolic acids and catechin in standard mixture (at 280 nm); (B)B. specifera; (C) A. tenuissima; (D) A. terreus; (E) Separation of quercetin and kaempferol in standard mixture (at 260 nm); (F) N. hematococca; (G) F. chlamydosporum. (1- Catechin, 2- Chlorogenic acid, 3- Caffeic acid, 4- p-hydroxybenzoic acid, 5- Vanillic acid, 6- Syringic acid, 7- p-Coumaric acid, 8- Ferulic acid, 9- Protocatechuic acid, 10- Quercetin, 11- Kaempferol).
Tab.4  ESI-MS/MS analysis of HPLC fragments of endophytic fungal extracts
1 Ausubel F M, Brent  R, Kingston R E ,  Moore D D ,  Seidman J G ,  Smith J A ,  Struhl K  (1994). Current protocols in molecular biology.Wiley, New York
2 Barros L, Ferreira  M J, Queirós  B, Ferreira C F R ,  Baptista P  (2007). Total phenols, ascorbic acid, β-carotene and lycopene in Portuguese wild edible mushrooms and their antioxidant activities. Food Chem, 103(2): 413–419
https://doi.org/10.1016/j.foodchem.2006.07.038
3 Bussaban B, Lumyong  S, Lumyong P ,  Mckenzie E H C ,  Hyde K D  (2001). Endophytic fungi from Amomum siamense. Can J Microbiol, 47(10): 943–948
https://doi.org/10.1139/w01-098
4 Çelik H, Arinç  E (2010). Evaluation of the protective effects of quercetin, rutin, resveratrol, naringenin and trolox against idarubicin-induced DNA damage. J Pharm Pharm Sci, 13(2): 231–241
https://doi.org/10.18433/J3S01G
5 Cheng M J, Wu  M D, Chen  J J, Cheng  Y C, Hsieh  M T, Hsieh  S Y, Yuan  G F, Su  Y S (2014). Secondary metabolites from the endophytic fungus Annulohypoxylon stygium BCRC 34024. Chem Nat Compd, 50(2): 237–241
https://doi.org/10.1007/s10600-014-0921-0
6 Das A K, Singh  V (2016). Antioxidative free and bound phenolic constituents in botanical fractions of Indian specialty maize (Zea mays L.) genotypes. Food Chem, 201: 298–306
https://doi.org/10.1016/j.foodchem.2016.01.099
7 Deng C M, Liu  S X, Huang  C H, Pang  J Y, Lin  Y C (2013). Secondary metabolites of a mangrove endophytic fungus Aspergillus terreus (No.GX7–3B) from the South China Sea. Mar Drugs, 11(7): 2616–2624
https://doi.org/10.3390/md11072616
8 Duthie S J, Collins  A R, Duthie  G G, Dobson  V L (1997). Quercetin and myricetin protect against hydrogen peroxide-induced DNA damage strand breaks and oxidised pyrimidines in human lymphocytes. Mutat Res, 393(3): 223–231
https://doi.org/10.1016/S1383-5718(97)00107-1
9 Finose A, Gopalakrishnan  V K (2014). Antioxidant potential of Zingiber nimmonii (J. Graham) Dalzell. Int J Pharm PharmSci, 6(6): 50–52
10 Gamble J S (1928). Flora of the Presidency of Madras. Vol.III, Bishen Singh Mahenra Pal Singh, Dehra Dun, India, pp. 1487–1489
11 Huang W Y, Cai  Y Z, Hyde  K D, Corke  H, Sun M  (2007b). Endophytic fungi from Nerium oleander L (Apocynaceae): main constituents and antioxidant activity. World J Microbiol Biotechnol, 23(9): 1253–1263
https://doi.org/10.1007/s11274-007-9357-z
12 Huang W Y, Cai  Y Z, Xing  J, Corke H ,  Sun M (2007a). A Potential antioxidant resource: endophytic fungi from medicinal plants. Econ Bot, 61(1): 14–30
https://doi.org/10.1663/0013-0001(2007)61[14:APAREF]2.0.CO;2
13 Jasim B, Anisha  C, Rohini S ,  Kurian J M ,  Jyothis M ,  Radhakrishnan E K  (2014). Phenazine carboxylic acid production and rhizome protective effect of endophytic Pseudomonas aeruginosa isolated from Zingiber officinale. World J Microbiol Biotechnol, 30(5): 1649–1654
https://doi.org/10.1007/s11274-013-1582-z
14 Jing P, Zhao  S J, Jian  W J, Qian  B J, Dong  Y, Pang J  (2012). Quantitative studies on structure- DPPH• scavenging activity relationships of food phenolic acids. Molecules, 17(12): 12910–12924
https://doi.org/10.3390/molecules171112910
15 Karamac M, Kosiñska  A, Pegg R B  (2005). Comparison of radical-scavenging activities for selected phenolic acids. Pol J Food NutrSci, 14/55(2): 165–170
16 Kavitha P G, Kiran  A G, Dinesh Raj  R, Sabu M ,  Thomas G  (2010). Amplified fragment length polymorphism analyses unravel a striking difference in the intraspecific genetic diversity of four species of four species of genus Zingiber Boehm. from the Western Ghats, South India. Curr Sci, 98(2): 242–246
17 Lee J C, Kim  H R, Kim  J, Jang Y S  (2002). Antioxidant activity of ethanol extract of the stem of Opuntiaficus-indica var. saboten. J Agric Food Chem, 50(22): 6490–6496
https://doi.org/10.1021/jf020388c
18 Liu X, Dong  M, Chen X ,  Jiang M ,  Lv X, Yan  G (2007). Antioxidant activity and phenolics of an endophytic Xylaria sp. from Ginkgo biloba. Food Chem, 105(2): 548–554
https://doi.org/10.1016/j.foodchem.2007.04.008
19 Maldonado P D ,  Rivero-Cruz I ,  Mata R, Pedraza-Chaverrí  J (2005). Antioxidant activity of A-type proanthocyanidins from Geranium niveum (Geraniaceae). J Agric Food Chem, 53(6): 1996–2001
https://doi.org/10.1021/jf0483725
20 Nalini MS, Sunayana  N, Prakash HS  (2014). Endophytic fungal diversity in medicinal plants of Western Ghats, India. Int J Biodiv, doi:org/10.1155/2014/494213.
21 Nongalleima K, Dey  A, Lokesh D ,  Singh C B ,  Thongam B ,  Sunitibala D H ,  Indira D S  (2013). Endophytic fungus isolated from Zingiber zerumbet (L.) Sm. inhibits free radicals and cyclooxygenase activity. Int J Pharm Tech Res, 5(2): 301–307
22 Ohkawa H, Ohishi  N, Yagi K  (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem, 95(2): 351–358
https://doi.org/10.1016/0003-2697(79)90738-3
23 Onyema O O, Farombi  E O, Emerole  G O, Ukoha  A I, Onyeze  G O (2006). Effect of vitamin E on monosodium glutamate induced hepatotoxicity and oxidative stress in rats. Indian J Biochem Biophys, 43(1): 20–24
24 Oyaizu M (1986). Studies on product of browning reaction prepared from glucose amine. J Nutr, 44: 307–315
25 Pérez-Magariño S ,  Revilla I ,  González-SanJosé M L, Beltrán S  (1999). Various applications of liquid chromatography-mass spectrometry to the analysis of phenolic compounds. J Chromatogr A, 847(1-2): 75–81
https://doi.org/10.1016/S0021-9673(99)00255-1
26 Pizarro J G, Folch  J, De La Torre A V, Verdaguer E ,  Junyent F ,  Jordan J ,  Pallas M ,  Camins A  (2009). Oxidative stress-induced DNA damage and cell cycle regulation in B65 dopaminergic cell line. Free Radic Res, 43(10): 985–994
https://doi.org/10.1080/10715760903159188
27 Re R, Pellegrini  N, Proteggente A ,  Pannala A ,  Yang M, Evans  C R (1999). Antioxidant activity applying and improved ABTS radical cation decolorization assay. Free Radic Biol Med, 26(9-10): 1231–1237
https://doi.org/10.1016/S0891-5849(98)00315-3
28 Sabulal B, Dan  M, John J A ,  Kurup R ,  Pradeep N S ,  Valsamma R K ,  George V  (2006). Caryophyllene-rich rhizome oil of Zingiber nimmonii from South India: chemical characterization and antimicrobial activity. Phytochemistry, 67(22): 2469–2473
https://doi.org/10.1016/j.phytochem.2006.08.003
29 Samaga P V, Rai  V R (2016). Diversity and bioactive potential of endophytic fungi from Nothapodytes foetida, Hypericum mysorense and Hypericum japonicum collected from Western Ghats of India. Ann Microbiol, 66(1): 229–244
https://doi.org/10.1007/s13213-015-1099-9
30 Schulz B, Guske  S, Dammann U ,  Boyle C  (1998). Endophyte host interactions II. Defining symbiosis of the endophyte host interaction. Symbiosis, 25: 213–227
31 Strobel G, Daisy  B (2003). Bio prospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev, 67(4): 491–502
https://doi.org/10.1128/MMBR.67.4.491-502.2003
32 Strobel G, Yang  X, Sears J ,  Kramer R ,  Sidhu R S ,  Hess W M  (1996). Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallachiana. Microbiology, 142(2): 435–440
https://doi.org/10.1099/13500872-142-2-435
33 Sun J, Liang  F, Bin Y ,  Li P, Duan  C (2007). Screening non-colored phenolics in red wines using liquid chromatography/ultraviolet and mass spectrometry/mass spectrometry libraries. Molecules, 12(3): 679–693
https://doi.org/10.3390/12030679
34 Tan R X, Zou  W X (2001). Endophytes: a rich source of functional metabolites. Nat Prod Rep, 18(4): 448–459
https://doi.org/10.1039/b100918o
35 Tejesvi M V, Mahesh  B, Nalini M S ,  Prakash H S ,  Kini K R ,  Subbiah V ,  Shetty H S  (2005). Endophytic fungal assemblages from inner bark and twig of Terminalia arjuna W. & A. (Combretaceae). World J Microbiol Biotechnol, 21(8-9): 1535–1540
https://doi.org/10.1007/s11274-005-7579-5
36 Thannickal V J ,  Fanburg B L  (2000). Reactive oxygen species in cell signalling. Am J Physiol Lung Cell Mol Physiol, 279: L1005–L1028
37 Tiwari S, Singh  S, Pandey P ,  Saikia S K ,  Negi A S ,  Gupta S K ,  Pandey R ,  Banerjee S  (2014). Isolation, structure determination, and antiaging effects of 2,3-pentanediol from endophytic fungus of Curcuma amada and docking studies. Protoplasma, 251(5): 1089–1098
https://doi.org/10.1007/s00709-014-0617-0
38 Tuma D J, Casey  C A (2003). Dangerous byproducts of alcohol breakdown—focus on adducts. Alcohol Res Health, 27: 285–290
39 Wilson D (1995). Fungal endophytes: out of sight but should not be out of mind. Oikos, 68(2): 379–384
https://doi.org/10.2307/3544856
40 Yashavantha Rao H C ,  Rakshith D ,  Satish S  (2015). Antimicrobial properties of endophytic actinomycetes isolated from Combretum latifolium Blume, a medicinal shrub from Western Ghats of India. Front Biol, 10(6): 528–536
https://doi.org/10.1007/s11515-015-1377-8
[1] Pathomwat Wongrattanakamon,Vannajan Sanghiran Lee,Piyarat Nimmanpipug,Supat Jiranusornkul. Nucleotide binding domain 1 pharmacophore modeling for visualization and analysis of P-glycoprotein–flavonoid molecular interactions[J]. Front. Biol., 2016, 11(5): 391-395.
[2] Yunsong LAI, Huanxiu LI, Masumi YAMAGISHI. A review of target gene specificity of flavonoid R2R3-MYB transcription factors and a discussion of factors contributing to the target gene selectivity[J]. Front Biol, 2013, 8(6): 577-598.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed