Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2019, Vol. 13 Issue (4): 707-714   https://doi.org/10.1007/s11708-019-0616-0
  研究论文 本期目录
钍基熔盐反应堆固体燃料设计的现象识别和排序表练习
刘晓晶1(), 王琪1, 何兆忠2, 陈堃2, 程旭1
1. 上海交通大学核科学与工程学院
2. 中国科学院上海应用物理研究所
Phenomena identification and ranking table exercise for thorium based molten salt reactor-solid fuel design
Xiaojing LIU1(), Qi WANG1, Zhaozhong HE2, Kun CHEN2, Xu CHENG1
1. School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2. Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
 全文: PDF(809 KB)   HTML
摘要:

钍基熔融盐反应堆固体燃料(TMSR-SF)设计是一种创新的反应堆概念,它使用高温三结构各向同性(TRISO)燃料和低压液态盐冷却剂。 为了将来获得TMSR-SF的许可申请,有必要充分了解TMSR-SF设计的重要特征和现象,以及在事故发生时的瞬态行为。 在本文中,针对所选事件评估了安全相关现象,重要性和知识库,并基于RELAP / SCDAPSIM Mod 4.0模拟了车站停电期间TMSR-SF的瞬变。

具有显着影响但对它们的历史了解有限的现象是堆芯冷却剂旁路流量,出口气室流量分布以及冷却瞬态过高/过低的中间热交换器(IHX)。 还讨论了车站停电期间的一些热工水力参数。

Abstract

Thorium based molten salt reactor-solid fuel (TMSR-SF) design is an innovative reactor concept that uses high-temperature tristructural-isotropic (TRISO) fuel with a low-pressure liquid salt coolant. In anticipation of getting licensed applications for TMSR-SF in the future, it is necessary to fully understand the significant features and phenomena of TMSR-SF design, as well as its transient behavior during accidents. In this paper, the safety-relevant phenomena, importance, and knowledge base were assessed for the selected events and the transient of TMSR-SF during station blackout scenario is simulated based on RELAP/SCDAPSIM Mod 4.0.

The phenomena having significant impact but with limited knowledge of their history are core coolant bypass flows, outlet plenum flow distribution, and intermediate heat exchanger (IHX) over/under cooling transients. Some thermal hydraulic parameters during the station blackout scenario are also discussed.

Key wordsphenomena identification and ranking table (PIRT)    thorium based molten salt reactor-solid fuel (TMSR-SF)    safety analysis    RELAP/SCDAPSIM
收稿日期: 2018-05-05      出版日期: 2019-12-26
通讯作者: 刘晓晶     E-mail: xiaojingliu@sjtu.edu.cn
Corresponding Author(s): Xiaojing LIU   
 引用本文:   
刘晓晶, 王琪, 何兆忠, 陈堃, 程旭. 钍基熔盐反应堆固体燃料设计的现象识别和排序表练习[J]. Frontiers in Energy, 2019, 13(4): 707-714.
Xiaojing LIU, Qi WANG, Zhaozhong HE, Kun CHEN, Xu CHENG. Phenomena identification and ranking table exercise for thorium based molten salt reactor-solid fuel design. Front. Energy, 2019, 13(4): 707-714.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-019-0616-0
https://academic.hep.com.cn/fie/CN/Y2019/V13/I4/707
Fig.1  
Design parameter Value
Thermal power/MW 10
Fuel type TRISO
Height of reactor core/cm 190.31
Diameter/height of reactor core cylinder/cm 135/180
First loop coolant FLiBe
Secondary-loop coolant FLiNaK
Inlet temperature/(100% FP, °C) 600
Outlet temperature/(100% FP, °C) 650
Mass flow rate/(100% FP, kg/s) 84
U-235 enrichment/% 17.08
Maximum pressure in vessel/MPa <0.5
Tab.1  
Step Process
Step 1 Issue
Step 2 PIRT objective
Step 3 Hardware-scenario
Step 4 Figure of merit (FoMs)
Step 5 Data base
Step 6 Identify phenomena
Step 7 Importance ranking
Step 8 Knowledge level
Step 9 Document PIRT
Tab.2  
Systems Subsystem
Reactor Pebble fuel
Primary coolant flow
In-vessel component—graphite reflector
In-vessel component—compaction device
Reactor vessel Top support plate
Upper plenum
Downcomer
Lower plenum
Reactivity control Backup reactivity control system
Passive reactivity control
First loop First loop molten salt pump
First loop pipeline
Primary side of molten salt-to-molten salt heat exchanger
Intermediate loop Secondary-loop molten salt pump
Secondary-loop pipeline
Secondary side of molten salt-to-molten salt heat exchanger
Operating condition heat removal air-molten salt heat exchanger
Residual heat removal air-molten salt heat exchanger
Passive residual heat removal system (PRHS) Air heat exchanger
Tab.3  
Importance rank Definition
L Small influence on primary evaluation criterion
M Moderate influence on primary evaluation criterion
H High influence on primary evaluation criterion
Tab.4  
Knowledge level Definition
H Known: approximately 70%–100% of complete knowledge and understanding
M Partially known: 30%–70% of complete knowledge and understanding
L Unknown: 0%–30% of complete knowledge and understanding
Tab.5  
Phenomena/process Normal operation Protected transient of over power (PTOP) ATWS Station blackout LOHS LOFC Overcooling Small loss of coolant accident (LOCA)
Thermal conductivity of carbonaceous material HM HM HM HM HM HM HM
Specific heat capacity of carbonaceous material MM MM MM MM MM MM MM
Thermal conductivity of fuel kernel HM HM HM HM HM
Specific heat capacity of fuel kernel MM MM MM MM MM MM
Coolant bypass flow HL HL HL HL ML
Coolant flow distribution due to temperature gradient MM MM
Coolant flow distribution due to graphite irradiation ML ML
Viscosity/friction of FLiBe HM HM HM HM HM MM
Thermal conductivity of FLiBe HM HM HM HM HM
Subchannel flow HM HM HM
Coolant mixing in lower plenum MM MM
Upper plenum mixing HL HH HH
Thermal conductivity of graphite LM MH MH MH MH
Specific heat capacity of graphite MH HH HH HH HH
Thermal conductivity of vessel LM MM MM LH LM
Reactor vessel specific heat capacity MH MH MH MH MH
Heat transfer to vessel upper flange MM
Heat radiation from upper plenum to top support plate HM HM HM HM
Molten salt freezing and melt HL HL
Heat transfer across vessel to gas space MM MM MM MM MM
Heat transfer across gas space to heat insulation MM MM MM MM MM
Concrete thermal conductivity HM HM
Reactivity insertion due to overcooling transient LH
First loop piping heat loss LH
Secondary-loop piping heat loss MM MM MM MM MM
Heat transfer across penetration piece of PRHS to concrete MM MM MM MM MM
Passive heat removal system (PHRS) piping heat loss HM HM HM
Heat transfer across heat transfer area of PHRS to gas space MM MM MM
Tab.6  
Parameter Value
Core power level/MWt 10
Core inlet coolant temperature/°C 600
Core outlet coolant temperature/°C 650
Core mass flow rate/(kg?s–1) 84
Secondary-loop mass flow/(kg?s–1) 166
Environment temperature/°C 40
Tab.7  
Fig.2  
Parameter Value
Station blackout occurring/s 30000
All the pumps switch off/s 30001
Loss of primary coolant flow/s 30000
PRHR system fully operation/s 30060
Tab.8  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
1 C Frepoli. An overview of Westinghouse realistic large break LOCA evaluation model. Science and Technology of Nuclear Installations, 2008, 2008: 498737
https://doi.org/10.1155/2008/498737
2 B E Boyack, I Catton, R B Duffey, P Griffith, K R Katsma, G S Lellouche, S Levy, U S Rohatgi, G E Wilson , W Wulff , N Zuber. Quantifying reactor safety margins part 1: an overview of the code scaling, applicability, and uncertainty evaluation methodology. Nuclear Engineering and Design, 1990, 119(1): 1–15
https://doi.org/10.1016/0029-5493(90)90071-5
3 H Xu, Z Dai, X Cai. Some physical issues of the thorium molten salt reactor nuclear energy system. Nuclear Physics News, 2014, 24(2): 24–30
https://doi.org/10.1080/10619127.2014.910434
4 M Perez, C M Allison, R J Wagner, et al. The development of RELAP/SCDAPSIM/MOD 4.0 for advanced fluid systems design analysis. In: 11th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, Operation and Safety, Gyeongju, South Korea, 2016
5 R O Scarlat, M R Laufer, E D Blandford, N Zweibaum, D L Krumwiede, A T Cisneros, C Andreades, C W Forsberg, E Greenspan, L W Hu, P F Peterson. Design and licensing strategies for the fluoride-salt-cooled, high-temperature reactor (FHR) technology. Progress in Nuclear Energy, 2014, 77: 406–420
https://doi.org/10.1016/j.pnucene.2014.07.002
6 H J Xu. Thorium energy and molten salt reactor R&D in China. In: Revol J P, Bourquin M, Kadi Y, et al., eds. Thorium Energy for the World. Switzerland: Springer International Publishing Switzerland, 2016, 37–44
7 L Liu, D Zhang, Q Lu, K Wang, S Qiu. Preliminary neutronic and thermal-hydraulic analysis of a 2 MW thorium-based molten salt reactor with solid fuel. Progress in Nuclear Energy, 2016, 86: 1–10
https://doi.org/10.1016/j.pnucene.2015.09.011
8 D Zhang, L Liu, M Liu, R Xu, C Gong, J Zhang, C Wang, S Qiu, G Su. Review of conceptual design and fundamental research of molten salt reactors in China. International Journal of Energy Research, 2018, 42(5): 1834–1848
https://doi.org/10.1002/er.3979
9 S J Ball. Next generation nuclear plant phenomena identification and ranking tables (PIRTs). Office of Scientific & Technical Information Technical Reports, Oak Ridge National Laboratory, US, 2008
10 S Jiang, M Cheng, Z Dai, et al. Extension and validation of RELAP/SCDAPSIM/MOD 4.0 code on FHR. Nuclear Power Engineering, 2016, 37(06): 33–36 (in Chinese)
11 S Jiang, M Cheng, Z Dai, et al. Preliminary steady state and transient analysis of a molten salt based reactor using RELAP/SCDAPSIM/MOD 4.0. In: 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH 2015), Chicago, US, 2015, 6130–6140
12 W Tian, S Qiu, G Su, D Jia, X Liu, J Zhang. Thermohydraulic and safety analysis on China advanced research reactor under station blackout accident. Annals of Nuclear Energy, 2007, 34(4): 288–296
https://doi.org/10.1016/j.anucene.2007.01.010
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed