Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2019, Vol. 13 Issue (4): 658-666   https://doi.org/10.1007/s11708-019-0645-8
  研究论文 本期目录
二甲醚和氢气混合燃料预混火焰中的可用能损失
赵同宾1, 张家博1, 具德浩1, 黄震1, 韩东2()
1. 上海交通大学动力机械与工程教育部重点实验室
2. 重庆大学低品位能源利用技术与系统教育部重点实验室
Exergy losses in premixed flames of dimethyl ether and hydrogen blends
Tongbin ZHAO1, Jiabo ZHANG1, Dehao JU1, Zhen HUANG1, Dong HAN2()
1. Key Laboratory for Power Machinery and Engineering of the Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
2. Key Laboratory for Power Machinery and Engineering of the Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Low-grade Energy Utilization Technologies and Systems of the Ministry of Education, Chongqing University, Chong-qing 400044, China
 全文: PDF(1414 KB)   HTML
摘要:

本文针对大气压条件下,化学计量比的二甲醚/氢气/空气预混合火焰开展了热力学第二定律分析。火焰过程的可用能损失主要来自于不同的不可逆源,如化学反应、热传导、物质扩散等,以及来自于部分燃烧产物的可用能损失。研究结果表明,无论二甲醚和氢气的混合比例如何,化学反应始终是可用能损失的主要贡献因素,其次是未完全燃烧产物和热传导,而物质扩散对可用能损失的贡献最小。随着氢气比例的提高,源自化学反应、热传导和物质扩散的可用能损失降低,这主要是由于火焰厚度的减小所致。其中,来自化学反应和热传导的可用能损失下降得更为明显,而物质扩散所导致的可用能损失下降较小。然而,来自未完全燃烧的可用能损失随着氢气比例的升高而增加,这是由于氢气和OH基团等未燃燃料和燃烧中间产物的比例上升造成的。随着氢气混合比例从0%升高至100%,二甲醚/氢气预混火焰的总可用能损失下降约5%。

Abstract

A second-law thermodynamic analysis was conducted for stoichiometric premixed dimethyl ether (DME)/hydrogen (H2)/air flames at atmospheric pressure. The exergy losses from the irreversibility sources, i.e., chemical reaction, heat conduction and species diffusion, and those from partial combustion products were analyzed in the flames with changed fuel blends. It is observed that, regardless of the fuel blends, chemical reaction contributes most to the exergy losses, followed by incomplete combustion, and heat conduction, while mass diffusion has the least contribution to exergy loss. The results also indicate that increased H2 substitution decreases the exergy losses from reactions, conduction, and diffusion, primarily because of the flame thickness reduction at elevated H2 substitution. The decreases in exergy losses by chemical reactions and heat conduction are higher, but the exergy loss reduction by diffusion is slight. However, the exergy losses from incomplete combustion increase with H2 substitution, because the fractions of the unburned fuels and combustion intermediates, e.g., H2 and OH radical, increase. The overall exergy losses in the DME/H2 flames decrease by about 5% with increased H2 substitution from 0% to 100%.

Key wordssecond law analysis    flame    dimethyl ether (DME)    hydrogen    binary fuels
收稿日期: 2019-04-14      出版日期: 2019-12-26
通讯作者: 黄震,韩东     E-mail: dong_han@sjtu.edu.cn
Corresponding Author(s): Zhen HUANG,Dong HAN   
 引用本文:   
赵同宾, 张家博, 具德浩, 黄震, 韩东. 二甲醚和氢气混合燃料预混火焰中的可用能损失[J]. Frontiers in Energy, 2019, 13(4): 658-666.
Tongbin ZHAO, Jiabo ZHANG, Dehao JU, Zhen HUANG, Dong HAN. Exergy losses in premixed flames of dimethyl ether and hydrogen blends. Front. Energy, 2019, 13(4): 658-666.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-019-0645-8
https://academic.hep.com.cn/fie/CN/Y2019/V13/I4/658
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Reactions 0% DME 80% DME
20% H2
60% DME
40% H2
40% DME
60% H2
20% DME
80% H2
R1: CH3OCH2 + M= CH2O+ CH3 + M 11.42% 11.20% 11.03% 10.81% 9.50%
R2: CH2O+ H= HCO+ H2 9.11% 8.84% 8.70% 8.22% 6.96%
R3: HCO+ M= H+ CO+ M 7.04% 6.45% 5.67% 4.30% 1.83%
R4: CH3 + O= CH2O+ H 6.38% 6.26% 6.29% 6.14% 5.44%
R5: CH3OCH3 + H= CH3OCH2 + H2 5.71% 5.76% 5.51% 5.07% 3.75%
R6: HCO+ O2 = CO+ HO2 5.37% 5.65% 5.94% 6.55% 7.73%
R7: CH2O+ OH= HCO+ H2O 4.87% 4.68% 4.43% 4.03% 3.40%
R8: CH2 + O2 = HCO+ OH 3.97% 3.79% 3.57% 3.15% 2.21%
R9: CH3OCH3 + OH= CH3OCH2 + H2O 3.92% 4.07% 4.18% 4.46% 4.91%
R10: HO2 + H= OH+ OH 3.91% 4.12% 4.46% 5.51% 7.57%
Tab.1  
Fig.5  
Fig.6  
Fig.7  
Fuel composition H2 O OH H
100% DME 7.1E–3 1.1E–3 7.0E–3 1.8E–3
80% DME-20% H2 7.4E–3 1.1E–3 7.2E–3 1.9E–3
60% DME-40% H2 7.9E–3 1.2E–3 7.5E–3 2.0E–3
40% DME-60% H2 8.8E–3 1.2E–3 8.0E–3 2.2E–3
20% DME-80% H2 1.1E–2 1.4E–3 9.2E–3 2.8E–3
Tab.2  
X Mole fraction
Y Mass fraction
M ˙/(kg·s–1) Mass flow rate
r/(kg·m–3) Mass density
u/(m·s–1) Velocity
A/m2 Area
μk/(J·mol–1) Chemical potential of the kth species
ω ˙/(mol·(m3·s)–1)) Production rate
W/(kg·mol–1) Molecular weight
s/(J·(mol·K)–1) Specific entropy
cp/(J·(mol·K)–1) Specific constant-pressure heat
T/K Temperature
l/(W·(m·K)–1) Thermal conductivity
Dk mix?/(m2·s–1) Mass diffusivity of species k in the mixture
μ/(Pa?s) Viscosity coefficient
S/(J·K–1) Entropy
R/(J·(mol·K)–1) Universal gas constant
P/atm Pressure
h/(J·mol–1) Specific enthalpy
G/(J·mol–1) Gibbs free energy
Sgen|dissipation/(W·(m3·K)–1) Volumetric entropy generation rate due to viscous dissipation
Sgen|conduction/(W·(m3·K)–1) Volumetric entropy generation rate due to heat conduction
Sgen|diffusion/(W·(m3·K)–1) Volumetric entropy generation rate due to mass diffusion
Sgen|reaction/(W·(m3·K)–1) Volumetric entropy generation rate due to chemical reaction
Bdestruction/(W·m–2) Exergy loss due to entropy generation
Bincomplete/(W·m–2) Exergy loss due to incomplete combustion
Bfuel/(W·m–2) Initial chemical exergy carried by the fuel
0 Dead state
complete, pro Complete combustion products
incomplete, pro Incomplete combustion products
  
1 D Han, J Q Zhai, Y Z Duan, D H Ju, H Lin, Z Huang. Macroscopic and microscopic spray characteristics of fatty acid esters on a common rail injection system. Fuel, 2017, 203: 370–379
https://doi.org/10.1016/j.fuel.2017.04.098
2 H Y Zhu, S V Bohac, Z Huang, D N Assanis. Emissions as functions of fuel oxygen and load from a premixed low-temperature combustion mode. International Journal of Engine Research, 2014, 15(6): 731–740
https://doi.org/10.1177/1468087413501317
3 J B Zhang, J Q Zhai, D H Ju, Z Huang, D Han. Effects of exhaust gas recirculation constituents on methyl decanoate auto-ignition: a kinetic study. Journal of Engineering for Gas Turbines and Power, 2018, 140: 121001
https://doi.org/10.1115/1.4040682
4 Y C Fan, Y Z Duan, D Han, X Q Qiao, Z Huang. Influences of isomeric butanol addition on anti-knock tendency of primary reference fuel and toluene primary reference fuel gasoline surrogates. International Journal of Engine Research, 2019, doi: 10.1177/1468087419850704
5 M Z Pan, H Q Wei, D Q Feng, J Y Pan, R Huang, J Y Liao. Experimental study on combustion characteristics and emission performance of 2-phenylethanol addition in a downsized gasoline engine. Energy, 2018, 163: 894–904
https://doi.org/10.1016/j.energy.2018.08.130
6 M Z Pan, R Huang, J Y Liao, T C Ouyang, Z Y Zheng, D L Lv, H Z Huang. Effect of EGR dilution on combustion, performance and emission characteristics of a diesel engine fueled with n-pentanol and 2-ethylhexyl nitrate additive. Energy Conversion and Management, 2018, 176: 246–255
https://doi.org/10.1016/j.enconman.2018.09.035
7 X Liang, A H Zhong, Z Y Sun, D Han. Autoignition of n-heptane and butanol isomers blends in a constant volume combustion chamber. Fuel, 2019, 254: 115638
https://doi.org/10.1016/j.fuel.2019.115638
8 J B Zhang, Z Huang, D Han. Exergy losses in auto-ignition processes of DME and alcohol blends. Fuel, 2018, 229: 116–125
https://doi.org/10.1016/j.fuel.2018.04.162
9 P Dai, Z Chen, S Chen. Ignition of methane with hydrogen and dimethyl ether addition. Fuel, 2014, 118: 1–8
https://doi.org/10.1016/j.fuel.2013.10.048
10 U Gerke, K Boulouchos. Three-dimensional computational fluid dynamics simulation of hydrogen engines using a turbulent flame speed closure combustion model. International Journal of Engine Research, 2012, 13(5): 464–481
https://doi.org/10.1177/1468087412438796
11 T Su, C W Ji, S F Wang, L Shi, J X Yang, X Y Cong. Idle performance of a hydrogen rotary engine at different excess air ratios. International Journal of Hydrogen Energy, 2018, 43(4): 2443–2451
https://doi.org/10.1016/j.ijhydene.2017.12.028
12 A A Hairuddin, T Yusaf, A P Wandel. A review of hydrogen and natural gas addition in diesel HCCI engines. Renewable & Sustainable Energy Reviews, 2014, 32: 739–761
https://doi.org/10.1016/j.rser.2014.01.018
13 B L Salvi, K A Subramanian. Sustainable development of road transportation sector using hydrogen energy system. Renewable & Sustainable Energy Reviews, 2015, 51: 1132–1155
https://doi.org/10.1016/j.rser.2015.07.030
14 J Liu, F Y Yang, H W Wang, M G Ouyang. Numerical study of hydrogen addition to DME/CH4 dual fuel RCCI engine. International Journal of Hydrogen Energy, 2012, 37(10): 8688–8697
https://doi.org/10.1016/j.ijhydene.2012.02.055
15 J Jeon, C Bae. The effects of hydrogen addition on engine power and emission in DME premixed charge compression ignition engine. International Journal of Hydrogen Energy, 2013, 38(1): 265–273
https://doi.org/10.1016/j.ijhydene.2012.09.177
16 Z C Shi, H G Zhang, H Wu, Y H Xu. Ignition properties of lean DME/H2 mixtures at low temperatures and elevated pressures. Fuel, 2018, 226: 545–554
https://doi.org/10.1016/j.fuel.2018.04.043
17 Z C Shi, H G Zhang, H T Lu, H Liu, Y S A, F X Meng. Autoignition of DME/H2 mixtures in a rapid compression machine under low-to-medium temperature ranges. Fuel, 2017, 194: 50–62
https://doi.org/10.1016/j.fuel.2016.12.096
18 Y Wang, H Liu, X C Ke, Z X Shen. Kinetic modeling study of homogeneous ignition of dimethyl ether/hydrogen and dimethyl ether/methane. Applied Thermal Engineering, 2017, 119: 373–386
https://doi.org/10.1016/j.applthermaleng.2017.03.065
19 L Pan, E J Hu, X Meng, Z H Zhang, Z H Huang. Kinetic modeling study of hydrogen addition effects on ignition characteristics of dimethyl ether at engine-relevant conditions. International Journal of Hydrogen Energy, 2015, 40(15): 5221–5235
https://doi.org/10.1016/j.ijhydene.2015.02.080
20 E J Hu, Y Z Chen, Y Cheng, X Meng, H B Yu, Z H Huang. Study on the effect of hydrogen addition to dimethyl ether homogeneous charge compression ignition combustion engine. Journal of Renewable and Sustainable Energy, 2015, 7(6): 063121
https://doi.org/10.1063/1.4937139
21 Z H Wang, S X Wang, R Whiddon, X L Han, Y He, K F Cen. Effect of hydrogen addition on laminar burning velocity of CH4/DME mixtures by heat flux method and kinetic modeling. Fuel, 2018, 232: 729–742
https://doi.org/10.1016/j.fuel.2018.05.146
22 D Liu. Kinetic analysis of the chemical effects of hydrogen addition on dimethyl ether flames. International Journal of Hydrogen Energy, 2014, 39(24): 13014–13019
https://doi.org/10.1016/j.ijhydene.2014.06.072
23 Y H Kang, X F Lu, Q H Wang, L Gan, X Y Ji, H Wang, Q Guo, D C Song, P Y Ji. Effect of H2 addition on combustion characteristics of dimethyl ether jet diffusion flame. Energy Conversion and Management, 2015, 89: 735–748
https://doi.org/10.1016/j.enconman.2014.10.046
24 C D Rakopoulos, E G Giakoumis. Second-law analyses applied to internal combustion engines operation. Progress in Energy and Combustion Science, 2006, 32(1): 2–47
https://doi.org/10.1016/j.pecs.2005.10.001
25 J A Caton. Exergy destruction during the combustion process as functions of operating and design parameters for a spark-ignition engine. International Journal of Energy Research, 2012, 36(3): 368–384
https://doi.org/10.1002/er.1807
26 J B Zhang, Z Huang, K D Min, D Han. Dilution, thermal and chemical effects of carbon dioxide on the exergy destruction in n-heptane and iso-octane auto-ignition processes: a numerical study. Energy & Fuels, 2018, 32(4): 5559–5570
https://doi.org/10.1021/acs.energyfuels.7b04018
27 F J Pan, J B Zhang, D Han, T Lu. Numerical study on exergy losses of iso-octane constant-volume combustion with water addition. Fuel, 2019, 248: 127–135
https://doi.org/10.1016/j.fuel.2019.03.068
28 J B Zhang, Z Huang, D Han. Effects of mechanism reduction on the exergy losses analysis in n-heptane auto-ignition processes. International Journal of Engine Research, 2019, doi: 10.1177/1468087419836870
29 J B Zhang, A H Zhong, Z Huang, D Han. Second-law thermodynamic analysis in premixed flames of ammonia and hydrogen binary fuels. Journal of Engineering for Gas Turbines and Power, 2019, 141(7): 071007
https://doi.org/10.1115/1.4042412
30 J B Zhang, D Han, Z Huang. Second-law thermodynamic analysis for premixed hydrogen flames with diluents of argon/nitrogen/carbon dioxide. International Journal of Hydrogen Energy, 2019, 44(10): 5020–5029
https://doi.org/10.1016/j.ijhydene.2019.01.041
31 K Nishida, T Takagi, S Kinoshita. Analysis of entropy generation and exergy loss during combustion. Proceedings of the Combustion Institute, 2002, 29(1): 869–874
https://doi.org/10.1016/S1540-7489(02)80111-0
32 S Chen, J Li, H Han, Z Liu, C Zheng. Effects of hydrogen addition on entropy generation in ultra-lean counter-flow methane-air premixed combustion. International Journal of Hydrogen Energy, 2010, 35(8): 3891–3902
https://doi.org/10.1016/j.ijhydene.2010.01.120
33 D Jiang, W Yang, J Teng. Entropy generation analysis of fuel lean premixed CO/H2/air flames. International Journal of Hydrogen Energy, 2015, 40(15): 5210–5220
https://doi.org/10.1016/j.ijhydene.2015.02.082
34 U Burke, W K Metcalfe, S M Burke, K A Heufer, P Dagaut, H J Curran. A detailed chemical kinetic modeling, ignition delay time and jet-stirred reactor study of methanol oxidation. Combustion and Flame, 2016, 165: 125–136
https://doi.org/10.1016/j.combustflame.2015.11.004
35 S L Fischer, F L Dryer, H J Curran. The reaction kinetics of dimethyl ether. I: high-temperature pyrolysis and oxidation in flow reactors. International Journal of Chemical Kinetics, 2000, 32(12): 713–740
https://doi.org/10.1002/1097-4601(2000)32:12<713::AID-KIN1>3.0.CO;2-9
36 Z D Wang, X Y Zhang, L L Xing, L D Zhang, F Herrmann, K Moshammer, F Qi, K Kohse-Höinghaus. Experimental and kinetic modeling study of the low- and intermediate-temperature oxidation of dimethyl ether. Combustion and Flame, 2015, 162(4): 1113–1125
https://doi.org/10.1016/j.combustflame.2014.10.003
37 C A Daly, J M Simmie, J Würmel, N DjebaÏli, C Paillard. Burning velocities of dimethyl ether and air. Combustion and Flame, 2001, 125(4): 1329–1340
https://doi.org/10.1016/S0010-2180(01)00249-8
38 Z H Huang, G Chen, C Y Chen, H Y Miao, X B Wang, D M Jiang. Experimental study on premixed combustion of dimethyl ether–hydrogen–air mixtures. Energy & Fuels, 2008, 22(2): 967–971
https://doi.org/10.1021/ef700629j
39 H Yu, E Hu, Y Cheng, K Yang, X Zhang, Z Huang. Effects of hydrogen addition on the laminar flame speed and markstein length of premixed dimethyl ether-air flames. Energy & Fuels, 2015, 29(7): 4567–4575
https://doi.org/10.1021/acs.energyfuels.5b00501
40 N Lamoureux, N Djebaıli-Chaumeix, C E Paillard. Laminar flame velocity determination for H2–air–He–CO2 mixtures using the spherical bomb method. Experimental Thermal and Fluid Science, 2003, 27(4): 385–393
https://doi.org/10.1016/S0894-1777(02)00243-1
41 CHEMKIN-PRO 15141. Reaction Design, San Diego, 2015
42 J Hirschfelder, C Curtiss, R Bird. Molecular Theory of Gases and Liquids. New York: Wiley, 1954
43 A M Briones, A Mukhopadhyay, S K Aggarwal. Analysis of entropy generation in hydrogen-enriched methane–air propagating triple flames. International Journal of Hydrogen Energy, 2009, 34(2): 1074–1083
https://doi.org/10.1016/j.ijhydene.2008.09.103
44 A Emadi, M D Emami. Analysis of entropy generation in a hydrogen-enriched turbulent non-premixed flame. International Journal of Hydrogen Energy, 2013, 38(14): 5961–5973
https://doi.org/10.1016/j.ijhydene.2013.02.115
45 A Bejan. Entropy Generation Through Heat and Fluid Flow. Wiley: New York, 1982
46 S Saxena, I Dario Bedoya, N Shah, A Phadke. Understanding loss mechanisms and identifying areas of improvement for HCCI engines using detailed exergy analysis. Journal of Engineering for Gas Turbines and Power, 2013, 135(9): 091505
https://doi.org/10.1115/1.4024589
47 F Yan, W H Su. Numerical study on exergy losses of n-heptane constant-volume combustion by detailed chemical kinetics. Energy & Fuels, 2014, 28(10): 6635–6643
https://doi.org/10.1021/ef5013374
48 S Mamalis, A Babajimopoulos, D Assanis, C Borgnakke. A modeling framework for second law analysis of low-temperature combustion engines. International Journal of Engine Research, 2014, 15(6): 641–653
https://doi.org/10.1177/1468087413512312
49 J de Vries, W B Lowry, Z Serinyel, H J Curran, E L Petersen. Laminar flame speed measurements of dimethyl ether in air at pressures up to 10 atm. Fuel, 2011, 90(1): 331–338
https://doi.org/10.1016/j.fuel.2010.07.040
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed