Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2020, Vol. 14 Issue (4): 882-888   https://doi.org/10.1007/s11708-020-0694-z
  研究论文 本期目录
一种光热转换和天空辐射制冷耦合的光谱选择性表面
赵斌1, 敖显泽1, 陈诺1, 宣庆东1, 胡名科2(), 裴刚1()
1. 中国科学技术大学热科学和能源工程系
2. 英国诺丁汉大学可持续能源技术研究所
A spectrally selective surface structure for combined photothermic conversion and radiative sky cooling
Bin ZHAO1, Xianze AO1, Nuo CHEN1, Qingdong XUAN1, Mingke HU2(), Gang PEI1()
1. Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230027, China
2. Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230027, China; Institute of Sustainable Energy Technology, University of Nottingham, University Park, Nottingham NG7 2RD, UK
 全文: PDF(1342 KB)   HTML
摘要:

太阳和外太空分别是地球的终极热源和冷源,在可再生能源利用方面具有重要潜力。本文针对太阳能光热转换和天空辐射制冷耦合利用,提出并设计了一种光谱选择性表面,该表面是通过在太阳能吸收涂层上覆盖一层聚二甲基硅氧烷涂层形成的。光学仿真表明设计的光谱选择性表面具有很高的太阳吸收率,吸收率为0.92;同时该表面在中红外波段选择性高发射,在大气窗口的平均发射率为0.84。此外,热分析预测表明,设计的光谱选择性表面在白天可以被加热到比环境温度高79.1ºC,而在夜间可以被动冷却至比环境温度低约10 ºC,该结果表明设计的光谱选择性表面具有耦合太阳能光热转换和天空辐射制冷的潜力。

Abstract

The sun and outer space are the ultimate heat and cold sources for the earth, respectively. They have significant potential for renewable energy harvesting. In this paper, a spectrally selective surface structure that has a planar polydimethylsiloxane layer covering a solar absorber is conceptually proposed and optically designed for the combination of photothermic conversion (PT) and nighttime radiative sky cooling (RC). An optical simulation is conducted whose result shows that the designed surface structure (i.e., PT-RC surface structure) has a strong solar absorption coefficient of 0.92 and simultaneously emits as a mid-infrared spectral-selective emitter with an average emissivity of 0.84 within the atmospheric window. A thermal analysis prediction reveals that the designed PT-RC surface structure can be heated to 79.1°C higher than the ambient temperature in the daytime and passively cooled below the ambient temperature of approximately 10°C in the nighttime, indicating that the designed PT-RC surface structure has the potential for integrated PT conversion and nighttime RC utilization.

Key wordssolar energy    photothermic conversion    radiative sky cooling    spectral selectivity    multilayer film
收稿日期: 2020-02-15      出版日期: 2020-12-21
通讯作者: 胡名科,裴刚     E-mail: Mingke.Hu@nottingham.ac.uk;peigang@ustc.edu.cn
Corresponding Author(s): Mingke HU,Gang PEI   
 引用本文:   
赵斌, 敖显泽, 陈诺, 宣庆东, 胡名科, 裴刚. 一种光热转换和天空辐射制冷耦合的光谱选择性表面[J]. Frontiers in Energy, 2020, 14(4): 882-888.
Bin ZHAO, Xianze AO, Nuo CHEN, Qingdong XUAN, Mingke HU, Gang PEI. A spectrally selective surface structure for combined photothermic conversion and radiative sky cooling. Front. Energy, 2020, 14(4): 882-888.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-020-0694-z
https://academic.hep.com.cn/fie/CN/Y2020/V14/I4/882
Fig.1  
Fig.2  
Layer material Thickness/nm
PDMS 18227
Ni 10% + Al2O3 90% (f = 10%) 75
Ni 30% + Al2O3 70% (f = 30%) 84
Tab.1  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
1 P Gang, F Huide, Z Huijuan, J Jie. Performance study and parametric analysis of a novel heat pipe PV/T system. Energy, 2012, 37(1): 384–395
https://doi.org/10.1016/j.energy.2011.11.017
2 M A Sabiha, R Saidur, S Mekhilef, O Mahian. Progress and latest developments of evacuated tube solar collectors. Renewable & Sustainable Energy Reviews, 2015, 51: 1038–1054
https://doi.org/10.1016/j.rser.2015.07.016
3 Z Hu, W He, J Ji, S Zhang. A review on the application of Trombe wall system in buildings. Renewable & Sustainable Energy Reviews, 2017, 70: 976–987
https://doi.org/10.1016/j.rser.2016.12.003
4 X Lu, P Xu, H Wang, T Yang, J Hou. Cooling potential and applications prospects of passive radiative cooling in buildings: the current state-of-the-art. Renewable & Sustainable Energy Reviews, 2016, 65: 1079–1097
https://doi.org/10.1016/j.rser.2016.07.058
5 B Zhao, M Hu, X Ao, Q Xuan, G Pei. Spectrally selective approaches for passive cooling of solar cells: a review. Applied Energy, 2020, 262: 114548
https://doi.org/10.1016/j.apenergy.2020.114548
6 L Zhu, A Raman, K X Wang, M A Anoma, S Fan. Radiative cooling of solar cells. Optica, 2014, 1(1): 32–38
https://doi.org/10.1364/OPTICA.1.000032
7 P C Hsu, A Y Song, P B Catrysse, C Liu, Y Peng, J Xie, S Fan, Y Cui. Radiative human body cooling by nanoporous polyethylene textile. Science, 2016, 353(6303): 1019–1023
https://doi.org/10.1126/science.aaf5471
8 A P Raman, W Li, S Fan. Generating light from darkness. Joule, 2019, 3(11): 2679–2686
https://doi.org/10.1016/j.joule.2019.08.009
9 A P Raman, M A Anoma, L Zhu, E Rephaeli, S Fan. Passive radiative cooling below ambient air temperature under direct sunlight. Nature, 2014, 515(7528): 540–544
https://doi.org/10.1038/nature13883
10 B Zhao, M Hu, X Ao, N Chen, G Pei. Radiative cooling: a review of fundamentals, materials, applications, and prospects. Applied Energy, 2019, 236: 489–513
https://doi.org/10.1016/j.apenergy.2018.12.018
11 C G Granqvist. Radiative heating and cooling with spectrally selective surfaces. Applied Optics, 1981, 20(15): 2606–2615
https://doi.org/10.1364/AO.20.002606
12 S Ito, N Miura. Studies of radiative cooling systems for storing thermal energy. ASME Journal of Solar Energy Engineering, 1989, 111(3): 251–256
https://doi.org/10.1115/1.3268315
13 M Hu, B Zhao, X Ao, J Feng, J Cao, Y Su, G Pei. Experimental study on a hybrid photo-thermal and radiative cooling collector using black acrylic paint as the panel coating. Renewable Energy, 2019, 139: 1217–1226
https://doi.org/10.1016/j.renene.2019.03.013
14 C G Granqvist, A Hjortsberg. Radiative cooling to low temperatures: general considerations and application to selectively emitting SiO films. Journal of Applied Physics, 1981, 52(6): 4205–4220
https://doi.org/10.1063/1.329270
15 C G Granqvist, A Hjortsberg. Surfaces for radiative cooling: silicon monoxide films on aluminum. Applied Physics Letters, 1980, 36(2): 139–141
https://doi.org/10.1063/1.91406
16 S Catalanotti, V Cuomo, G Piro, D Ruggi, V Silvestrini, G Troise. The radiative cooling of selective surfaces. Solar Energy, 1975, 17(2): 83–89
https://doi.org/10.1016/0038-092X(75)90062-6
17 D S Parker, J R Sherwin. Evaluation of the night cool nocturnal radiation cooling concept : annual performance assessment in scale test buildings. Program Report. 2008
18 E Rephaeli, A Raman, S Fan. Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. Nano Letters, 2013, 13(4): 1457–1461
https://doi.org/10.1021/nl4004283
19 Y Zhai, Y Ma, S N David, D Zhao, R Lou, G Tan, R Yang, X Yin. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science, 2017, 355(6329): 1062–1066
https://doi.org/10.1126/science.aai7899
20 S Fan, A Raman. Metamaterials for radiative sky cooling. National Science Review, 2018, 5(2): 132–133
https://doi.org/10.1093/nsr/nwy012
21 J Mandal, Y Fu, A C Overvig, M Jia, K Sun, N N Shi, H Zhou, X Xiao, N Yu, Y Yang. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science, 2018, 362(6412): 315–319
https://doi.org/10.1126/science.aat9513
22 T Li, Y Zhai, S He, W Gan, Z Wei, M Heidarinejad, D Dalgo, R Mi, X Zhao, J Song, J Dai, C Chen, A Aili, A Vellore, A Martini, R Yang, J Srebric, X Yin, L Hu. A radiative cooling structural material. Science, 2019, 364(6442): 760–763
https://doi.org/10.1126/science.aau9101
23 M Hu, G Pei, L Li, R Zheng, J Li, J Ji. Theoretical and experimental study of spectral selectivity surface for both solar heating and radiative cooling. International Journal of Photoenergy, 2015, 2015: 1–9
https://doi.org/10.1155/2015/807875
24 M Hu, G Pei, Q Wang, J Li, Y Wang, J Ji. Field test and preliminary analysis of a combined diurnal solar heating and nocturnal radiative cooling system. Applied Energy, 2016, 179: 899–908
https://doi.org/10.1016/j.apenergy.2016.07.066
25 TFCalc. Version 3.5. Portland: Software Spectra, 2019
26 M. QuerryOptical constants of minerals and other materials from the millimeter to the ultraviolet. Contract Report, 1987
27 V Gupta, P T Probst, F R Goßler, A M Steiner, J Schubert, Y Brasse, T A F König, A Fery. Mechanotunable surface lattice resonances in the visible optical range by soft lithography templates and directed self-assembly. ACS Applied Materials & Interfaces, 2019, 11(31): 28189–28196
https://doi.org/10.1021/acsami.9b08871
28 E D Palik. Handbook of Optical Constants of Solids. San Diego: Elsevier, 1985
29 Refractive Index. 2019–5–24, available at website of refractiveindex.info
30 G A Niklasson, C G Granqvist, O Hunderi. Effective medium models for the optical properties of inhomogeneous materials. Applied Optics, 1981, 20(1): 26–30
https://doi.org/10.1364/AO.20.000026
31 D Chester, P Bermel, J D Joannopoulos, M Soljacic, I Celanovic. Design and global optimization of high-efficiency solar thermal systems with tungsten cermets. Optics Express, 2011, 19(S3): A245–A257
https://doi.org/10.1364/OE.19.00A245
32 Z Li, J Zhao, L Ren. Aqueous solution-chemical derived Ni-Al2O3 solar selective absorbing coatings. Solar Energy Materials and Solar Cells, 2012, 105: 90–95
https://doi.org/10.1016/j.solmat.2012.05.030
33 J L Kou, Z Jurado, Z Chen, S H Fan, A J Minnich. Daytime radiative cooling using near-black infrared emitters. ACS Photonics, 2017, 4(3): 626–630
https://doi.org/10.1021/acsphotonics.6b00991
34 E Lee, T Luo. Black body-like radiative cooling for flexible thin-film solar cells. Solar Energy Materials and Solar Cells, 2019, 194: 222–228
https://doi.org/10.1016/j.solmat.2019.02.015
35 B Zhao, M Hu, X Ao, N Chen, Q Xuan, D Jiao, G Pei. Performance analysis of a hybrid system combining photovoltaic and nighttime radiative cooling. Applied Energy, 2019, 252: 113432
https://doi.org/10.1016/j.apenergy.2019.113432
36 H Bao, C Yan, B Wang, X Fang, C Y Zhao, X Ruan. Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling. Solar Energy Materials and Solar Cells, 2017, 168: 78–84
https://doi.org/10.1016/j.solmat.2017.04.020
37 M Ono, K Chen, W Li, S Fan. Self-adaptive radiative cooling based on phase change materials. Optics Express, 2018, 26(18): A777–A787
https://doi.org/10.1364/OE.26.00A777
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed