Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2020, Vol. 14 Issue (4): 889-900   https://doi.org/10.1007/s11708-020-0704-1
  研究论文 本期目录
基于共和盆地干热岩的ORC和Kalina循环热力学特性分析
张学林1, 张通2, 薛小代3(), 司杨4, 张雪敏4, 梅生伟4
1. 清华大学电机工程与应用电子技术系电力系统及发电设备控制和仿真国家重点实验室,北京100084
2. 青海大学启迪新能源学院,青海西宁810016
3. 井井储能科技有限公司,江苏常州213200
4. State Key Laboratory of Control and Simulation of Power System and Generation Equipments, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China; School of QiDi (TUS) Renewable Energy, Qinghai University, Xining 810016, China
A comparative thermodynamic analysis of Kalina and organic Rankine cycles for hot dry rock: a prospect study in the Gonghe Basin
Xuelin ZHANG1, Tong ZHANG2, Xiaodai XUE3(), Yang SI4, Xuemin ZHANG4, Shengwei MEI4
1. State Key Laboratory of Control and Simulation of Power System and Generation Equipments, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
2. State Key Laboratory of Control and Simulation of Power System and Generation Equipments, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China; Jingjing Energy Storage Co., Ltd., Changzhou 213200, China
3. State Key Laboratory of Control and Simulation of Power System and Generation Equipments, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China; School of QiDi (TUS) Renewable Energy, Qinghai University, Xining 810016, China; Jingjing Energy Storage Co., Ltd., Changzhou 213200, China
4. State Key Laboratory of Control and Simulation of Power System and Generation Equipments, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China; School of QiDi (TUS) Renewable Energy, Qinghai University, Xining 810016, China
 全文: PDF(2670 KB)   HTML
摘要:

干热岩作为一种新型地热资源,在中国有着广阔的应用前景。通过假设共和盆地干热岩热电站应用场景,本文对两种适用的底部循环进行了对比。基于干热岩资源的产热特性,分别开展了一种Kalina循环与7个不同浓度氨水工质、三种ORC循环与9个环保型有机工质组合的仿真研究。结果显示,当氨水工质浓度为82%时,Kalina循环的净发电量可以达到最大;而对于ORC循环中的有机工质,超临界膨胀有利于湿工质提升净发电量,饱和膨胀则是干工质提升发电能力的最佳选择。进一步,采用干工质进行饱和膨胀的ORC循环净发电量整体优于其他工质和膨胀方式组合的净发电量,且显著高于测试的所有Kalina循环组合发电能力。因而,在共和盆地干热岩产热特性下,推荐采用干工质进行饱和膨胀的ORC循环,以实现最大的净发电量。

Abstract

Hot dry rock is a new type of geothermal resource which has a promising application prospect in China. This paper conducted a comparative research on performance evaluation of two eligible bottoming cycles for a hot dry rock power plant in the Gonghe Basin. Based on the given heat production conditions, a Kalina cycle and three organic Rankine cycles were tested respectively with different ammonia-water mixtures of seven ammonia mass fractions and nine eco-friendly working fluids. The results show that the optimal ammonia mass fraction is 82% for the proposed bottoming Kalina cycle in view of maximum net power output. Thermodynamic analysis suggests that wet fluids should be supercritical while dry fluids should be saturated at the inlet of turbine, respectively. The maximum net power output of the organic Rankine cycle with dry fluids expanding from saturated state is higher than that of the other organic Rankine cycle combinations, and is far higher than the maximum net power output in all tested Kalina cycle cases. Under the given heat production conditions of hot dry rock resource in the Gonghe Basin, the saturated organic Rankine cycle with the dry fluid butane as working fluid generates the largest amount of net power.

Key wordshot dry rock    Kalina cycle    organic Rankine cycle    thermodynamic analysis
收稿日期: 2020-02-13      出版日期: 2020-12-21
通讯作者: 薛小代     E-mail: xuexiaodai@tsinghua.edu.cn
Corresponding Author(s): Xiaodai XUE   
 引用本文:   
张学林, 张通, 薛小代, 司杨, 张雪敏, 梅生伟. 基于共和盆地干热岩的ORC和Kalina循环热力学特性分析[J]. Frontiers in Energy, 2020, 14(4): 889-900.
Xuelin ZHANG, Tong ZHANG, Xiaodai XUE, Yang SI, Xuemin ZHANG, Shengwei MEI. A comparative thermodynamic analysis of Kalina and organic Rankine cycles for hot dry rock: a prospect study in the Gonghe Basin. Front. Energy, 2020, 14(4): 889-900.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-020-0704-1
https://academic.hep.com.cn/fie/CN/Y2020/V14/I4/889
Fig.1  
HDR resource D/m THDR/°C mpro/(t·h–1) Tpro/°C
Fenton Hill
Gonghe Basin
3500
3705
235
236
>20
20
183–190
185
Tab.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Items Exergy destruction Exergy efficiency
Pump m pump(epump,in epump,out)+ Wpump mpumpepump,out mpumpepump,in+ Wpump
Turbine m turbine(eturbine,in eturbine,out)+ Wturbine Wturbinem turbine(eturbine,in eturbine,out)
Heat exchanger m hot(ehot,in ehot,out) mcold(e cold,out ecold,in) mcold( ecold,oute cold,in)m hot(ehot,in ehot,out)
Tab.2  
No. Fluids Tc/°C Pc/bar T0/bar P0/bar Type
1
2
3
4
5
6
7
8
9
Propylene
Propane
Cyclopropane
Dimethylether
Propyne
Isobutane
Butane
Neopentane
Isopentane
R-1270
R-290
HC-270
RE-170

R-600a
R-600

R-601a
91.06
96.74
125.15
127.15
129.23
134.66
151.97
160.59
187.20
45.55
42.51
55.60
53.41
56.26
36.29
37.96
31.96
33.78
–47.91
–42.42
–31.76
–25.11
–25.44
–12.09
–0.84
9.14
27.45
13.05
10.79
8.27
6.80
6.71
4.05
2.83
2.01
1.09
wet
wet
wet
wet
wet
dry
dry
dry
dry
Tab.3  
Fig.6  
Fig.7  
Fig.8  
Fluids EM hth/% hex/% wm/(kW·t–1·h) wv/(kW·m–3·h) Wnet/kW Pturbine,in/bar Tinj/°C g/%
76% NH3 SH 14.03 48.30 40.00 0.62 246.01 30 111.45 0.95
78% NH3 SH 13.45 47.19 38.54 0.59 256.55 30 104.86 0.96
80% NH3 SH 13.61 48.76 41.81 0.75 279.99 35 98.47 0.95
82% NH3 SH 13.17 48.90 40.57 0.73 302.31 35 88.17 0.96
84% NH3 SH 12.74 47.69 39.59 0.71 298.90 35 86.03 0.96
86% NH3 SH 12.26 46.05 38.72 0.69 290.83 35 84.87 0.97
88% NH3 SH 11.73 44.20 37.72 0.67 281.36 35 83.74 0.98
Propylene SC 12.62 49.08 14.08 2.13 329.63 85 74.49 SH
Propane SC 12.67 49.22 14.29 2.46 330.58 85 74.65 SH
Cyclopropane SC 12.65 49.44 15.28 3.72 334.21 95 73.20 0.96
Dimethylether SC 13.07 50.57 16.58 3.32 337.51 80 75.81 SH
Propyne SC 15.11 54.28 23.98 2.42 318.44 65 96.25 SH
Isobutane S 11.03 47.81 11.67 0.15 351.93 30 49.51 SH
Butane S 13.09 52.08 15.65 0.13 359.21 30 68.82 SH
Neopentane SC 13.13 51.26 13.51 4.82 345.91 60 73.53 SH
Isopentane S 12.70 47.80 14.43 0.41 306.86 10 82.98 SH
Tab.4  
Fig.9  
Fig.10  
AMF Ammonia mass fraction
EGS Enhanced geothermal system
HDR Hot dry rock
K State point in Kalina cycle
KC Kalina cycle
KCS Kalina cycle system
KCS-11 Kalina cycle system 11
KCS-34 Kalina cycle system 34
KCS-34 g Kalina cycle system 34 g
O State point in organic Rankine cycle
ORC Organic Rankine cycle
ORC-S Organic Rankine cycle with saturated expansion
ORC-SC Organic Rankine cycle with supercritical expansion
ORC-SH Organic Rankine cycle with superheated expansion
SC Supercritical state
SH Superheated state
D Depth/m
P Pressure/bar
T Temperature/°C
W Power output/MW
e Specific exergy/(kJ·kg–1)
h Specific enthalpy/(kJ·kg–1)
m Mass flowrate/(t·h–1)
s Specific entropy/(kJ·kg–1·°C–1)
v Volume flowrate/(m3·h–1)
wm Mass specific power/(kW·t–1·h)
wv Volume specific power/(kW·m–3·h)
Vapor quality/%
Efficiency/%
0 In ambient condition
c At critical point
cold At the cold side
ex Parameter based on exergy
hot At the hot side
i At certain state point i
in At the inlet
inj At the inlet of injection well of EGS
net Net power output
out At the outlet
pro At the outlet of production well of EGS
th Parameter based on thermal energy
  
1 J J Mortensen. Hot dry rock: a new geothermal energy source. Energy, 1978, 3(5): 639–644
https://doi.org/10.1016/0360-5442(78)90079-8
2 S M Lu. A global review of enhanced geothermal system (EGS). Renewable & Sustainable Energy Reviews, 2018, 81: 2902–2921
https://doi.org/10.1016/j.rser.2017.06.097
3 K Breede, K Dzebisashvili, X Liu, G Falcone. A systematic review of enhanced (or engineered) geothermal systems: past, present and future. Geothermal Energy, 2013, 1(1): 4
https://doi.org/10.1186/2195-9706-1-4
4 J W Tester, B J Anderson, A S Batchelor, D D Blackwell, R DiPippo, E M Drake, J Garnish, B Livesay, M C Moore, K Nichols, S Petty, M N Toksoz, R W Veatch, R Baria, C Augustine, E Murphy, P Negraru, M. RichardsImpact of enhanced geothermal systems on US energy supply in the twenty-first century. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1853, 2007(365): 1057–1094
https://doi.org/10.1098/rsta.2006.1964
5 W Cao, W Huang, G Wei, Y Jin, F Jiang. A numerical study of non-Darcy flow in EGS heat reservoirs during heat extraction. Frontiers in Energy, 2019, 13(3): 439–449
https://doi.org/10.1007/s11708-019-0612-4
6 J Guo, W Cao, Y Wang, F Jiang. A novel flow-resistor network model for characterizing enhanced geothermal system heat reservoir. Frontiers in Energy, 2019, 13(1): 99–106
https://doi.org/10.1007/s11708-018-0555-1
7 J Larjola. Electricity from industrial waste heat using high-speed organic Rankine cycle (ORC). International Journal of Production Economics, 1995, 41(1–3): 227–235
https://doi.org/10.1016/0925-5273(94)00098-0
8 T C Hung, T Y Shai, S K Wang. A review of organic Rankine cycles (ORCs) for the recovery of low-grade waste heat. Energy, 1997, 22(7): 661–667
https://doi.org/10.1016/S0360-5442(96)00165-X
9 B Liu, K Chien, C Wang. Effect of working fluids on organic Rankine cycle for waste heat recovery. Energy, 2004, 29(8): 1207–1217
https://doi.org/10.1016/j.energy.2004.01.004
10 P J Mago, L M Chamra, K Srinivasan, C Somayaji. An examination of regenerative organic Rankine cycles using dry fluids. Applied Thermal Engineering, 2008, 28(8–9): 998–1007
https://doi.org/10.1016/j.applthermaleng.2007.06.025
11 G V Tomarov, A A Shipkov. Modern geothermal power: binary cycle geothermal power plants. Thermal Engineering, 2017, 64(4): 243–250
https://doi.org/10.1134/S0040601517040097
12 H Quick, J Michael, H Huber, U Arslan. History of international geothermal power plants and geothermal projects in Germany. In: Proceedings world geothermal congress 2010, Bali, Indonesia, 2010
13 C E Campos Rodríguez, J C Escobar Palacio, O J Venturini, E E Silva Lora, V M Cobas, D Marques dos Santos, F R Lofrano Dotto, V Gialluca. Exergetic and economic comparison of ORC and Kalina cycle for low temperature enhanced geothermal system in Brazil. Applied Thermal Engineering, 2013, 52(1): 109–119
https://doi.org/10.1016/j.applthermaleng.2012.11.012
14 A I Kalina. Combined cycle and waste heat recovery power systems based on a novel thermodynamic energy cycle utilizing low-temperature heat for power generation. In: 1983 Joint Power Generation Conference, Indianapolis, Indiana, USA 1983
https://doi.org/10.1115/83-JPGC-GT-3
15 E Thorin, C Dejfors, G Svedberg. Thermodynamic properties of ammonia–water mixtures for power cycles. International Journal of Thermophysics, 1998, 19(2): 501–510
https://doi.org/10.1023/A:1022525813769
16 L A Prananto, I N Zaini, B I Mahendranata, F B Juangsa, M Aziz, T A F Soelaiman. Use of the Kalina cycle as a bottoming cycle in a geothermal power plant: case study of the Wayang Windu geothermal power plant. Applied Thermal Engineering, 2018, 132: 686–696
https://doi.org/10.1016/j.applthermaleng.2018.01.003
17 O K Singh, S C Kaushik. Energy and exergy analysis and optimization of Kalina cycle coupled with a coal fired steam power plant. Applied Thermal Engineering, 2013, 51(1–2): 787–800
https://doi.org/10.1016/j.applthermaleng.2012.10.006
18 J He, C Liu, X Xu, Y Li, S Wu, J Xu. Performance research on modified KCS (Kalina cycle system) 11 without throttle valve. Energy, 2014, 64: 389–397
https://doi.org/10.1016/j.energy.2013.10.059
19 H A Mlcak. Kalina cycle®®concepts for low temperature geothermal. Transactions–Geothermal Resources Council, 2002, 26(26): 707–713
20 X Zhang, M He, Y Zhang. A review of research on the Kalina cycle. Renewable & Sustainable Energy Reviews, 2012, 16(7): 5309–5318
https://doi.org/10.1016/j.rser.2012.05.040
21 H Leibowitz, M Mirolli. First Kalina combined-cycle plant tested successfully. Power Engineering, 1997, 10(55): 44
22 H Mlcak, M Mirolli, H Hjartarsonk, O. HúsavíkurNotes from the north: a report on the debut year of the 2 MW Kalina cycle® geothermal power plant in Húsavík, Iceland. Transactions–Geothermal Resources Council, 2002, 26: 715–718
23 R A Victor, J K Kim, R Smith. Composition optimisation of working fluids for organic Rankine cycles and Kalina cycles. Energy, 2013, 55: 114–126
https://doi.org/10.1016/j.energy.2013.03.069
24 H Chen. The conversion of low-grade heat into power using supercritical Rankine cycles. Dissertation for the Doctoral Degree. Florida: University of South Florida, 2010
25 B Saleh, G Koglbauer, M Wendland, J Fischer. Working fluids for low-temperature organic Rankine cycles. Energy, 2007, 32(7): 1210–1221
https://doi.org/10.1016/j.energy.2006.07.001
26 Y Dai, J Wang, L Gao. Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery. Energy Conversion and Management, 2009, 50(3): 576–582
https://doi.org/10.1016/j.enconman.2008.10.018
27 Geox GmBH. Geothermal electricity generation in Landau. 2020–02–12, available at website of BINE Information Service–Publications
28 H Mergner, T Weimer. Performance of ammonia-water based cycles for power generation from low enthalpy heat sources. Energy, 2015, 88: 93–100
https://doi.org/10.1016/j.energy.2015.04.084
29 D Lin, Q Zhu, X Li. Thermodynamic comparative analyses between (organic) Rankine cycle and Kalina cycle. Energy Procedia, 2015, 75: 1618–1623
https://doi.org/10.1016/j.egypro.2015.07.385
30 D Fiaschi, G Manfrida, E Rogai, L Talluri. Exergoeconomic analysis and comparison between ORC and Kalina cycles to exploit low and medium-high temperature heat from two different geothermal sites. Energy Conversion and Management, 2017, 154: 503–516
https://doi.org/10.1016/j.enconman.2017.11.034
31 E Gholamian, V Zare. A comparative thermodynamic investigation with environmental analysis of waste heat to power conversion employing Kalina and organic Rankine cycles. Energy Conversion and Management, 2016, 117: 150–161
https://doi.org/10.1016/j.enconman.2016.03.011
32 T Eller, F Heberle, D Brüggemann. Second law analysis of novel working fluid pairs for waste heat recovery by the Kalina cycle. Energy, 2017, 119: 188–198
https://doi.org/10.1016/j.energy.2016.12.081
33 P Bombarda, C M Invernizzi, C Pietra. Heat recovery from Diesel engines: a thermodynamic comparison between Kalina and ORC cycles. Applied Thermal Engineering, 2010, 30(2–3): 212–219
https://doi.org/10.1016/j.applthermaleng.2009.08.006
34 A Elsayed, M Embaye, R AL-Dadah, S Mahmoud, A Rezk. Thermodynamic performance of Kalina cycle system 11 (KCS11): feasibility of using alternative zeotropic mixtures. International Journal of Low Carbon Technologies, 2013, 8(1 suppl 1): i69–i78
https://doi.org/10.1093/ijlct/ctt020
35 C Yue, D Han, W Pu, W He. Comparative analysis of a bottoming transcritical ORC and a Kalina cycle for engine exhaust heat recovery. Energy Conversion and Management, 2015, 89: 764–774
https://doi.org/10.1016/j.enconman.2014.10.029
36 A Nemati, H Nami, F Ranjbar, M. YariA comparative thermodynamic analysis of ORC and Kalina cycles for waste heat recovery: a case study for CGAM cogeneration system. Case Studies in Thermal Engineering, 2017, 9: 1–13
https://doi.org/10.1016/j.csite.2016.11.003
37 M Yari, A S Mehr, V Zare, S M S Mahmoudi, M A Rosen. Exergoeconomic comparison of TLC (trilateral Rankine cycle), ORC (organic Rankine cycle) and Kalina cycle using a low grade heat source. Energy, 2015, 83: 712–722
https://doi.org/10.1016/j.energy.2015.02.080
38 U.S. Department of Energy. Environmental assessment and finding of no significant impact: Kalina geothermal demonstration project steamboat springs, Nevada. Office of Scientific & Technical Information Technical Reports, 1999
39 L A Prananto, T M F Soelaiman, M Aziz. Adoption of Kalina cycle as a bottoming cycle in Wayang Windu geothermal power plant. Energy Procedia, 2017, 142: 1147–1152
https://doi.org/10.1016/j.egypro.2017.12.370
40 X Zhang, S Yang, Z Yang. The Plate Tectonics of Qinghai Province–A Guide to the Geotectonic Map of Qinghai Province. Beijing: Geological Publishing House, 2007 (in Chinese)
41 S Zhang, W Yan, D Li, X Jia, S Zhang, S Li, L Fu, H Wu, Z Zeng, Z Li , J Mu, Z Cheng, L Hu . Characteristics of geothermal geology of the Qiabuqia HDR in Gonghe Basin, Qinghai Province. Geology in China, 2018, 45(6): 1087–1102 (in Chinese)
42 D Bruel. Heat extraction modelling from forced fluid flow through stimulated fractured rock masses: application to the Rosemanowes hot dry rock reservoir. Geothermics, 1995, 24(3): 361–374
https://doi.org/10.1016/0375-6505(95)00014-H
43 N Tenma, S I Iwakiri, I Matsunaga. Development of hot dry rock technology at Hijiori test site: program for a long-term circulation test. Energy Sources, 1998, 20(8): 753–762
https://doi.org/10.1080/00908319808970095
44 Y Hori, K Kitano, H Kaieda, K. KihoPresent status of the Ogachi HDR project, Japan, and future plans. Geothermics, 1999, 28(4–5): 637–645
https://doi.org/10.1016/S0375-6505(99)00034-6
45 D V Duchane. Geothermal energy production from hot dry rock: operational testing at the Fenton Hill, New Mexico HDR test facility. In: Energy-sources Technology Conference and Exhibition, New Orleans, LA, USA, 1994
46 GeothermEx Inc. Data review of the hot dry rock project at Fenton Hill, New Mexico. Office of Scientific & Technical Information Technical Reports, 1998
47 D Duchane, D Brown. Hot dry Rock (HDR) geothermal energy research and development at Fenton Hill, New Mexico. GHC Bulletin, 2002, 9: 13–19
48 D W Brown. Hot dry rock geothermal energy: important lessons from Fenton Hill. In: Proceedings of 34th Workshop on Geothermal Reservoir Engineering, 2009
49 S Kelkar, G WoldeGabriel, K Rehfeldt. Lessons learned from the pioneering hot dry rock project at Fenton Hill, USA. Geothermics, 2016, 63: 5–14
https://doi.org/10.1016/j.geothermics.2015.08.008
50 C Guo, L Pan, K Zhang, C M Oldenburg, C Li, Y Li. Comparison of compressed air energy storage process in aquifers and caverns based on the Huntorf CAES plant. Applied Energy, 2016, 181: 342–356
https://doi.org/10.1016/j.apenergy.2016.08.105
51 T Zhang, L Chen, X Zhang, S Mei, X Xue, Y Zhou. Thermodynamic analysis of a novel hybrid liquid air energy storage system based on the utilization of LNG cold energy. Energy, 2018, 155: 641–650
https://doi.org/10.1016/j.energy.2018.05.041
52 A M Bassily. Modeling, numerical optimization, and irreversibility reduction of a triple-pressure reheat combined cycle. Energy, 2007, 32(5): 778–794
https://doi.org/10.1016/j.energy.2006.04.017
53 T Zhang, X L Zhang, Y L He, X D Xue, S W Mei. Thermodynamic analysis of hybrid liquid air energy storage systems based on cascaded storage and effective utilization of compression heat. Applied Thermal Engineering, 2020, 164: 114526
https://doi.org/10.1016/j.applthermaleng.2019.114526
54 A Uusitalo, J Honkatukia, T Turunen-Saaresti. Evaluation of a small-scale waste heat recovery organic Rankine cycle. Applied Energy, 2017, 192: 146–158
https://doi.org/10.1016/j.apenergy.2017.01.088
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed