Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2020, Vol. 14 Issue (4): 683-698   https://doi.org/10.1007/s11708-020-0705-0
  本期目录
Comprehensive comparison of small-scale natural gas liquefaction processes using brazed plate heat exchangers
Jitan WU, Yonglin JU()
Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China
 全文: PDF(1433 KB)   HTML
Abstract

The brazed plate heat exchanger (BPHE) has some advantages over the plate-fin heat exchanger (PFHE) when used in natural gas liquefaction processes, such as the convenient installation and transportation, as well as the high tolerance of carbon dioxide (CO2) impurities. However, the BPHEs with only two channels cannot be applied directly in the conventional liquefaction processes which are designed for multi-stream heat exchangers. Therefore, the liquefaction processes using BPHEs are different from the conventional PFHE processes. In this paper, four different liquefaction processes using BPHEs are optimized and comprehensively compared under respective optimal conditions. The processes are compared with respect to energy consumption, economic performance, and robustness. The genetic algorithm (GA) is applied as the optimization method and the total revenue requirement (TRR) method is adopted in the economic analysis. The results show that the modified single mixed refrigerant (MSMR) process with part of the refrigerant flowing back to the compressor at low temperatures has the lowest specific energy consumption but the worst robustness of the four processes. The MSMR with fully utilization of cold capacity of the refrigerant shows a satisfying robustness and the best economic performance. The research in this paper is helpful for the application of BPHEs in natural gas liquefaction processes.

Key wordsliquefied natural gas    brazed plate heat exchanger    energy consumption    economic performance    robustness
收稿日期: 2019-01-17      出版日期: 2020-12-21
Corresponding Author(s): Yonglin JU   
 引用本文:   
. [J]. Frontiers in Energy, 2020, 14(4): 683-698.
Jitan WU, Yonglin JU. Comprehensive comparison of small-scale natural gas liquefaction processes using brazed plate heat exchangers. Front. Energy, 2020, 14(4): 683-698.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-020-0705-0
https://academic.hep.com.cn/fie/CN/Y2020/V14/I4/683
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Components Case 1 Case 2 Case 3 Case 4
Methane (CH4)
Ethane (C2H6)
Propane (C3H8)
Iso-butane (i-C4H10)
Nitrogen (N2)
Ethylene (C2H4)
Tab.1  
Variables Value
Temperature/K 293
Pressure/kPa 700
Flow rate/(N·m3·d–1) 10000
Methane/(mol%) 93.18
Ethane/(mol%) 5.05
Propane/(mol%) 1.09
I-butane/(mol%) 0.08
N-butane/(mol%) 0.05
Nitrogen/(mol%) 0.55
Tab.2  
Fig.6  
Population size Maximum number of generations Crossover rate Mutation rate Selection method Tournament size
100 200 0.6 0.05 Tournament 4
Tab.3  
Variables Lower boundary Upper boundary Optimal value
m˙ C H 4/(N·m3·d–1) 5500 10500 7193
m˙ C2 H 6/(N·m3·d–1) 8000 16000 9710
m˙ C2 H 3/(N·m3·d–1) 7000 14000 13080
m˙ N2/(N·m3·d–1) 1500 6000 3045
PMR–8/kPa 3000 6000 4807
PMR–3/kPa 160 300 191
TMR–4b/K 283 303 296
TMR–2/K 108 118 113
SEC/(kW·h·(N·m3)–1) 0.512
Tab.4  
Variables Lower boundary Upper boundary Optimal value
m˙ C H 4/(N·m3·d–1) 4000 13500 5608
m˙ C2 H 4/(N·m3·d–1) 5500 17000 12510
m˙i C 4 H10/(N·m3·d–1) 8500 12500 9820
m˙ N2/ (N·m3·d–1) 1000 4500 2284
PMR–5/kPa 1800 4500 2611
PMR–13/kPa 160 300 232
PMR–17/kPa 160 300 242
TNG–4/K 233 258 251
TMR–11/K 228 243 235
TMR–12/K 108 118 113
TMR–16/K 248 263 256
SEC/(kW·h·(N·m3)–1) 0.395
Tab.5  
Variables Lower boundary Upper boundary Optimal value
m˙ C H 4 /(N·m3·d–1) 5500 8500 7923
m˙ C2 H 6/ (N·m3·d–1) 6500 11500 10810
m˙ C2 H 3/(N·m3·d–1) 7000 10500 9317
m˙ N2/(N·m3·d–1) 1000 3500 3006
PMR–17/kPa 4000 8000 6405
PMR–5/kPa 160 300 168
PMR–11/kPa 700 1500 1317
TNG–4/K 248 258 253
TMR–3/K 228 243 239
TMR–4/K 103 118 109
TMR–6a/K 223 253 232
SEC/(kW·h·(N·m3)–1) 0.383
Tab.6  
Variables Lower boundary Upper boundary Optimal value
m˙ C H 4/(N·m3·d–1) 4000 6500 5780
m˙ C2 H 4/(N·m3·d–1) 12500 15000 13420
m˙ C3 H 3/(N·m3·d–1) 5500 7500 7305
m˙ N2/(N·m3·d–1) 1000 2500 2034
m˙ C3 H 6/(N·m3·d–1) 14000 18000 15140
PMR–5/kPa 800 2200 1404
PMR–14/kPa 160 300 208
PC3–4/kPa 800 2200 1243
PC3–6/kPa 160 300 202
TNG–4/K 243 263 248
TMR–10/K 233 249 246
TMR–12/K 183 203 202
TMR–13/K 108 118 110
TC3–7b/K 280 288 284
SEC/(kW·h·(N·m3) –1) 0.415
Tab.7  
Fig.7  
Fig.8  
Fig.9  
Economic parameters Value
Average nominal escalation rate for fuel (rFC)/% 5 [32]
Average nominal escalation rate for operating and maintenance cost (rOMC)/% 5 [32]
Average annual rate of the cost (ieff)/% 10 [32]
Constant cost of electricity consumption (Ce)/($·(kW·h) –1) 0.071 [8]
Annual operation time (τ)/h 8000 [7]
Tab.8  
Case PECcomp/$ PECBPHE/$ PECpump/$ PECtotal/$
1 278370 8187 8000 294557
2 242350 12130 8000 262480
3 315100 11784 8000 334884
4 305110 12299 8000 325409
Tab.9  
Fig.10  
Fig.11  
Case Maximum pressure of feed gas/kPa Minimum pressure of feed gas/kPa Maximum flow rate of feed gas/(N·m3·d–1) Minimum flow rate of feed gas/(N·m3·d–1)
1 4340 654 10520 7509
2 25370 617 10364 6226
3 732 653 10093 8861
4 1409 463 10473 8695
Tab.10  
Fig.12  
Fig.13  
A Heat transfer area/m2
Ce Constant cost of electricity consumption/($·(kW?h)–1)
h Mass enthalpy/(kJ·kg–1)
m Flow rate/(N·m3·d–1)
P Pressure/kPa
T Temperature/K
U Total heat transfer coefficient/(kW·(K·m2) –1)
W Power/kW
t Annual time of operation/h
BL Book life
BOG Boil-off gas
BPHE Brazed plate heat exchanger
CFD Computational fluid dynamics
CH4 Methane
C2H4 Ethylene
C2H6 Ethane
C3H6 Propylene
C3H8 Propane
CO2 Carbon dioxide
COP Coefficient of performance
CRF Capital recovery factor
DMR Dual mixed refrigerant
FC Fuel cost
FEM Finite element method
GA Genetic algorithm
i-C4H10 Iso-butane
LNG Liquefied natural gas
MR Mixed refrigerant
MRC Mixed refrigerant cycle
MSMR Modified single mixed refrigerant
N2 Nitrogen
NGL Natural gas liquid
OMC Operation and maintenance costs
PEC Purchased equipment cost
PFHE Plate-fin heat exchanger
PNEC Parallel nitrogen expansion cycle
PRICO Poly refrigerant integrated cycle operations
ROI Return on investment
SEC Specific energy consumption
SMR Single mixed refrigerant
TCR Total capital recovery
TRR Total revenue requirement
  
1 T He, I A Karimi, Y Ju. Review on the design and optimization of natural gas liquefaction processes for onshore and offshore applications. Chemical Engineering Research & Design, 2018, 132: 89–114
https://doi.org/10.1016/j.cherd.2018.01.002
2 T He, Z R Chong, J Zheng, Y Ju, P Linga. LNG cold energy utilization: prospects and challenges. Energy, 2019, 170: 557–568
https://doi.org/10.1016/j.energy.2018.12.170
3 D Kim, C Hwang, T Gundersen, Y Lim. Process design and economic optimization of boil-off-gas re-liquefaction systems for LNG carriers. Energy, 2019, 173: 1119–1129
https://doi.org/10.1016/j.energy.2019.02.098
4 S P Waldrup. 2018 Outlook for energy: a view to 2040. ExxonMobil, 2018
5 T V Nguyen, E D Rothuizen, W B Markussen, B Elmegaard. Thermodynamic comparison of three small-scale gas liquefaction systems. Applied Thermal Engineering, 2018, 128: 712–724
https://doi.org/10.1016/j.applthermaleng.2017.09.055
6 M S Khan, M Lee. Design optimization of single mixed refrigerant natural gas liquefaction process using the particle swarm paradigm with nonlinear constraints. Energy, 2013, 49: 146–155
https://doi.org/10.1016/j.energy.2012.11.028
7 T B He, Z M Liu, Y L Ju, A M Parvez. A comprehensive optimization and comparison of modified single mixed refrigerant and parallel nitrogen expansion liquefaction process for small-scale mobile LNG plant. Energy, 2019, 167: 1–12
https://doi.org/10.1016/j.energy.2018.10.169
8 M Mehrpooya, H Ansarinasab. Exergoeconomic evaluation of single mixed refrigerant natural gas liquefaction processes. Energy Conversion and Management, 2015, 99: 400–413
https://doi.org/10.1016/j.enconman.2015.04.038
9 M A Qyyum, W Ali, N V D Long, M S Khan, M Lee. Energy efficiency enhancement of a single mixed refrigerant LNG process using a novel hydraulic turbine. Energy, 2018, 144: 968–976
https://doi.org/10.1016/j.energy.2017.12.084
10 H B Tan, S Y Shan, Y Nie, Q X Zhao. A new boil-off gas re-liquefaction system for LNG carriers based on dual mixed refrigerant cycle. Cryogenics, 2018, 92: 84–92
https://doi.org/10.1016/j.cryogenics.2018.04.009
11 L Cao, J P Liu, X W Xu. Robustness analysis of the mixed refrigerant composition employed in the single mixed refrigerant (SMR) liquefied natural gas (LNG) process. Applied Thermal Engineering, 2016, 93: 1155–1163
https://doi.org/10.1016/j.applthermaleng.2015.10.072
12 J H Hwang, N K Ku, M I Roh, K Y Lee. Optimal design of liquefaction cycles of liquefied natural gas floating, production, storage, and offloading unit considering optimal synthesis. Industrial & Engineering Chemistry Research, 2013, 52(15): 5341–5356
https://doi.org/10.1021/ie301913b
13 J H Hwang, M I Roh, K Y Lee. Determination of the optimal operating conditions of the dual mixed refrigerant cycle for the LNG FPSO topside liquefaction process. Computers & Chemical Engineering, 2013, 49: 25–36
https://doi.org/10.1016/j.compchemeng.2012.09.008
14 X Xiong, W Lin, A Gu. Design and optimization of offshore natural gas liquefaction processes adopting PLNG (pressurized liquefied natural gas) technology. Journal of Natural Gas Science and Engineering, 2016, 30: 379–387
https://doi.org/10.1016/j.jngse.2016.02.046
15 P E B de Mello, H H S Villanueva, S Scuotto, G H B Donato, F D Ortega. Heat transfer, pressure drop and structural analysis of a finned plate ceramic heat exchanger. Energy, 2017, 120: 597–607
https://doi.org/10.1016/j.energy.2016.11.113
16 Z Wang, Y Z Li. A combined method for surface selection and layer pattern optimization of a multistream plate-fin heat exchanger. Applied Energy, 2016, 165: 815–827
https://doi.org/10.1016/j.apenergy.2015.12.118
17 H Ma, C Hou, R Yang, C Li, B Ma, J Ren, Y Liu. The influence of structure parameters on stress of plate-fin structures in LNG heat exchanger. Journal of Natural Gas Science and Engineering, 2016, 34: 85–99
https://doi.org/10.1016/j.jngse.2016.06.050
18 Y Zhan, J Wang, W Wang, R S Wang. Dynamic simulation of a single nitrogen expansion cycle for natural gas liquefaction under refrigerant inventory operation. Applied Thermal Engineering, 2018, 128: 747–761
https://doi.org/10.1016/j.applthermaleng.2017.08.033
19 H Sun, H Hu, G Ding, H Chen, Z Zhang, C Wu, L Wang. A general distributed-parameter model for thermal performance of cold box with parallel plate-fin heat exchangers based on graph theory. Applied Thermal Engineering, 2019, 148: 478–490
https://doi.org/10.1016/j.applthermaleng.2018.11.054
20 D Berstad, P Nekså, R Anantharaman. Low-temperature CO2 removal from natural gas. Energy Procedia, 2012, 26: 41–48
https://doi.org/10.1016/j.egypro.2012.06.008
21 J T Wu, T B He, Y L Ju. Experimental study on CO2 frosting and clogging in a brazed plate heat exchanger for natural gas liquefaction process. Cryogenics, 2018, 91: 128–135
https://doi.org/10.1016/j.cryogenics.2018.03.001
22 J T Wu, Y L Ju. Design and optimization of natural gas liquefaction process using brazed plate heat exchangers based on the modified single mixed refrigerant process. Energy, 2019, 186: 115819
https://doi.org/10.1016/j.energy.2019.07.149
23 A H Aslambakhsh, M A Moosavian, M Amidpour, M Hosseini, S AmirAfshar. Global cost optimization of a mini-scale liquefied natural gas plant. Energy, 2018, 148: 1191–1200
https://doi.org/10.1016/j.energy.2018.01.127
24 W Lee, J An, J M Lee, Y Lim. Design of single mixed refrigerant natural gas liquefaction process considering load variation. Chemical Engineering Research & Design, 2018, 139: 89–103
https://doi.org/10.1016/j.cherd.2018.09.017
25 H A J Watson, M Vikse, T Gundersen, P I Barton. Optimization of single mixed-refrigerant natural gas liquefaction processes described by nondifferentiable models. Energy, 2018, 150: 860–876
https://doi.org/10.1016/j.energy.2018.03.013
26 T B He, Y L Ju. Design and optimization of a novel mixed refrigerant cycle integrated with NGL recovery process for small-scale LNG plant. Industrial & Engineering Chemistry Research, 2014, 53(13): 5545–5553
https://doi.org/10.1021/ie4040384
27 T N Pham, M S Khan, L Q Minh, Y A Husmil, A Bahadori, S Lee, M Lee. Optimization of modified single mixed refrigerant process of natural gas liquefaction using multivariate Coggin’s algorithm combined with process knowledge. Journal of Natural Gas Science and Engineering, 2016, 33: 731–741
https://doi.org/10.1016/j.jngse.2016.06.006
28 P Nekså, E Brendeng, M Drescher, B Norberg. Development and analysis of a natural gas reliquefaction plant for small gas carriers. Journal of Natural Gas Science and Engineering, 2010, 2(2–3): 143–149
https://doi.org/10.1016/j.jngse.2010.05.001
29 J H Holland. Adaptation in Natural and Artificial Systems: an Introductory Analysis with Applications to Biology, Control and Artificial Intelligence. Cambridge: MIT Press, 1992
30 Technical Assessment Guide (TAGTM). TR-100281 Revision 6 Palo Alto Electric Power Research Institute. CA (Edinburgh), 1993
31 A TG Bejan, M. Moran Thermal Design and Optimization. New York: Wiley, 1996
32 B Ghorbani, M Mehrpooya, M H Hamedi, M Amidpour. Exergoeconomic analysis of integrated natural gas liquids (NGL) and liquefied natural gas (LNG) processes. Applied Thermal Engineering, 2017, 113: 1483–1495
https://doi.org/10.1016/j.applthermaleng.2016.11.142
33 J R, Couper W R Penney, J R Fair. Chemical Process Equipment: Selection and Design. Oxford: Butterworth-Heinemann, 2010
34 R K S Towler Gavin. Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design. London: Elsevier, 2012
35 T S Khan, M S Khan, M C Chyu, Z H Ayub. Experimental investigation of single phase convective heat transfer coefficient in a corrugated plate heat exchanger for multiple plate configurations. Applied Thermal Engineering, 2010, 30(8–9): 1058–1065
https://doi.org/10.1016/j.applthermaleng.2010.01.021
36 T S Khan, M S Khan, M C Chyu, Z H Ayub. Experimental investigation of evaporation heat transfer and pressure drop of ammonia in a 60° Chevron plate heat exchanger. International Journal of Refrigeration, 2012, 35(2): 336–348
https://doi.org/10.1016/j.ijrefrig.2011.10.018
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed