Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2020, Vol. 14 Issue (4): 867-881   https://doi.org/10.1007/s11708-020-0707-y
  研究论文 本期目录
基于集热管优化设计的热发电系统性能提升潜力研究
杨洪伦1, 王其梁1, 曹静宇1, 裴刚1(), 李晶2()
1. 中国科学技术大学热科学和能源工程系
2. 英国赫尔大学工程和计算机科学学院
Potential of performance improvement of concentrated solar power plants by optimizing the parabolic trough receiver
Honglun YANG1, Qiliang WANG1, Jingyu CAO1, Gang PEI1(), Jing LI2()
1. Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, China
2. School of Engineering and Computer Science, University of Hull, Hull, HU6 7RX, UK
 全文: PDF(2045 KB)   HTML
摘要:

本文建立了一个热发电系统的热力学和经济性综合模型,预测和比较例如采用传统和新型集热管的槽式热发电系统的性能。仿真结果表明,与传统集热管相比,采用新型集热管的发电系统具有更优越的热力学和经济性能。当集热场出口温度为550℃,位于凤凰城、塞维利亚和托托河采用新型集热管的热发电站的年发电量分别提高了8.5%、10.5%和14.4%,单位电力成本分别降低了6.9%、8.5%和11.6%。在凤凰城,通过采用新型集热管,发电站的最佳运行温度从500℃提高到560℃。此外,还对集热管热损失、涂层的吸收率和熔盐防凝温度进行了敏感性研究,以分析集热管性能对电站性能影响的一般规律。结果表明,低热损集热管与低熔点熔盐配置是改善太阳能热发电站综合性能的有效措施。

Abstract

This paper proposes a comprehensive thermodynamic and economic model to predict and compare the performance of concentrated solar power plants with traditional and novel receivers with different configurations involving operating temperatures and locations. The simulation results reveal that power plants with novel receivers exhibit a superior thermodynamic and economic performance compared with traditional receivers. The annual electricity productions of power plants with novel receivers in Phoenix, Sevilla, and Tuotuohe are 8.5%, 10.5%, and 14.4% higher than those with traditional receivers at the outlet temperature of 550°C. The levelized cost of electricity of power plants with double-selective-coated receivers can be decreased by 6.9%, 8.5%, and 11.6%. In Phoenix, the optimal operating temperature of the power plants is improved from 500°C to 560°C by employing a novel receiver. Furthermore, the sensitivity analysis of the receiver heat loss, solar absorption, and freeze protection temperature is also conducted to analyze the general rule of influence of the receiver performance on power plants performance. Solar absorption has a positive contribution to annual electricity productions, whereas heat loss and freeze protection temperature have a negative effect on electricity outputs. The results indicate that the novel receiver coupled with low melting temperature molten salt is the best configuration for improving the overall performance of the power plants.

Key wordsconcentrated solar power    parabolic trough receiver    heat loss    solar energy    annual performance
收稿日期: 2020-04-10      出版日期: 2020-12-21
通讯作者: 裴刚,李晶     E-mail: peigang@ustc.edu.cn;Jing.Li@hull.ac.uk
Corresponding Author(s): Gang PEI,Jing LI   
 引用本文:   
杨洪伦, 王其梁, 曹静宇, 裴刚, 李晶. 基于集热管优化设计的热发电系统性能提升潜力研究[J]. Frontiers in Energy, 2020, 14(4): 867-881.
Honglun YANG, Qiliang WANG, Jingyu CAO, Gang PEI, Jing LI. Potential of performance improvement of concentrated solar power plants by optimizing the parabolic trough receiver. Front. Energy, 2020, 14(4): 867-881.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-020-0707-y
https://academic.hep.com.cn/fie/CN/Y2020/V14/I4/867
Parameters Value
Aperture width/m 5.77
Length of collection assembly/m 150
Incident angle modifier cos?θ +0.000884θ 0.00005369 θ2
Optical efficiency of the collector 0.8711
Glass envelope outer/inner diameter/mm 125/120
Absorber outer/inner diameter/mm 70/66
Optical efficiency derate of receiver 0.8698
Tab.1  
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Parameters
Solar field aperture/m2 882900
Design net turbine output/MW 100
Solar field HTF VP-1/Solar salt
SCA type EuroTrough ET150
Number of SCAs per loop 4
Number of loops 270
Inlet temperature/°C 290
Outlet temperature/°C 390
Tab.2  
Location Latitude Longitude DNI/kWh
Phoenix 33.68° N 112.08° W 2550
Sevilla 37.42° N 5.90° W 2090
Tuotuohe 34.22° N 92.43° E 1637
Tab.3  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Economic data value
Investment
Specific site improvement/($·m−2) 25
Specific solar field cost (traditional/novel receiver)/($·m−2) 150/154.5
Specific HTF systems/($·m−2) 70
Specific power block cost/($·kW−1) 1150
Balance of plant/($·kW−1) 120
Specific land cost/($·Acre−1) 10000
Contingency/% 7
O&M cost
Fixed cost by capacity/($·kW−1·year−1) 66
Variable cost by generation/($·MWh−1) 4
Financial parameters/% 1
Annual insurance cost
CRF/% 9.88
Lifespan of the system/year 30
Bank rate/% 8
Tab.4  
Location Operating temperature/°C LCOE with novel receiver/(cent·kWh1) LCOE with traditional receiver/(cent·kWh1) LCOE reduction
Phoenix 290–390 12.4 12.6 1.1%
290–550 12.1 13.0 6.9%
Sevilla 290–390 15.8 16.0 1.4%
290–550 15.8 17.3 8.5%
Tuotuohe 290–390 24.0 24.4 1.7%
290–550 25.0 28.2 11.6%
Tab.5  
Fig.12  
Fig.13  
Fig.14  
Fig.15  
A Area/m2
C Cost
D Diameter/m
e Enthalpy/(J·kg1)
fabs Friction factor
h Heat transfer coefficient/(W·m2·K1)
k Conduction coefficient/(W·m1·K1)
L Length/m
m Mass flow rate/(kg·s1)
Nu Nusselt number
P Perimeter/m
Pr Prandtl number
q˙ Thermal loss/(W·m2)
Q˙ Heat transfer rate/(W·m1)
Re Reynolds number
T Temperature/°C or K
v Velocity/(m·s1)
η Efficiency
θ Incident angle/(°)
Δx Discrete unit length/m
ξIAM Incident angle modifier
λ Thermal conductivity/(W·m1·K)
AEP Annual electricity production
CRF Capital recovery factor
CSP Concentrated solar power
DNI Direct normal irradiation
HTF Heat transfer fluid
LCOE Levelized cost of electricity
MS Molten salt
SAM Solar advisor model
SM Solar multiple
Subscripts
a Ambient
abs Absorber
b Frame
cond Conduction heat transfer
conv Convection heat transfer
cs Cross section
eff Effective
f Heat transfer fluid
i Inner
invest Investment
o Outer
OM Operation and maintenance
SCA Solar collector assembly
  
1 E Bellos, C Tzivanidis. Alternative designs of parabolic trough solar collectors. Progress in Energy and Combustion Science, 2019, 71: 81–117
https://doi.org/10.1016/j.pecs.2018.11.001
2 Q Xuan, G Li, Y Lu, B Zhao, X Zhao, Y Su, J Ji, G Pei. Overall detail comparison for a building integrated concentrating photovoltaic/daylighting system. Energy and Buildings, 2019, 199: 415–426
https://doi.org/10.1016/j.enbuild.2019.07.018
3 A A AlZahrani, I Dincer. Energy and exergy analyses of a parabolic trough solar power plant using carbon dioxide power cycle. Energy Conversion and Management, 2018, 158: 476–488
https://doi.org/10.1016/j.enconman.2017.12.071
4 F Wang, Z Cheng, J Tan, Y Yuan, Y Shuai, L Liu. Progress in concentrated solar power technology with parabolic trough collector system: a comprehensive review. Renewable & Sustainable Energy Reviews, 2017, 79: 1314–1328
https://doi.org/10.1016/j.rser.2017.05.174
5 N Kannan, D Vakeesan. Solar energy for future world: a review. Renewable & Sustainable Energy Reviews, 2016, 62: 1092–1105
https://doi.org/10.1016/j.rser.2016.05.022
6 K D Olson, J J Talghader. Solar selective coating optimization for direct steam generation parabolic trough designs. Solar Energy, 2016, 124: 82–88
https://doi.org/10.1016/j.solener.2015.12.006
7 D Lei, Z Wang, J Li, J Li, Z Wang. Experimental study of glass to metal seals for parabolic trough receivers. Renewable Energy, 2012, 48: 85–91
https://doi.org/10.1016/j.renene.2012.04.033
8 K Burlafinger, A Vetter, C J Brabec. Maximizing concentrated solar power (CSP) plant overall efficiencies by using spectral selective absorbers at optimal operation temperatures. Solar Energy, 2015, 120: 428–438
https://doi.org/10.1016/j.solener.2015.07.023
9 A Maccari, D Bissi, G Casubolo, F Guerrini, L Lucatello, G Luna, A Rivaben, E Savoldi, S Tamano, M Zuanella. Archimede solar energy molten salt parabolic trough demo plant: a step ahead towards the new frontiers of CSP. Energy Procedia, 2015, 69: 1643–1651
https://doi.org/10.1016/j.egypro.2015.03.122
10 D Kearney, U Herrmann, P Nava, B Kelly. Assessment of a molten salt heat transfer fluid in a parabolic trough solar field. Journal of Solar Energy Engineering, 2002, 125: 293–299
11 I Llorente García, J L Álvarez, D Blanco. Performance model for parabolic trough solar thermal power plants with thermal storage: comparison to operating plant data. Solar Energy, 2011, 85(10): 2443–2460
https://doi.org/10.1016/j.solener.2011.07.002
12 A M Patnode. Simulation and performance evaluation of parabolic trough solar power plants. Dissertation for the Master’s Degree. Madison: University of Wisconsin-Madison, 2006
13 S Esposito, A D’Angelo, A Antonaia, A Castaldo, M Ferrara, M L Addonizio, A Guglielmo. Optimization procedure and fabrication of highly efficient and thermally stable solar coating for receiver operating at high temperature. Solar Energy Materials and Solar Cells, 2016, 157: 429–437
https://doi.org/10.1016/j.solmat.2016.06.047
14 Q Wang, J Li, H Yang, K Su, M Hu, G Pei. Performance analysis on a high-temperature solar evacuated receiver with an inner radiation shield. Energy, 2017, 139: 447–458
https://doi.org/10.1016/j.energy.2017.07.147
15 E Bellos, C Tzivanidis, K A Antonopoulos, G Gkinis. Thermal enhancement of solar parabolic trough collectors by using nanofluids and converging-diverging absorber tube. Renewable Energy, 2016, 94: 213–222
https://doi.org/10.1016/j.renene.2016.03.062
16 E Bellos, C Tzivanidis. Investigation of a star flow insert in a parabolic trough solar collector. Applied Energy, 2018, 224: 86–102
https://doi.org/10.1016/j.apenergy.2018.04.099
17 E Bellos, C Tzivanidis. A review of concentrating solar thermal collectors with and without nanofluids. Journal of Thermal Analysis and Calorimetry, 2019, 135(1): 763–786
https://doi.org/10.1007/s10973-018-7183-1
18 E Bellos, C Tzivanidis, D Tsimpoukis. Enhancing the performance of parabolic trough collectors using nanofluids and turbulators. Renewable & Sustainable Energy Reviews, 2018, 91: 358–375
https://doi.org/10.1016/j.rser.2018.03.091
19 M Yuasa, K Hino. Molten salt parabolic trough system with synthetic oil preheating. In: AIP Conference Proceeding. Maryland: AIP Publishing LLC, 2017, 020018
20 Z D Cheng, Y L He, J Xiao, Y B Tao, R J Xu. Three-dimensional numerical study of heat transfer characteristics in the receiver tube of parabolic trough solar collector. International Communications in Heat and Mass Transfer, 2010, 37(7): 782–787
https://doi.org/10.1016/j.icheatmasstransfer.2010.05.002
21 J C Daly. Solar concentrator flux distributions using backward ray tracing. Applied Optics, 1979, 18(15): 2696–2699
https://doi.org/10.1364/AO.18.002696
22 R Grena. Optical simulation of a parabolic solar trough collector. International Journal of Sustainable Energy, 2010, 29(1): 19–36
https://doi.org/10.1080/14786450903302808
23 F Cao, K McEnaney, G Chen, Z Ren. A review of cermet-based spectrally selective solar absorbers. Energy & Environmental Science, 2014, 7(5): 1615–1627
https://doi.org/10.1039/c3ee43825b
24 H Yang, Q Wang, X Huang, J Li, G Pei. Performance study and comparative analysis of traditional and double-selective-coated parabolic trough receivers. Energy, 2018, 145: 206–216
https://doi.org/10.1016/j.energy.2017.12.126
25 Thermoflow STEAMPRO 19.0 simulation software. Jacksonville: Thermoflow Inc, 2017
26 R Forristall. Heat transfer analysis and modeling of a parabolic trough solar receiver implemented in engineering equation solver. National Renewable Energy Laboratory, Golden, CO, USA, 2003
27 H Yang, Q Wang, Y Huang, G Gao, J Feng, J Li, G Pei. Novel parabolic trough power system integrating direct steam generation and molten salt systems: preliminary thermodynamic study. Energy Conversion and Management, 2019, 195: 909–926
https://doi.org/10.1016/j.enconman.2019.05.072
28 R V Padilla, G Demirkaya, D Y Goswami, E Stefanakos, M M Rahman. Heat transfer analysis of parabolic trough solar receiver. Applied Energy, 2011, 88(12): 5097–5110
https://doi.org/10.1016/j.apenergy.2011.07.012
29 System Advisor Model (SAM). Version 2019. National Renewable Energy Laboratory, 2019
30 T L Bergman, A S Lavine, F P Incropera, D P DeWittk. Fundamentals of Heat and Mass Transfer. 7th ed. Hoboken: John Wiley & Sons, 2011
31 Q Liu, Z Bai, J Sun, Y Yan, Z Gao, H Jin. Thermodynamics investigation of a solar power system integrated oil and molten salt as heat transfer fluids. Applied Thermal Engineering, 2016, 93: 967–977
https://doi.org/10.1016/j.applthermaleng.2015.10.071
32 Energy Plus energy simulation software: weather data. 2020–04–05, available at website of Energyplus
33 D Kearney, B Kelly, U Herrmann, R Cable, J Pacheco, R Mahoney, H Price, D Blake, P Nava, N Potrovitza. Engineering aspects of a molten salt heat transfer fluid in a trough solar field. Energy, 2004, 29(5–6): 861–870
https://doi.org/10.1016/S0360-5442(03)00191-9
34 D Kearney, U Herrmann, P Nava, B Kelly, R Mahoney, J Pacheco, R Cable, N Potrovitza, D Blake, H Price. Evaluation of a molten salt heat transfer fluid in a parabolic trough solar field. In: ASME Solar 2002: International Solar Energy Conference. Reno: American Society of Mechanical Engineers Digital Collection, 2002, 293–299
35 M J Montes, A Abánades, J M Martínez-Val, M Valdés. Solar multiple optimization for a solar-only thermal power plant, using oil as heat transfer fluid in the parabolic trough collectors. Solar Energy, 2009, 83(12): 2165–2176
https://doi.org/10.1016/j.solener.2009.08.010
36 Z Wu, S Li, G Yuan, D Lei, Z Wang. Three-dimensional numerical study of heat transfer characteristics of parabolic trough receiver. Applied Energy, 2014, 113: 902–911
https://doi.org/10.1016/j.apenergy.2013.07.050
37 Y T Wu, Y Li, N Ren, R P Zhi, C F Ma. Experimental study on the thermal stability of a new molten salt with low melting point for thermal energy storage applications. Solar Energy Materials and Solar Cells, 2018, 176: 181–189
https://doi.org/10.1016/j.solmat.2017.12.001
38 V M B Nunes, C S Queirós, M J V Lourenço, F J V Santos, C A Nieto de Castro. Molten salts as engineering fluids—a review. Applied Energy, 2016, 183: 603–611
https://doi.org/10.1016/j.apenergy.2016.09.003
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed