Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2020, Vol. 14 Issue (4): 759-766   https://doi.org/10.1007/s11708-020-0810-0
  研究论文 本期目录
g-C3N4/Si纳米复合材料的制备及其作为锂离子电池负极材料的储锂性能
卞正旭1, 唐泽华1, 谢金峰1, 张俊豪1,2(), 郭兴梅1, 刘元君1, 袁爱华1,3(), 张峰3, 孔庆红4
1. 江苏科技大学环境与化学工程学院,中国镇江212003
2. 江苏科技大学船舶装备技术学院,中国镇江212003
3. 盐城工学院江苏省新型环保重点实验室,中国盐城224051
4. 江苏大学环境与安全工程学院,中国镇江212013
Preparation and lithium storage performances of g-C3N4/Si nanocomposites as anode materials for lithium-ion battery
Zhengxu BIAN1, Zehua TANG1, Jinfeng XIE1, Junhao ZHANG1,2(), Xingmei GUO1, Yuanjun LIU1, Aihua YUAN1,3(), Feng ZHANG3, Qinghong KONG4
1. School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
2. Marine Equipment and Technology Institute, Jiangsu University of Science and Technology, Zhenjiang 212003, China
3. Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, China
4. School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
 全文: PDF(1417 KB)   HTML
摘要:

硅基材料作为锂离子电池的负极材料,具有较高的理论容量,但在充放电过程中其体积变化很大。为了缓解硅基负极材料的体积膨胀问题,通过镁热还原技术制备了g-C3N4/Si纳米复合材料。众所周知,g-C3N4/Si纳米复合材料不仅可以提高电子传输能力,且可以改善材料的物理性能,以适应锂在锂化和脱锂过程中体积膨胀引起的应力和应变。在评估g-C3N4/Si复合电极时,g-C3N4/Si纳米复合材料的初始放电容量在0.1 A g-1时高达1033.3 mAh g-1,并且在400次循环后其可逆容量保持在548 mAh g-1。同时,在2.0 A g-1时具有218 mAh g-1的可逆比容量,展现出较高倍率性能。优异的储锂性能得益于独特的g-C3N4/Si纳米结构,与纯硅相比,它可以提高导电性,减少体积膨胀并加速锂离子的传输。

Abstract

As the anode material of lithium-ion battery, silicon-based materials have a high theoretical capacity, but their volume changes greatly in the charging and discharging process. To ameliorate the volume expansion issue of silicon-based anode materials, g-C3N4/Si nanocomposites are prepared by using the magnesium thermal reduction technique. It is well known that g-C3N4/Si nanocomposites can not only improve the electronic transmission ability, but also ameliorate the physical properties of the material for adapting the stress and strain caused by the volume expansion of silicon in the lithiation and delithiation process. When g-C3N4/Si electrode is evaluated, the initial discharge capacity of g-C3N4/Si nanocomposites is as high as 1033.3 mAh/g at 0.1 A/g, and its reversible capacity is maintained at 548 mAh/g after 400 cycles. Meanwhile, the improved rate capability is achieved with a relatively high reversible specific capacity of 218 mAh/g at 2.0 A/g. The superior lithium storage performances benefit from the unique g-C3N4/Si nanostructure, which improves electroconductivity, reduces volume expansion, and accelerates lithium-ion transmission compared to pure silicon.

Key wordsmagnesium thermal reduction    g-C3N4/Si nanocomposites    volume expansion    electroconductivity    lithium-ion battery
收稿日期: 2019-10-21      出版日期: 2020-12-21
通讯作者: 张俊豪,袁爱华     E-mail: jhzhang6@just.edu.cn;aihua.yuan@just.edu.cn
Corresponding Author(s): Junhao ZHANG,Aihua YUAN   
 引用本文:   
卞正旭, 唐泽华, 谢金峰, 张俊豪, 郭兴梅, 刘元君, 袁爱华, 张峰, 孔庆红. g-C3N4/Si纳米复合材料的制备及其作为锂离子电池负极材料的储锂性能[J]. Frontiers in Energy, 2020, 14(4): 759-766.
Zhengxu BIAN, Zehua TANG, Jinfeng XIE, Junhao ZHANG, Xingmei GUO, Yuanjun LIU, Aihua YUAN, Feng ZHANG, Qinghong KONG. Preparation and lithium storage performances of g-C3N4/Si nanocomposites as anode materials for lithium-ion battery. Front. Energy, 2020, 14(4): 759-766.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-020-0810-0
https://academic.hep.com.cn/fie/CN/Y2020/V14/I4/759
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
1 L B Wang, K L Zhang, H L Pan, L Wang, D Wang, W C Dai, H F Qin, G R Li, J H Zhang. 2D molybdenum nitride nanosheets as anode materials for improved lithium storage. Nanoscale, 2018, 10(40): 18936–18941
https://doi.org/10.1039/C8NR05889J
2 X M Guo, C Qian, R H Shi, W Zhang, F Xu, S L Qian, J H Zhang, H X Yang, A H Yuan, T X Fan. Biomorphic Co-N-C/CoOx composite derived from natural chloroplasts asefficientelectrocatalyst for oxygen reduction reaction. Small, 2019, 15(8): 1804855
https://doi.org/10.1002/smll.201804855
3 P Wang, H Zhou, C F Meng, Z T Wang, K Akhtar, A H Yuan. Cyanometallicframework-derived hierarchical Co3O4-NiO/graphene foam as high-performancebinder-free electrodes for supercapacitors. Chemical Engineering Journal, 2019, 369: 57–63
https://doi.org/10.1016/j.cej.2019.03.080
4 G F Zeng, Y L An, S L Xiong, J K Feng. Nonflammable fluorinated carbonate electrolytewithhigh salt-to-solvent ratios enables stable silicon-based anode for next-generation lithium-ion batteries. ACS Applied Materials & Interfaces, 2019, 11(26): 23229–23235
https://doi.org/10.1021/acsami.9b05570
5 C L Wei, H F Fei, Y L An, Y C Zhang, J K Feng. Crumpled Ti3C2Tx (MXene) nanosheet encapsulated LiMn2O4 for high performance lithium-ion batteries. Electrochimica Acta, 2019, 309: 362–370
https://doi.org/10.1016/j.electacta.2019.04.094
6 T T Yu, H L Liu, M Huang, J H Zhang, D Q Su, Z H Tang, J F Xie, Y J Liu, A H Yuan, Q H Kong. Zn2GeO4 nanorods grown on carbon cloth as high performance flexible lithium-ion battery anodes. RSC Advances, 2017, 7(82): 51807–51813
https://doi.org/10.1039/C7RA09273C
7 J H Zhang, M Huang, B J Xi, K Mi, A H Yuan, S L Xiong. Systematic study of effect onenhancing specific capacity and electrochemical behaviors of lithium-sulfur batteries. Advanced Energy Materials, 2018, 8(2): 1701330
https://doi.org/10.1002/aenm.201701330
8 D Ji, H Zhou, Y L Tong, J P Wang, M Z Zhu, T H Chen, A H Yuan. Facile fabrication of MOF-derived octahedral CuO wrapped 3D graphene network as binder-free anode for high performance lithium-ion batteries. Chemical Engineering Journal, 2017, 313: 1623–1632
https://doi.org/10.1016/j.cej.2016.11.063
9 Y Xing, T Shen, T Guo, X Wang, X Xia, C Gu, J Tu. A novel durable double-conductive core-shell structure applying to the synthesis of silicon anode for lithiumion batteries. Journal of Power Sources, 2018, 384: 207–213
https://doi.org/10.1016/j.jpowsour.2018.02.051
10 H T Liu, Z Q Shan, W L Huang, D D Wang, Z J Lin, Z J Cao, P Chen, S X Meng, L Chen. Self-assembly of silicon@oxidized mesocarbon microbeads encapsulated in carbon asanode material for lithium-ion batteries. ACS Applied Materials & Interfaces, 2018, 10(5): 4715–4725
https://doi.org/10.1021/acsami.7b16760
11 F Meng, J Liu, L L Shen, J H Shi, A J Han, L P Zhang, Y C Liu, J Yu, J K Zhang, R Zhou, Z X Liu. High-quality industrial n-type silicon wafers with an efficiency of over 23% for Si heterojunction solar cells. Frontiers in Energy, 2017, 11(1): 78–84
https://doi.org/10.1007/s11708-016-0435-5
12 X Li, X D Tian, T Yang, W Wang, Y Song, Q G Guo, Z J Liu. Silylated functionalized silicon-based composite as anode with excellent cyclic performance for lithium-ion battery. Journal of Power Sources, 2018, 385: 84–90
https://doi.org/10.1016/j.jpowsour.2018.03.033
13 L B Wang, T Mei, W Q Liu, J H Sun, Q F Zhou, Y T Qian. Low temperature chemical synthesis of silicon nanoparticles as anode materials for lithium-ion batteries. Materials Chemistry and Physics, 2018, 220: 308–312
https://doi.org/10.1016/j.matchemphys.2018.08.075
14 M Xie, C R Ren, L M Fu, X D Qiu, X G Yu, D R Yang. An industrial solution tolight-induced degradation of crystalline silicon solar cells. Frontiers in Energy, 2017, 11(1): 67–71
https://doi.org/10.1007/s11708-016-0430-x
15 S Q Chen, L F Shen, P A van Aken, J Maier, Y Yu. Dual-functionalized double carbon shells coated silicon nanoparticles for high performance lithium-ion batteries. Advanced Materials, 2017, 29(21): 1605650
https://doi.org/10.1002/adma.201605650
16 B Kim, J Ahn, Y Oh, J Tan, D Lee, J K Lee, J Moon. Highly porous carbon-coated silicon nanoparticles with canyon-like surfaces as a high-performance anode material for Li-ion batteries. Journal of Materials Chemistry. A, 2018, 6(7):3028–3037
https://doi.org/10.1039/C7TA10093K
17 Y Jiang, S Chen, D B Mu, B R Wu, Q Liu, Z K Zhao, F Wu. A three-dimensional network structure Si/C anode for Li-ion batteries. Journal of Materials Science, 2017, 52(18): 10950–10958
https://doi.org/10.1007/s10853-017-1253-9
18 T Shen, Z J Yao, X H Xia, X L Wang, C D Gu, J P Tu. Rationally designed siliconnano structures as anode material for lithium-ion batteries. Advanced Engineering Materials, 2018, 20(1): 1700591
https://doi.org/10.1002/adem.201700591
19 C Yang, Y L Zhang, J H Zhou, C F Lin, F Lv, K Wang, J R Feng, Z K Xu, J B Li, S J Guo. Hollow Si/SiOxnanosphere/nitrogen-doped carbon superstructure with a double shell andvoid for high-rate and long-life lithium-ion storage. Journal of Materials Chemistry. A, 2018, 6(17): 8039–8046
https://doi.org/10.1039/C8TA00010G
20 H Jung, T T Pham, E W Shin. Effect of g-C3N4 precursors on the morphologicalstructures of g-C3N4/ZnO composite photocatalysts. Journal of Alloys and Compounds, 2019, 788: 1084–1092
https://doi.org/10.1016/j.jallcom.2019.03.006
21 X Guo, W Zhang, D Zhang, S Qian, X Tong, D Zhou, J Zhang, A Yuan. Submicron Co9S8/CoS/carbon spheres derived from bacteria for the electrocatalytic oxygen reduction reaction. ChemElectroChem, 2019, 6(17): 4571–4575
https://doi.org/10.1002/celc.201901266
22 B H Park, J H Jeong, G W Lee, Y H Kim, K C Roh, K B Kim. Highly conductive carbonnanotube micro-spherical network for high-rate silicon anode. Journal of Power Sources, 2018, 394: 94–101
https://doi.org/10.1016/j.jpowsour.2018.04.112
23 Y C Xue, T T Yu, J L Chen, X H Wan, X W Cai, X M Guo, F Zhang, W W Xiong, Y J Liu, Q H Kong, A H Yuan, J H Zhang. Fabrication of GeO2 microspheres/hierarchical porous N-doped carbon with superior cyclic stability for Li-ion batteries. Journal of Solid State Chemistry, 2020, 286: 121203
24 S F Duan, C L Tao, Y Y Geng, X Q Yao, X W Kang, J Z Su, I Rodríguez-Gutiérrez, M Kan, M Romero, Y Sun, Y X Zhao, D D Qin, Y Yan. Phosphorus-doped isotypeg-C3N4/g-C3N4: an efficient charge transfer system for photoelectrochemical water oxidation. ChemCatChem, 2019, 4(12): 898–907
25 Z Chen, G Ma, Z H Chen, Y G Zhang, Z Zhang, J W Gao, Q G Meng, M Z Yuan, X Wang, J M Liu, G F Zhou. Fabrication and photoelectron chemical properties of silicon nanowires/g-C3N4 core/shell arrays. Applied Surface Science, 2017, 396: 609–615
https://doi.org/10.1016/j.apsusc.2016.10.203
26 G Q Wang, Z S Wen, Y E Yang, J P Yin, W Q Kong, S Li, J C Sun, S J Ji. Ultra-long life Si@rGO/g-C3N4 with a multiply synergetic effect as an anode material for lithium-ion batteries. Journal of Materials Chemistry. A, 2018, 6(17): 7557–7565
https://doi.org/10.1039/C8TA00539G
27 T Shen, X H Xia, D Xie, Z J Yao, Y Zhong, J Y Zhan, D H Wang, J B Wu, X L Wang, J P Tu. Encapsulating silicon nanoparticles into mesoporous carbon forming pomegranate-structured microspheres as a high-performance anode for lithium-ion batteries. Journal of Materials Chemistry. A, 2017, 5(22): 11197–11203
https://doi.org/10.1039/C7TA03294C
28 L L Wu, H C Zhou, J Yang, X Y Zhou, P Y Ren, Y Nie, S Chen. Carbon coatedmesoporous Si anode prepared by a partial magnesiothermic reduction for lithium-ion batteries. Journal of Alloys and Compounds, 2017, 716: 204–209
https://doi.org/10.1016/j.jallcom.2017.05.057
29 Q Z Chen, S H Liu, R L Zhu, D C Wu, H Y Fu, J X Zhu, H P He. Clay minerals derivednanostructured silicon with various morphology: controlled synthesis, structural evolution, and enhanced lithium storage properties. Journal of Power Sources, 2018, 405: 61–69
https://doi.org/10.1016/j.jpowsour.2018.10.031
30 D Gueon, D Y Kang, J S Kim, T Y Kim, J K Lee, J H Moon. Si nanoparticles-nested inverse opal carbon supports for highly stable lithium-ion battery anodes. Journal of Materials Chemistry. A, 2015, 3(47): 23684–23689
https://doi.org/10.1039/C5TA05476A
31 N Prakash, G Kumar, M Singh, A Barvat, P Pal, S P Singh, H K Singh, S P Khanna. Binary multifunctional ultra broad band self-powered g-C3N4/Si heterojunction high-performance photodetector. Advanced Optical Materials, 2018, 6(14): 1800191
https://doi.org/10.1002/adom.201800191
32 Y Shen, X J Guo, X K Bo, Y Z Wang, X K Guo, M J Xie, X F Guo. Effect of template-induced surface species on electronic structure and photocatalytic activity of g-C3N4. Applied Surface Science, 2017, 396: 933–938
https://doi.org/10.1016/j.apsusc.2016.11.064
33 Y NuLi, B Wang, J Yang, X Yuan, Z Ma. Cu5Si-Si/C composites for lithium-ion battery anodes. Journal of Power Sources, 2006, 153(2): 371–374
https://doi.org/10.1016/j.jpowsour.2005.05.023
34 Q H Kong, Y L Sun, C J Zhang, H M Guan, J H Zhang, D Y Wang, F Zhang. Ultrathin iron phenyl phosphonatenanosheets with appropriate thermal stability for improving fire safety in epoxy. Composites Science and Technology, 2019, 182: 107748
https://doi.org/10.1016/j.compscitech.2019.107748
35 X M Guo, C Qian, X H Wan, W Zhang, H W Zhu, J H Zhang, H X Yang, S L Lin, Q H Kong, T X Fan. Facile in situ fabrication of biomorphic Co2P-Co3O4/rGO/C as efficient electrocatalyst for oxygen reduction reaction. Nanoscale, 2020, 12(7): 4374–4382
https://doi.org/10.1039/C9NR10785A
36 L L Wu, J Yang, X Y Zhou, M F Zhang, Y P Ren, Y Nie. Silicon nanoparticles embedded in a porous carbon matrix as a high-performance anode for lithium-ion batteries. Journal of Materials Chemistry. A, 2016, 4(29): 11381–11387
https://doi.org/10.1039/C6TA04398D
37 K Wang, S E Pei, Z S He, L A Huang, S S Zhu, J F Guo, H B Shao, J M Wang. Synthesis of a novel porous silicon microsphere@carbon core-shell composite via in situ MOF coating for lithium-ion battery anodes. Chemical Engineering Journal, 2019, 356: 272–281
https://doi.org/10.1016/j.cej.2018.09.027
38 J H Zhang, Q H Kong, D Y Wang. Simultaneously improving fire safety and mechanical properties of epoxy resin by Fe-CNTs via large-scale preparation. Journal of Materials Chemistry. A, 2018, 6(15): 6376–6386
https://doi.org/10.1039/C7TA10961J
39 Y X Tian, H W Huang, G X Liu, R Bi, L Zhang. Metal-organic framework derived yolk-shell NiS2/carbon spheres for lithium-sulfur batteries with enhanced polysulfide redoxkinetics. Chemical Communications (Cambridge), 2019, 55(22): 3243–3246
https://doi.org/10.1039/C9CC00486F
40 M Huang, K Mi, J H Zhang, H L Liu, T T Yu, A H Yuan, Q H Kong, S L Xiong. MOF-derived bi-metal embedded N-doped carbon polyhedral nanocages with enhancedlithium storage. Journal of Materials Chemistry. A, 2017, 5(1): 266–274
https://doi.org/10.1039/C6TA09030C
41 C Qian, X M Guo, W Zhang, H X Yang, Y Qian, F Xu, S L Qian, S L Lin, T X Fan. Co3O4 nanoparticles on porous bio-carbon substrate as catalyst for oxygen reduction reaction. Microporous and Mesoporous Materials, 2019, 277: 45–51
https://doi.org/10.1016/j.micromeso.2018.10.020
42 X Y Zhou, S Chen, H C Zhou, J J Tang, Y P Ren, T Bai, J M Zhang, J Yang. Enhanced lithium-ion battery performance of nano/micro-size Si via combination of metal-assisted chemical etching method and ball-milling. Microporous and Mesoporous Materials, 2018, 268: 9–15
https://doi.org/10.1016/j.micromeso.2018.03.035
43 Y Jin, B Zhu, Z D Lu, N Liu, J Zhu. Challenges and recent progress in the development of Si anodes for lithium-ion battery. Advanced Energy Materials, 2017, 7(23): 1700715–1700731
https://doi.org/10.1002/aenm.201700715
44 X H Zhuang, P A Song, G R Chen, L Y Shi, Y Wu, X Y Tao, H J Liu, D S Zhang. Coralloid-like nanostructured c-nSi/SiOx@Cy anodes for high performance lithium-ion battery. ACS Applied Materials & Interfaces, 2017, 9(34): 28464–28472
https://doi.org/10.1021/acsami.7b05255
45 X M Guo, W Zhang, R H Shi, H W Zhu, C Qian, H X Yang, J H Zhang, A H Yuan, Y Z Yang. Facile fabrication of amorphous Ni-P supported on three-dimensional biocarbonskeleton as efficient electrocatalyst for oxygen evolution reaction. ChemElectroChem, 2019, 6: 3071–3076
https://doi.org/10.1002/celc.201900458
46 D Q Su, Z H Tang, J F Xie, Z X Bian, J H Zhang, D D Yang, D Zhang, J C Wang, Y Liu, A H Yuan, Q H Kong. Co, Mn-LDH nanoneedle arrays grown on Ni foam for high performance supercapacitors. Applied Surface Science, 2019, 469: 487–494
https://doi.org/10.1016/j.apsusc.2018.10.276
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed