Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2021, Vol. 15 Issue (3): 700-709   https://doi.org/10.1007/s11708-021-0735-2
  研究论文 本期目录
表面缺陷的SrTiO3增强光催化分解水性能的研究
刘军营1(), 韦之栋2, 上官文峰2()
1. 德国汉堡大学物理化学研究所,汉堡20146
2. 上海交通大学燃烧与环境技术研究中心,上海200240
Enhanced photocatalytic water splitting with surface defective SrTiO3 nanocrystals
Junying LIU1(), Zhidong WEI2, Wenfeng SHANGGUAN2()
1. Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
2. Research Center for Combustion and Environment Technology, Shanghai Jiao Tong University, Shanghai 200240, China
 全文: PDF(3137 KB)   HTML
摘要:

本文通过在氮气氛围中利用硼氢化钠热处理钛酸锶纳米晶合成了表面重建的钛酸锶纳米晶。 钛酸锶纳米晶的表面重建源于在氢化处理过程中引入了表面氧空位或Ti位点(如Ti3+和Ti2+)。由于表面氧空位或Ti位点(如Ti3+和Ti2+)存在,使得钛酸锶纳米晶的光吸收和电荷转移能力同时得以提高,这有力地增强了其光催化分解水性能。同时,这些缺陷也改变了钛酸锶的氧化还原电势。在这三者之间协同作用下,钛酸锶分解纯水时,氢气与氧气的产生比例也得到了调节。

Abstract

Surface reconstructed SrTiO3 nanocrystals were synthesized by a thermal treatment process in presence of NaBH4 and SrTiO3 nanocrystals. The surface reconstruction of SrTiO3 nanocrystals is attributed to the introduction of surface oxygen vacancies or Ti sites (such as Ti3+ and Ti2+) during the hydrogenation treatment process. The light absorption and the charge transfer ability of SrTiO3 nanocrystals are simultaneously enhanced due to surface oxygen vacancies or Ti sites (such as Ti3+ and Ti2+), which are beneficial to photocatalytic water splitting. Meanwhile, these defects also change the redox potential of the photocatalysts. Since there existed a synergistic effect between the three, the ratio of hydrogen to oxygen production was also regulated.

Key wordsSrTiO3    surface reconstruction    oxygen vacancies    photocatalytic water splitting
收稿日期: 2020-11-19      出版日期: 2021-10-09
通讯作者: 刘军营,上官文峰     E-mail: junying.liu@chemie.uni-hamburg.de;shangguan@sjtu.edu.cn
Corresponding Author(s): Junying LIU,Wenfeng SHANGGUAN   
 引用本文:   
刘军营, 韦之栋, 上官文峰. 表面缺陷的SrTiO3增强光催化分解水性能的研究[J]. Frontiers in Energy, 2021, 15(3): 700-709.
Junying LIU, Zhidong WEI, Wenfeng SHANGGUAN. Enhanced photocatalytic water splitting with surface defective SrTiO3 nanocrystals. Front. Energy, 2021, 15(3): 700-709.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-021-0735-2
https://academic.hep.com.cn/fie/CN/Y2021/V15/I3/700
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
1 X Hong, J Tan, H Zhu, et al. Control of spatially homogeneous distribution of heteroatoms to produce red TiO2 photocatalyst for visible-light photocatalytic water splitting. Chemistry (Weinheim an der Bergstrasse, Germany), 2019, 25(7): 1787–1794
https://doi.org/10.1002/chem.201805283
2 J Liu, J Ke, Y Li, et al. Co3O4 quantum dots/TiO2 nanobelt hybrids for highly efficient photocatalytic overall water splitting. Applied Catalysis B: Environmental, 2018, 236: 396–403
https://doi.org/10.1016/j.apcatb.2018.05.042
3 A S Hainer, J S Hodgins, V Sandre, et al. Photocatalytic hydrogen generation using metal-decorated TiO2: sacrificial donors vs. true water splitting. ACS Energy Letters, 2018, 3(3): 542–545
https://doi.org/10.1021/acsenergylett.8b00152
4 W Fang, J Liu, D Yang, et al. Effect of surface self-heterojunction existed in BixY1–xVO4 on photocatalytic overall water splitting. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 6578– 6584
https://doi.org/10.1021/acssuschemeng.7b00808
5 C Zhou, R Shi, G I Waterhouse, et al. Recent advances in niobium-based semiconductors for solar hydrogen production. Coordination Chemistry Reviews, 2020, 419: 213399
https://doi.org/10.1016/j.ccr.2020.213399
6 L Mao, Y C Huang, Y Fu, et al. Surface sulfurization activating hematite nanorods for efficient photoelectrochemical water splitting. Science Bulletin, 2019, 64(17): 1262–1271
https://doi.org/10.1016/j.scib.2019.07.008
7 B Liu, Y Jin, G Xie, et al. Simultaneous photocatalysis of SiC/Fe3O4 nanoparticles and photo-fermentation of rhodopseudomonas sp. nov. strain A7 for enhancing hydrogen production under visible light irradiation. ES Energy and Environment, 2018, 1: 56–66
8 J Desai, P Baviskar, K Hui, et al. Quadrivalently doped hematite thin films for solar water splitting. ES Energy and Environment, 2018, 2: 21–30
https://doi.org/10.30919/esee8c208
9 X Chen, R Shi, Q Chen, et al. Three-dimensional porous g-C3N4 for highly efficient photocatalytic overall water splitting. Nano Energy, 2019, 59: 644–650
https://doi.org/10.1016/j.nanoen.2019.03.010
10 T H Chiang, H Lyu, T Hisatomi, et al. Efficient photocatalytic water splitting using al-doped SrTiO3 coloaded with molybdenum oxide and rhodium–chromium oxide. ACS Catalysis, 2018, 8(4): 2782–2788
https://doi.org/10.1021/acscatal.7b04264
11 Y Wei, J Wang, R Yu, et al. Constructing SrTiO3-TiO2 heterogeneous hollow multi-shelled structures for enhanced solar water splitting. Angewandte Chemie International Edition, 2019, 58(5): 1422–1426
https://doi.org/10.1002/anie.201812364
12 W Fang, Z Qin, J Liu, et al. Photo-switchable pure water splitting under visible light over nano-Pt@ P25 by recycling scattered photons. Applied Catalysis B: Environmental, 2018, 236: 140–146
https://doi.org/10.1016/j.apcatb.2018.05.023
13 S Guo, J Shang, T Zhao, et al. TiO2/cyclodextrin hybrid structure with efficient photocatalytic water splitting. ES Materials and Manufacturing, 2018, 2: 24–27
14 K M Macounová, R Nebel, M Klusáčková, et al. Selectivity control of the photo-catalytic water oxidation on SrTiO3 nanocubes via surface dimensionality. ACS Applied Materials & Interfaces, 2019, 11(18): 16506–16516
https://doi.org/10.1021/acsami.9b00342
15 H P Duong, T Mashiyama, M Kobayashi, et al. Z-scheme water splitting by microspherical Rh-doped SrTiO3 photocatalysts prepared by a spray drying method. Applied Catalysis B: Environmental, 2019, 252: 222–229
https://doi.org/10.1016/j.apcatb.2019.04.009
16 M Antuch, P Millet, A Iwase, et al. Water reduction into hydrogen using Rh-doped SrTiO3 photoelectrodes surface-modified by minute amounts of Pt: insights from heterogeneous kinetic analysis. Electrochimica Acta, 2019, 297: 696–704
https://doi.org/10.1016/j.electacta.2018.11.110
17 Z Zhao, R V Goncalves, S K Barman, et al. Electronic structure basis for enhanced overall water splitting photocatalysis with aluminum doped SrTiO3 in natural sunlight. Energy & Environmental Science, 2019, 12(4): 1385–1395
https://doi.org/10.1039/C9EE00310J
18 J Ng, S Xu, X Zhang, et al. Hybridized nanowires and cubes: a novel architecture of a heterojunctioned TiO2/SrTiO3 thin film for efficient water splitting. Advanced Functional Materials, 2010, 20(24): 4287–4294
https://doi.org/10.1002/adfm.201000931
19 D Sharma, S Upadhyay, V R Satsangi, et al. Improved photoelectrochemical water splitting performance of Cu2O/SrTiO3 heterojunction photoelectrode. Journal of Physical Chemistry C, 2014, 118(44): 25320–25329
https://doi.org/10.1021/jp507039n
20 Y Zhong, K Ueno, Y Mori, et al. Plasmon-enhanced water splitting utilizing the heterojunction synergistic effect between SrTiO3 and rutile-TiO2. Chemistry Letters, 2015, 44(5): 618–620
https://doi.org/10.1246/cl.150028
21 Y Jia, S Shen, D Wang, et al. Composite Sr2TiO4/SrTiO3 (La, Cr) heterojunction based photocatalyst for hydrogen production under visible light irradiation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(27): 7905–7912
https://doi.org/10.1039/c3ta11326d
22 K Han, T Kreuger, B Mei, et al. Transient behavior of Ni@NiOx functionalized SrTiO3 in overall water splitting. ACS Catalysis, 2017, 7(3): 1610–1614
https://doi.org/10.1021/acscatal.6b03662
23 T Puangpetch, T Sreethawong, S Chavadej. Hydrogen production over metal-loaded mesoporous-assembled SrTiO3 nanocrystal photocatalysts: effects of metal type and loading. International Journal of Hydrogen Energy, 2010, 35(13): 6531–6540
https://doi.org/10.1016/j.ijhydene.2010.04.015
24 L Mu, Y Zhao, A Li, et al. Enhancing charge separation on high symmetry SrTiO3 exposed with anisotropic facets for photocatalytic water splitting. Energy & Environmental Science, 2016, 9(7): 2463–2469
https://doi.org/10.1039/C6EE00526H
25 H Kato, M Kobayashi, M Hara, et al. Fabrication of SrTiO3 exposing characteristic facets using molten salt flux and improvement of photocatalytic activity for water splitting. Catalysis Science & Technology, 2013, 3(7): 1733–1738
https://doi.org/10.1039/c3cy00014a
26 B Wang, S Shen, L Guo. SrTiO3 single crystals enclosed with high-indexed {023} facets and {001} facets for photocatalytic hydrogen and oxygen evolution. Applied Catalysis B: Environmental, 2015, 166–167: 320–326
https://doi.org/10.1016/j.apcatb.2014.11.032
27 H Tan, Z Zhao, W B Zhu, et al. Oxygen vacancy enhanced photocatalytic activity of pervoskite SrTiO3. ACS Applied Materials & Interfaces, 2014, 6(21): 19184–19190
https://doi.org/10.1021/am5051907
28 Y H Hu. A highly efficient photocatalyst-hydrogenated black TiO2 for the photocatalytic splitting of water. Angewandte Chemie International Edition, 2012, 51(50): 12410–12412
https://doi.org/10.1002/anie.201206375
29 A Naldoni, M Allieta, S Santangelo, et al. Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. Journal of the American Chemical Society, 2012, 134(18): 7600–7603
https://doi.org/10.1021/ja3012676
30 Y Zhao, Y Zhao, R Shi, et al. Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm. Advanced Materials, 2019, 31(16): 1806482
https://doi.org/10.1002/adma.201806482
31 H Yu, R Shi, Y Zhao, et al. Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution. Advanced Materials, 2017, 29(16): 1605148
https://doi.org/10.1002/adma.201605148
32 X Chen, L Liu, P Y Yu, et al. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science, 2011, 331(6018): 746–750
https://doi.org/10.1126/science.1200448
33 G Wang, Y Ling, H Wang, et al. Hydrogen-treated WO3 nanoflakes show enhanced photostability. Energy & Environmental Science, 2012, 5(3): 6180–6187
https://doi.org/10.1039/c2ee03158b
34 W Li, S Liu, S Wang, et al. The roles of reduced Ti cations and oxygen vacancies in water adsorption and dissociation on SrTiO3 (110). Journal of Physical Chemistry C, 2014, 118(5): 2469–2474
https://doi.org/10.1021/jp409076y
35 N Z Koocher, J M P Martirez, A M Rappe. Theoretical model of oxidative adsorption of water on a highly reduced reconstructed oxide surface. Journal of Physical Chemistry Letters, 2014, 5(19): 3408–3414
https://doi.org/10.1021/jz501635f
36 F A Rabuffetti, H S Kim, J A Enterkin, et al. Synthesis-dependent first-order Raman scattering in SrTiO3 nanocubes at room temperature. Chemistry of Materials, 2008, 20(17): 5628–5635
https://doi.org/10.1021/cm801192t
37 L Gu, H Wei, Z Peng, et al. Defects enhanced photocatalytic performances in SrTiO3 using laser-melting treatment. Journal of Materials Research, 2017, 32(4): 748–756
https://doi.org/10.1557/jmr.2016.461
38 S Hashimoto, A Tanaka. Alteration of Ti 2p XPS spectrum for titanium oxide by low-energy Ar ion bombardment. Surface and Interface Analysis, 2002, 34(1): 262–265
https://doi.org/10.1002/sia.1296
39 G Zhang, W Jiang, S Hua, et al. Constructing bulk defective perovskite SrTiO3 nanocubes for high performance photocatalysts. Nanoscale, 2016, 8(38): 16963–16968
https://doi.org/10.1039/C6NR04859E
40 H Zhang, J Cai, Y Wang, et al. Insights into the effects of surface/bulk defects on photocatalytic hydrogen evolution over TiO2 with exposed {001} facets. Applied Catalysis B: Environmental, 2018, 220: 126–136
https://doi.org/10.1016/j.apcatb.2017.08.046
41 S Shetty, S K Sinha, R Ahmad, et al. Existence of Ti2+ states on the surface of heavily reduced SrTiO3 nanocubes. Chemistry of Materials, 2017, 29(23): 9887–9891
https://doi.org/10.1021/acs.chemmater.7b04113
42 X Ning, W Zhen, X Zhang, et al. Assembly of ultra-thin NiO layer over Zn1−xCdxS for stable visible-light photocatalytic overall water splitting. ChemSusChem, 2019, 12(7): 1410–1420
https://doi.org/10.1002/cssc.201802926
[1] FEP-21001-OF-LJY_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed