Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front Energ    2011, Vol. 5 Issue (4) : 404-411    https://doi.org/10.1007/s11708-011-0165-7
RESEARCH ARTICLE
URANS simulation of the turbulent flow in tight lattice bundle
Yiqi YU(), Yanhua YANG
School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
 Download: PDF(614 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The flow structure in tight lattice is still of great interest to nuclear industry. An accurate prediction of flow parameter in subchannels of tight lattice is likable. Unsteady Reynolds averaged Navier Stokes (URANS) is a promising approach to achieve this goal. The implementation of URANS approach will be validated by comparing computational results with the experimental data of Krauss. In this paper, the turbulent flow with different Reynolds number (5000–215000) and different pitch-to-diameter(P/D) (1.005–1.2) are simulated with computational fluid dynamics (CFD) code CFX12. The effects of the Reynolds number and the bundle geometry (P/D) on wall shear stress, turbulent kinetic energy, turbulent mixing and large scale coherent structure in tight lattice are analyzed in details. It is hoped that the present work will contribute to the understanding of these important flow phenomena and facilitate the prediction and design of rod bundles.

Keywords tight rod bundle      flow structure      unsteady Reynolds averaged Navier Stokes (URANS)     
Corresponding Author(s): YU Yiqi,Email:yyqno_1@sjtu.edu.cn   
Issue Date: 05 December 2011
 Cite this article:   
Yiqi YU,Yanhua YANG. URANS simulation of the turbulent flow in tight lattice bundle[J]. Front Energ, 2011, 5(4): 404-411.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-011-0165-7
https://academic.hep.com.cn/fie/EN/Y2011/V5/I4/404
CasesRef. [9]
Array configurationTriangular array
Working fluidAir
Rod length/m6.9
Rod diameter/mm140
Pitch-to-diameter ratioP/D=1.06
Fluid bulk velocity/(m·s-1)20.63
Fluid bulk temperature/°C47
Hydraulic diameter/mm33.5
Reynolds number38754
Heat flux/(kW·m-2)Isothermal
CFD approachRANS & URANS
Turbulent modelSpeziale, Sarkar and Gatski (SSG Reynolds Stress)
Measured data used in this paperStream wise velocity, wall shear stress, wall temperature, turbulent intensity
Cross section picture
Tab.1  Experimental and numerical setup in the present study
Fig.1  Computational domain and mesh for URANS
(a) Triangular array; (b) mesh structure
Fig.2  Comparison between experiment, URANS and RANS
(a) Stream wise velocity distribution (); (b) wall shear stress distribution; (c) turbulent intensity distribution
Fig.3  Effect of / and on wall shear stress
(a) Effect of /; (b) effect of
Fig.4  Effect of / and on turbulent kinetic energy ()
(a) Effect of /; (b) effect of
Fig.5  Effect of / on mixing factor
Fig.6  Effect of on mixing factor
Fig.7  Coherent structure identified by
Fig.8  contour on plane for different /
Fig.9  contour on plane for different
1 Oldekop W, Berger H D, Zeggel W. General features of advanced pressurized water reactors with improved fuel utilization. Nuclear Technology , 1982, 59(2): 212-227
2 Uchikawa S, Okubo T, Kugo T, Akie H, Nakano Y, Onuki A, Iwamura T. Investigations on innovative water reactor for flexible fuel cycle (LFWR). In: Proceedings of GLOBAL, Tsukuba, Japan , 2005, Paper No. 358
3 Cheng X, Liu X J, Yang Y H. A mixed core for supercritical water-cooled reactors. Nuclear Engineering and Technology , 2008, 40(1): 1-10
4 Rehme K. Simple method of predicting friction factors of turbulent flow in non-circular channels. International Journal of Heat and Mass Transfer , 1973, 16(5): 933-950
doi: 10.1016/0017-9310(73)90033-1
5 Trupp A C, Azad R S. The structure of turbulent flow in triangular array rod bundles. Nuclear Engineering and Design , 1975, 32(1): 47-84
doi: 10.1016/0029-5493(75)90090-4
6 Trippe G, Weinberg D. Non-isotropic eddy viscosities in turbulent flow through rod bundles. In: Kakac S, Spalding D B, eds. Turbulent Forced Convection in Channels and Bundles , Vol. 1. Washington: Hemisphere Publishing Corporation, 1979
7 Seale W J. Turbulent diffusion of heat between connected flow passages Part 1: Outline of problem and experimental investigation. Nuclear Engineering and Design , 1979, 54(2): 183-195
doi: 10.1016/0029-5493(79)90166-3
8 Rehme K. The structure of turbulent flow through rod bundles. Nuclear Engineering and Design , 1987, 99(1): 141-154
doi: 10.1016/0029-5493(87)90116-6
9 Krauss T, Meyer T. Experimental investigation of turbulent transport of momentum and energy in a heated rod bundle. Nuclear Engineering and Design , 1998, 180(3): 185-206
doi: 10.1016/S0029-5493(98)00158-7
10 Meyer L, Rehme K. Large-scale turbulence phenomena in compound rectangular channels. Experimental Thermal and Fluid Science , 1994, 8(4): 286-304
doi: 10.1016/0894-1777(94)90059-0
11 Baratto F, Bailey S C C, Tavoularis S. Measurements of frequencies and spatial correlations of coherent structures in rod bundle flows. Nuclear Engineering and Design , 2006, 236(17): 1830-1837
doi: 10.1016/j.nucengdes.2005.12.009
12 Baglietto E, Ninokata H. Turbulence models evaluation for heat transfer simulation in tight lattice fuel bundles. In: Proceedings of the 10th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-10), Seoul, Korea , 2003
13 Chang D, Tavoularis S. Unsteady numerical simulations of turbulence and coherent structures in axial flow near a narrow gap. ASME Journal of Fluids Engineering , 2005, 127(3): 458-466
doi: 10.1115/1.1900140
14 Chang D, Tavoularis S. Numerical simulation of turbulent flow in a 37-rod bundle. Nuclear Engineering and Design , 2007, 237(6): 575-590
doi: 10.1016/j.nucengdes.2006.08.001
15 Merzari E, Ninokata H, Baglietto E. Large eddy simulation of the vortex street between rectangular channels. In: NTHAS 5, Jeju Island, Korea , 2006
16 Ninokata H, Merzari E, Khakim A. Analysis of low Reynolds number turbulent flow phenomena in nuclear fuel pin subassemblies of tight lattice configuration. Nuclear Engineering and Design , 2009, 239(5): 855-866
doi: 10.1016/j.nucengdes.2008.10.030
17 Rehme K. The structure of turbulence in rod bundles and the implications on natural mixing between the subchannels. International Journal of Heat and Mass Transfer , 1992, 35(2): 567-581
doi: 10.1016/0017-9310(92)90291-Y
18 Moller S V. Single-phase turbulent mixing in rod bundles. Experimental Thermal and Fluid Science , 1992, 5(1): 26-33
doi: 10.1016/0894-1777(92)90053-8
19 Jeong J, Hussain F. On the identification of a vortex. Journal of Fluid Mechanics , 1995, 285(1): 69-94
doi: 10.1017/S0022112095000462
20 Lexmond A S, Mudde R F, van der Haagen T H J J. Visualization of the vortex street and characterization of the cross flow in the gap between two subchannels. In: Proceedings of the 11th Nureth, Avignon, France , 2005
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed