Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front Energ    2012, Vol. 6 Issue (4) : 413-419    https://doi.org/10.1007/s11708-012-0212-z
RESEARCH ARTICLE
Establishment and verification of a shrinking core model for dilute acid hydrolysis of lignocellulose
Cunwen WANG(), Xiaoling DUAN, Weiguo WANG, Zihao LI, Yuanhang QIN
Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430074, China
 Download: PDF(179 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The kinetics of lignocellulose hydrolysis under the conditions of high temperature and dilute acid (mass fraction 0.05%) was investigated in this paper. By studying the reducing sugar concentration versus reaction temperature (170°C–220°C) and reaction time (150–1800 s) during the hydrolysis process of five kinds of crop straw (rice, wheat, cotton, rape and corn), the shrinking core model was established, and the differential equation of the model and its analytical solution were obtained. With a numerical calculation method, the kinetic equation was estimated, and the degradation of reducing sugar obeyed first-order kinetics was obtained. The calculated results from the equations agreed well with the original experimental data. The calculation by the model showed that the reducing sugar concentration increases as the size of the particles decrease, and the uniform particles increase.

Keywords lignocellulose      dilute acid hydrolysis      shrinking core model     
Corresponding Author(s): WANG Cunwen,Email:wangcw118@hotmail.com   
Issue Date: 05 December 2012
 Cite this article:   
Xiaoling DUAN,Weiguo WANG,Zihao LI, et al. Establishment and verification of a shrinking core model for dilute acid hydrolysis of lignocellulose[J]. Front Energ, 2012, 6(4): 413-419.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-012-0212-z
https://academic.hep.com.cn/fie/EN/Y2012/V6/I4/413
Feedstock Cellulose/%Hemicellulose/%Lignin/%Ash/%
Rice straw33.4228.608.383.34
Wheat straw25.7529.2512.213.71
Corn straw29.3328.578.800.60
Cotton straw36.5325.9916.400.40
Rape straw36.3831.4716.500.21
Tab.1  Components analysis of straw materials
Fig.1  Reducing sugar concentrations from experiment and simulation versus different temperatures
(a) Rice straw; (b) wheat straw; (c) cotton straw; (d) rape straw; (e) corn straw
Types of strawRice Wheat Cotton Rape Corn
R20.99180.99430.99530.99210.9924
Tab.2  Simulation results of decisive index of five kinds of straws
Types of strawk10 /s-1k20 /s-1E1/(J · mol-1)E2/(J · mol-1)
Rice3.51×10-33.10×10-210693.809075.32
Wheat7.00×10-32.64×10-213089.768389.11
Cotton5.05×10-33.53×10-211596.599560.28
Rape6.84×10-33.03×10-212721.879081.38
Corn6.57×10-33.15×10-212793.158742.64
Tab.3  Paameters of the model of different kinds of straws
Types of strawtopt/sTopt/KCPopt/( g·L-1)
Rice636.73493.1510.96
Wheat629.81483.1511.36
Cotton619.15483.1511.76
Rape624.90483.1512.25
Corn627.17473.1510.52
Tab.4  Optimal hydrolysis conditions of different kinds of straws
Mesh Particle radius/mk1/s-1topt/sCPopt/(g·L-1)
3002.40×10-54.313×10-4514.4515.85
2502.90×10-53.570×10-4558.4713.89
1804.00×10-52.588×10-4636.7310.96
1206.00×10-51.725×10-4740.477.97
809.00×10-51.150×10-4848.865.69
Tab.5  Reducing sugar concentration with different sizes of rice straw particle
Fig.2  Effect of particle size on reducing sugar concentration
Uniformity of rice straw particlesAverage radius of particle/mk1/s-1topt/sCPopt/(g·L-1)
a)Low4.86×10-52.130×10-4685.869.43
b)High4.13×10-52.506×10-4644.7310.69
Tab.6  Reducing sugar concentration with different uniformities of rice straw particle
1 Hamelinck C N, Hooijdonk G, Faaij A P C. Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass and Bioenergy , 2005, 28(4): 384–410
doi: 10.1016/j.biombioe.2004.09.002
2 Zhao Y, Wang H T, Lu W J, Li D. Supercritical/subcritical technology for pretreatment and hydrolyzation of stalks. Progress in Chemistry , 2007, 19(11): 1832–1838
3 Bi Y Y. Study on Resources Evaluation and Utilization. Beijing: Chinese Academy of Agricultural Sciences, 2010
4 Orozco A, Ahmad M, Rooney D, Walker G. Dilute acid hydrolysis of cellulose and cellulosic bio-waste using a microwave reactor system. Process Safety and Environmental Protection , 2007, 85(5): 446–449
doi: 10.1205/psep07003
5 Zhuang X S, Wang S R, An H, Luo Z Y, Cen K F. Cellulose hydrolysis research for liquid fuel production under low concentration acids. Journal of Zhejiang University: Engineering Science , 2006, 40(6): 997–1001
6 Qi W, Zhang S P, Xu Q L, Ren Z W, Yan Y J. Degradation kinetics of xylose and glucose in hydrolysate containing dilute sulfuric acid. Chinese Journal of Process Engineering , 2008, 8(6): 1132–1137
7 Saeman J F. Kinetics of wood saccharification-hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature. Industrial & Engineering Chemistry , 1945, 37(1): 43–52
doi: 10.1021/ie50421a009
8 Sasaki M, Fang Z, Fukushima Y, Adschiri T, Arai K. Dissolution and hydrolysis of cellulose in subcritical and supercritical water. Industrial & Engineering Chemistry Research , 2000, 39(8): 2883–2890
doi: 10.1021/ie990690j
9 Rogalinski T, Liu K, Albrecht T, Brunner G. Hydrolysis kinetics of biopolymers in subcritical water. Journal of Supercritical Fluids , 2008, 46(3): 335–341
doi: 10.1016/j.supflu.2007.09.037
10 Schacht C, Zetzl C, Brunner G. From plant materials to ethanol by means of supercritical fluid technology. Journal of Supercritical Fluids , 2008, 46(3): 299–321
doi: 10.1016/j.supflu.2008.01.018
11 Young R A, Rowell R M. Cellulose: Structure, Modification and Hydrolysis. New York: John Wiley & Sons, 1986, 281–296
12 Mok W S, Antal M J Jr, Varhegyi G. Productive and parasitic pathways in dilute acid-catalyzed hydrolysis of cellulose. Industrial & Engineering Chemistry Research , 1992, 31(1): 94–100
doi: 10.1021/ie00001a014
13 Qian X, Kim J S, Lee Y Y. A comprehensive kinetic model for dilute-acid hydrolysis of cellulose. Applied Biochemistry and Biotechnology , 2003, 106(1): 337–352
doi: 10.1385/ABAB:106:1-3:337
14 Van Soest P, Robertson J. Systems of analysis for evaluating fibrous feeds. In: Pigden W J, Balch C C, Graham M, eds. Proceedings of Workshop on Standardization of Analytical Methodology for Feeds. Ottawa, Canada , 1980, 49–60
15 Ma H, Liu W W, Chen X, Wu Y J, Yu Z L. Enhanced enzymatic saccharification of rice straw by microwave pretreatment. Bioresource Technology , 2009, 100(3): 1279–1284
doi: 10.1016/j.biortech.2008.08.045 pmid:18930389
16 Miller G L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry , 1959, 31(3): 426–428
doi: 10.1021/ac60147a030
17 Gámez S, González-Cabriales J J, Ramírez J A, Garrote G, Vázquez M. Study of the hydrolysis of sugar cane bagasse using phosphoric acid. Journal of Food Engineering , 2006, 74(1): 78–88
doi: 10.1016/j.jfoodeng.2005.02.005
18 Téllez-Luis S, Ram??rez J, Vázquez M. Mathematical modelling of hemicellulosic sugar production from sorghum straw. Journal of Food Engineering , 2002, 52(3): 285–291
doi: 10.1016/S0260-8774(01)00117-0
19 Holgate H R, Meyer J C, Tester J W. Glucose hydrolysis and oxidation in supercritical water. American Institute of Chemical Engineers , 1995, 41(3): 637–648
doi: 10.1002/aic.690410320
20 Cromie S, Doelle H W. Nutritional effects on the kinetics of ethanol production from glucose by Zymomonas mobilis. Applied Microbiology and Biotechnology , 1981, 11(2): 116–119
doi: 10.1007/BF00518053
21 Yue J Z, Zhang Q G, Li G, Jiao Y Z, Shen X W. Effect of mechanical grinding on micro-structure of sorghum straw and enzymatic hydrolysis. Acta Energiae Solaris Sinica , 2011, 32(20): 262–267
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed