Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2015, Vol. 9 Issue (4) : 371-386    https://doi.org/10.1007/s11708-015-0371-9
RESEARCH ARTICLE
Performance analysis of combined cycle power plant
Nikhil DEV(),Rajesh ATTRI
Department of Mechanical Engineering, YMCA University of Science and Technology, Faridabad 121006, India
 Download: PDF(2626 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Combined cycle power plants (CCPPs) are in operation with diverse thermodynamic cycle configurations. Assortment of thermodynamic cycle for scrupulous locality is dependent on the type of fuel available and different utilities obtained from the plant. In the present paper, seven of the practically applicable configurations of CCPP are taken into consideration. Exergetic and energetic analysis of each component of the seven configurations is conducted with the help of computer programming tool, i.e., engineering equation solver (EES) at different pressure ratios. For Case 7, the effects of pressure ratio, turbine inlet temperature and ambient relative humidity on the first and second law is studied. The thermodynamics analysis indicates that the exergy destruction in various components of the combined cycle is significantly affected by the overall pressure ratio, turbine inlet temperature and pressure loss in air filter and less affected by the ambient relative humidity.

Keywords first-law      second-law      exergy destruction      components     
Corresponding Author(s): Nikhil DEV   
Just Accepted Date: 08 July 2015   Online First Date: 24 August 2015    Issue Date: 04 November 2015
 Cite this article:   
Nikhil DEV,Rajesh ATTRI. Performance analysis of combined cycle power plant[J]. Front. Energy, 2015, 9(4): 371-386.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-015-0371-9
https://academic.hep.com.cn/fie/EN/Y2015/V9/I4/371
Fig.1  Schematic diagram of the combined cycle power plant (CCPP) with two feedwater heaters (Case 7)
Fig.2  Schematic diagram of simple GT cycle (Case 1)
Fig.3  Schematic diagram of GT cycle with regenerator (Case 2)
Fig.4  Schematic diagram of GT cycle with regenerator and intercooler (Case 3)
Fig.5  Schematic diagram of GT cycle with regenerator, intercooler and REH (Case 4)
Fig.6  Schematic diagram of CCPP (Case 5)
Fig.7  Schematic diagram of CCPP with one feedwater heater (Case 6)
Components Exergy destruction rate
Air compressor e D,AC = e inAC e outAC + W ˙ AC
CC e D,CC = e inCC + e f e outCC
GT e D,GT = ( e inGT e outGT ) W ˙ GT
HE e D,HE   =   m air ( e aiHE   e aoHE )   +   m gas ( e giHE   e goHE )    
WHRB e D,WHRB =     m gas ( e ginWHRB     e goutWHRB )     m w ( e woutWHRB     e winWHRB )
Air filter e D,AF = m a ( e aiAF e aoAF )
Air humidifier e D,AH = m aiAH e aiAH + m w e w m aoAH e aoAH
ST e D,ST = m s ( e winST e woutST ) W ST
Feedwater heater first e D,FWH1 = m s 1 e 14 + ( m s m s1 ) e 20 m s e 21
Feedwater heater second e D,FWH2 = m s2 e 15 + ( m s m s1 m s2 ) e 18 ( m s m s1 ) e 19
Condenser e D,COND = ( m s m s1 ) ( e win e wout ) + m cw ( e cwin e cwout )
Pump e D,P = W P + m s ( e win e wout )
Tab.1  Exergy destruction rate equations for plant components
Fig.8  Flowchart for CCPP efficiency evaluation
Component Quantified assumption
Pressure losses in air filter at 100% air flow/mbar 3.5
Relative humidity at air humidifiers outlet/% 100
Pressure drop for air in the air intercooler/% 1
The pressure drop for air in the AC/% 1
Pressure drop for gas in the regenerative HE/% 2
Pressure drop in the CC and REH/% 4
Pressure drop in the waste heat recovery boiler/% 4
Effectiveness for the AC/% 85
Effectiveness of the air intercooler/% 90
Effectiveness of the regenerative HE/% 55
Compressor isentropic efficiency/% 87
GT isentropic efficiency/% 89
Efficiency of the CC and REH/% 95
Generator efficiency/% 97
Steam pressure at the ST inlet/bar 25
Steam temperature at the ST inlet/K 567
ST exhaust pressure/bar 0.09
Temperature rise of cooling water in condenser/K 283.98
Cooling water inlet temperature in condenser/K 298
Cooling water outlet temperature from condenser/K 309
Stack temperature/K 413
Pump isentropic efficiency/% 85
Turbine isentropic efficiency/% 85
Tab.2  Assumptions for different components of the cycles
Fig.9  Effect of variation of pressure ratio at various TIT on first-law efficiency
Fig.10  Effect of variation of pressure ratio at various TIT on second-law efficiency
Fig.11  Effect of TIT on optimum pressure ratio
Fig.12  Effect of variation of pressure ratio on exergy destruction in CC
Fig.13  Exergy destruction in CC at TIT= 1400 K, rp = 14 and φ = 60%
Fig.14  Effect of variation of pressure ratio on exergy destruction in regenerative HE
Fig.15  Exergy destruction in regenerative HE at TIT= 1400 K, rp = 14 and φ = 60%
Fig.16  Effect of variation of pressure ratio on exergy destruction in compressor
Fig.17  Exergy destruction in compressor at TIT= 1400 K, rp = 14 and φ = 60%
Fig.18  Effect of variation of pressure ratio on exergy destruction in intercooler
Fig.19  Exergy destruction in intercooler at TIT= 1400 K, rp = 14 and φ = 60%
Fig.20  Effect of variation of pressure ratio on exergy destruction in turbine
Fig.21  Exergy destruction in turbine at TIT= 1400 K, rp = 14 and φ = 60%
Fig.22  Effect of variation of pressure ratio on exergy destruction in REH
Fig.23  Exergy destruction in REH at TIT= 1400 K, rp = 14 and φ = 60%
Fig.24  Effect of variation of pressure ratio on exergy destruction in air filter
Fig.25  Exergy destruction in air filter at TIT= 1400 K, rp = 14 and φ = 60%
Fig.26  Effect of variation of pressure ratio on exergy destruction in WHRB
Fig.27  Exergy destruction in WHRB at TIT= 1400 K, rp = 14 and φ = 60%
Fig.28  Effect of variation of pressure ratio on exergy destruction in ST
Fig.29  Exergy destruction in ST at TIT= 1400 K, rp = 14 and φ = 60%
Fig.30  Effect of variation of pressure ratio on exergy destruction in condenser
Fig.31  Exergy destruction in condenser at TIT= 1400 K, rp = 14 and φ = 60%
Fig.32  Effect of variation of pressure ratio on exergy destruction in feedwater heater
Fig.33  Exergy destruction in feedwater heater at TIT= 1400 K, rp = 14 and φ = 60%
Fig.34  Effect of variation of pressure ratio on exergy destruction in pump
Fig.35  Exergy destruction in pump at TIT= 1400 K, rp = 14 and φ = 60%
Fig.36  Effect of variation of pressure ratio on exergy destruction in exhaust gas
Fig.37  Exergy destruction in exhaust gas at TIT= 1400 K, rp = 14 and φ = 60%
E · Exergy rate/(kJ·s−1)
LHV Lower heating value
R Gas constant/(kJ·kg−1·K−1)
RH Relative humidity
T Absolute temperature/K
W Work/(kJ·kg−1 (dry air))
cp Specific heat at constant pressure/(kJ·kg−1·K−1)
cv Specific heat at constant volume/(kJ·kg−1·K−1)
e Specific exergy/(kJ·kg−1 (dry air))
h Enthalpy/(kJ·kg−1 (dry air))
hf Enthalpy of saturated water at process steam pressure
hg Enthalpy of saturated vapor at process steam pressure
m Mass/kg
n Number of moles
p Pressure/bar
Qp Process heat/(kJ·kg−1 (dry air))
rp Compression ratio
s Entropy/(kJ·kg−1·K−1)
t Temperature/K
V Specific volume/(m3·kg−1)
Tab.3  
ω Humidity ratio (kg of water vapor per kg of dry air)
φ Relative humidity/%
ε Effectiveness/%
η Efficiency/%
γ Specific heat ratio
Tab.4  Greek symbols
AC Air compressor
CC Combustion chamber
D Destruction
GT Gas turbine
P Product
Q Heat
R Regenerator
SG Steam generator
W Work
a Ambient air
av Average
f Fuel
g Gas
i Inlet
l Liquid
o Outlet
sat Saturated
v Water vapor
w Water
Tab.5  Subscripts
1 Klara  J M, Izsak  M S, Wherley  M R. Advanced power generation: the potential of indirectly-fired combined cycles. ASME Paper, 1995, Paper No. 95-GT-261
2 Solomon  P R, Serio  M A, Cosgrove  J E, Pines  D S, Zhao  Y, Buggeln  R C, Shamroth  S J. A coal-fired heat exchanger for an externally fired gas turbine. Journal of Engineering for Gas Turbines and Power, 1996, 118(1): 22–31
https://doi.org/10.1115/1.2816545
3 McDonald  C F, Wilson  D G. The utilization of recuperated and regenerated engine cycles for high-efficiency gas turbines in the 21st century. Applied Thermal Engineering, 1996, 16(8–9): 635–653
https://doi.org/10.1016/1359-4311(95)00078-X
4 Jonsson  M, Yan  J. Humidified gas turbines—a review of proposed and implemented cycles. Energy, 2005, 30(7): 1013–1078
https://doi.org/10.1016/j.energy.2004.08.005
5 McCarthy  S J, Scott  I. The WR-21 intercooled recuperated gas turbine engine—operation and integration into the royal navy type 45 destroyer system. Proceedings of ASME Turbo Expo 2002: Power for Land, Sea, and Air. Amsterdam, Netherlands, 2002, 977–984
6 Vandervort  C L, Bary  M R, Stoddard  L E, Higgins  S T. Externally-fired combined cycle: repowering of existing steam plants. ASME Paper, 1993, Paper No. 93-GT-359
7 Gaggioli  R A. The concept of available energy. Chemical Engineering Science, 1961, 16(1–2): 87–96
https://doi.org/10.1016/0009-2509(61)87010-3
8 Dev  N, Samsher, Kachhwaha  S S, Attri  R. Exergy analysis and simulation of a 30 MW cogeneration cycle. Frontiers of Mechanical Engineering, 2013, 8(2): 169–180
https://doi.org/10.1007/s11465-013-0263-9
9 Dev  N, Samsher, Kachhwaha  S S, Attri  R. Development of reliability index for combined cycle power plant using graph theoretic approach. Ain Shams Engineering Journal, 2014, 5(1): 193–203
https://doi.org/10.1016/j.asej.2013.09.010
10 Dev  N, Goyal  G K, Attri  R, Kumar  N. Graph theoretic analysis of advance combined cycle power plants alternatives with latest gas turbines. In: Proceedings of ASME 2013 Gas Turbine India Conference (GTINDIA2013). Bangalore, India, 2013
11 Dev  N, Samsher, Kachhwaha  S S, Attri R. GTA-based framework for evaluating the role of design parameters in cogeneration cycle power plant efficiency. Ain Shams Engineering Journal, 2013, 4(2): 273–284
https://doi.org/10.1016/j.asej.2012.08.002
12 Dev  N, Samsher, Kachhwaha  S S, Attri  R. GTA modeling of combined cycle power plant efficiency analysis. Ain Shams Engineering Journal, 2015, 6(1): 217–237
[1] Bin HU, Di WU, L.W. WANG, R.Z. WANG. Exergy analysis of R1234ze(Z) as high temperature heat pump working fluid with multi-stage compression[J]. Front. Energy, 2017, 11(4): 493-502.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed