Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2015, Vol. 9 Issue (4) : 399-412    https://doi.org/10.1007/s11708-015-0374-6
RESEARCH ARTICLE
Impact of selection of DC base values and DC link control strategies on sequential AC-DC power-flow convergence
Shagufta KHAN(), Suman BHOWMICK
Department of Electrical Engineering, Delhi Technological University, Delhi 110042, India
 Download: PDF(373 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper demonstrates the convergence of the integrated AC-DC power-flow algorithm as affected by the selection of different base values for the DC quantities and adoption of different control strategies for the DC link. For power-flow modeling of integrated AC-DC systems, the base values of the various DC quantities can be defined in several ways, giving rise to different sets of per-unit system equations. It is observed that different per-unit system models affect the convergence of the power-flow algorithm differently. In a similar manner, the control strategy adopted for the DC link also affects the power-flow convergence. The sequential method is used to solve the DC variables in the Newton Raphson (NR) power flow model, where AC and DC systems are solved separately and are coupled by injecting an equivalent amount of real and reactive power at the terminal AC buses. Now, for a majority of the possible control strategies, the equivalent real and reactive power injections at the concerned buses can be computed a-priori and are independent of the NR iterative loop. However, for a few of the control strategies, the equivalent reactive power injections cannot be computed a-priori and need to be computed in every NR iteration. This affects the performance of the iterative process. Two different per-unit system models and six typical control strategies are taken into consideration. This is validated by numerous case studies conducted on the IEEE 118-bus and 300-bus test systems.

Keywords AC-DC power-flow      Newton-Raphson method      high voltage direct current (HVDC) control strategy     
Corresponding Author(s): Shagufta KHAN   
Issue Date: 04 November 2015
 Cite this article:   
Shagufta KHAN,Suman BHOWMICK. Impact of selection of DC base values and DC link control strategies on sequential AC-DC power-flow convergence[J]. Front. Energy, 2015, 9(4): 399-412.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-015-0374-6
https://academic.hep.com.cn/fie/EN/Y2015/V9/I4/399
Fig.1  HVDC link between buses ‘i’ and ‘j’ of an existing power system network
Fig.2  Equivalent circuit diagram for AC-DC interconnection
Per- unit system 1 Per-unit system 2
VdR = aRVicos αR XcI d VdR = 32πaRnbVicosα R 3XcπnbId
VdI = aIVjcos γI XcI d VdI = 32πaRnbVjcosγ I 3XcπnbId
VdR = aRVicos φR VdR = 32πaRnbVicosφ R
VdI = aIVjcos φI VdI = 32πaInbVjcosφ I
Id= V dR VdI Rd
PdR =VdRId
Tab.1  Basic HVDC equations in different per-unit systems
Control strategies Specified quantities Unknown quantities
1 αR, PdR ,γ I, VdI aR,aI,VdR,φ R,φI
2 aR, PdR ,aI, VdI αR,γI,VdR, φR,φI
3 αR,Id,γI,VdI aR,aI,VdR,φ R,φI
4 αR,PdR,aI,VdI aR,γI,VdR, φR,φI
5 aR,PdR,γI,VdI αR,aI,VdR,φ R,φI
6 aR,PdR,γI,aI αR,VdR,VdI,φ R,φI
7 aR,PdR,αR,γI aI,VdR,VdI,φ R,φI
8 αR,VdR,γI,PdI aR,aI,VdI,φ R,φI
Tab.2  HVDC control strategies
HVDC link specification Power flow solution
AC terminal buses HVDC variables
Spec. values Model 1 Model 2 ACSV Model 1 Model 2 DCSV Model 1 Model 2
Control strategy 1 PdR/pu 0.5 0.5 V6/pu 0.99 0.99 VdR/pu 1.005 2.3022
IdR/pu 0.4975 0.2172
VdI/pu 1.0 2.3 θ6/(°) 11.037 11.058 aR 1.0695 0.8798
aI 1.1174 0.9223
αR /(°) 5 5 V7/pu 0.9878 0.988 cosφR 0.94 0.97
cosφI 0.90 0.93
γI/(°) 18 18 θ7/(°) 11.150 11.165 NI 6 6
CT 5.15 4.98
Control strategy 2 PdR/pu 0.5 0.5 V6/pu 1.0 1.0 VdR/pu 1.005 2.3022
IdR/pu 0.4975 0.2172
VdI/pu 1 2.3 θ6/(°) 10.926 10.946 αR /(°) 12.419 15.393
γI/(° ) 17.929 22.330
aR 1.08 0.9 V7/pu 0.994 0.997 cosφR 0.93 0.94
cosφI 0.90 0.90
aI 1.1 0.94 θ7/(°) 11.079 11.060 NI 8 6
CT 6.66 5.11
Control strategy 3 IdR/pu 0.5 0.5 V6/pu 0.99 0.99 /puV/pudR/pu 1.005 2.305
PdR/pu 0.5025 1.1525
VdI/pu 1 2.3 θ6/(°) 11.035 10.626 aR 1.0697 0.9012
aI 1.1147 0.9459
αR /(°) 5 5 V7/pu 0.9878 0.9859 cosφR 0.94 0.95
cosφI 0.90 0.91
γI /(°) 18 18 θ7/(°) 11.151 11.481 NI 6 6
CT 5.16 5.15
Control strategy 4 PdR/pu 0.5 0.5 V6/pu 1.00 1.00 VdR/pu 1.005 2.3022
IdR/pu 0.4975 0.2172
VdI/pu 1 2.3 θ6/(°) 10.92 10.946 aR 1.0588 0.871
γI /(°) 12.862 20.779
αR /(°) 5 5 V7/pu 0.997 0.997 cosφR 0.94 0.97
cosφI 0.92 0.91
aI 1.08 0.93 θ7/(°) 11.038 11.067 NI 6 6
CT 5.25 5.08
Control strategy 5 PdR/pu 0.5 0.5 V6/pu 0.99 0.99 VdR/pu 1.005 2.3022
IdR/pu 0.4975 0.2172
VdI/pu 1 2.3 θ6/(°) 11.036 11.057 αR /(°) 12.200 13.127
aI 1.114 0.95
aR 1.09 0.9 V7/pu 0.9908 0.9908 cosφR 0.93 0.97
cosφI 0.90 0.93
γI /(°) 18 18 θ7/(°) 11.109 11.131 NI 6 6
CT 5.01 4.98
Control strategy 6 PdR/pu 0.5 0.5 V6/pu 1.00 1.00 VdR/pu 0.9946 2.5026
IdR/pu 0.5027 0.1998
aR 1.05 0.95 θ6/(°) 10.92 10.948 VdI/pu 0.9896 2.506
αR /(°) 5.6583 8.0293
aI 1.1 1.0 V7/pu 0.994 0.9945 cosφR 0.94 0.95
cosφI 0.90 0.93
γI /(°) 18 18 θ7/(°) 11.079 11.096 NI 6 6
CT 5.17 5.16
Tab.3  First study of IEEE 118-bus system (HVDC link: From bus No. 6 to bus No. 7; Pbase=0.3386 pu)
Fig.3  Bus voltage profile for the case study of Table 3 with Control strategy 1 and Model 1

(a) Bus voltage magnitude without HVDC link; (b) bus voltage magnitude with HVDC link; (c) bus voltage magnitude difference

HVDC link specification/pu Power flow solution
AC terminal buses HVDC variables
Spec. values Model 1 Model 2 ACSV Model 1 Model 2 DCSV Model 1 Model 2
Control strategy 1 PdR/pu 0.5 0.5 V11/pu 0.9803 0.9815 VdR/pu 1.005 2.3022
IdR/pu 0.4975 0.2172
VdI/pu 1.0 2.3 θ11/ (°) 10.739 10.749 aR 1.08 0.8875
aI 1.15 0.9463
αR /(°) 5 5 V13/pu 0.9598 0.9632 cosφR 0.94 0.97
cosφI 0.90 0.93
γI /(°) 18 18 θ13/ (°) 11.349 11.321 NI 6 6
CT 5.14 5.06
Control strategy 2 PdR/pu 0.5 0.5 V11/pu 0.9801 1.00 VdR/pu 1.005 2.3022
IdR/pu 0.4975 0.2172
VdI/pu 1 2.3 θ11/ (°) 10.741 10.946 αR/ (°) 9.1566 11.732
γI /(°) 17.969 20.934
aR 1.09 0.9 V13/pu 0.9596 0.997 cosφR 0.94 0.96
cosφI 0.90 0.91
aI 1.15 0.95 θ13/ (°) 11.351 11.060 NI 13 6
CT 10.61 5.07
Control strategy 3 IdR/pu 0.5 0.5 V11/pu 0.9803 0.9741 VdR/pu 1.005 2.305
PdR/pu 0.5025 1.1525
VdI/pu 1 2.3 θ11/ (°) 10.737 10.179 aR 1.08 0.9159
aI 1.1504 0.9836
αR /(°) 5 5 V13/pu 0.9597 0.9481 cosφR 0.94 0.95
cosφI 0.90 0.91
γ I/( °) 18 18 θ13/ (°) 11.358 13.521 NI 6 6
CT 5.09 5.06
Control strategy 4 PdR/pu 0.5 0.5 V11/pu 0.9843 1.00 VdR/pu 1.005 2.3022
IdR/pu 0.4975 0.2172
VdI/pu 1 2.3 θ11/ (°) 10.727 10.946 aR 1.0765 0.885
γ I/( °) 17.868 20.881
αR /(°) 5 5 V13/pu 0.9767 0.997 cosφR 0.94 0.97
cosφI 0.90 0.91
aI 1.13 0.95 θ13/ (°) 11.099 11.067 NI 6 6
CT 5.15 5.14
Control strategy 5 PdR/pu 0.5 0.5 V11/pu 0.9847 0.9847 VdR/pu 1.005 2.3022
IdR/pu 0.4975 0.2172
VdI/pu 1 2.3 θ11/ (°) 10.702 11.721 αR /(°) 10.678 11.732
aI 1.1298 0.933
aR 1.09 0.9 V13/pu 0.977 0.977 cosφR 0.93 0.96
cosφI 0.90 0.93
γ I/( °) 18 18 θ13/ (°) 11.069 11.094 NI 6 6
CT 5.16 5.09
Control strategy 6 PdR/pu 0.5 0.5 V11/pu 0.9809 1.00 VdR/pu 0.9076 2.4183
IdR/pu 0.5509 0.2068
aR 1 0.95 θ11/ (°) 10.755 10.948 VdI/pu 0.902 2.4162
αR /(°) 10.707 12.451
aI 1.05 1 V13/pu 0.9624 0.9945 cosφR 0.92 0.96
cosφI 0.89 0.92
γ I/( °) 18 18 θ13/ (°) 11.335 11.096 NI 9 8
CT 7.55 6.53
Tab.4  Second study of IEEE 118-bus system (HVDC link: From bus No. 11 to bus No. 13; Pbase=0.4081 pu)
Fig.4  Bus voltage profile for the case study of Table 5 with Control strategy 1 and Model 2
HVDC link specification Power flow solution
AC terminal buses HVDC variables
Spec. values Model 1 Model 2 ACSV Model 1 Model 2 DCSV Model 1 Model 2
Control strategy 1 PdR/pu 0.4 0.4 V3/pu 1.0187 1.0189 VdR/pu 1.004 2.3017
IdR/pu 0.3984 0.1738
VdI/pu 1.0 2.3 θ3/(°) 6.6208 6.6248 aR 1.0286 0.8517
aI 1.0776 0.8949
αR /(°) 5 5 V1/pu 1.0147 1.015 cosφR 0.95 0.98
cosφI 0.91 0.93
γ I/( °) 18 18 θ1/(°) 6.4066 6.4112 NI 7 7
CT 42.83 43.761
Control strategy 2 PdR/pu 0.4 0.4 V3/pu 1.0186 1.0194 VdR/pu 1.004 2.3017
IdR/pu 0.3984 0.1738
VdI/pu 1 2.3 θ3/(°) 6.6218 6.6178 αR/ (°) 9.8257 12.905
γ I/( °) 19.893 17.310
aR 1.04 0.87 V1/pu 1.0145 1.0167 cosφR 0.94 0.96
cosφI 0.90 0.94
aI 1.09 0.89 θ1/(°) 6.408 6.3986 NI 7 7
CT 45.35 45.4123
Control strategy 3 IdR/pu 0.4 0.4 V3/pu 1.0187 1.0179 VdR/pu 1.004 2.304
PdR/pu 0.4016 0.9216
VdI/pu 1 2.3 θ3/(°) 6.6206 6.5818 aR 1.0288 0.8691
aI 1.0777 0.9138
αR/ (°) 5 5 V1/pu 1.0147 1.0123 cosφR 0.95 0.96
cosφI 0.91 0.92
γI /(°) 18 18 θ1/(°) 6.4083 6.9945 NI 7 7
CT 42.31 43.6478
Control strategy 4 PdR/pu 0.4 0.4 V3/pu 1.017 1.0172 VdR/pu 1.004 2.3017
IdR/pu 0.3984 0.1738
VdI/pu 1 2.3 θ3/(°) 6.641 6.6457 aR 1.0303 0.8531
γ I/( °) 21.472 19.121
αR/ (°) 5 5 V1/pu 1.0158 1.0159 cosφR 0.95 0.98
cosφI 0.89 0.93
aI 1.1 0.9 θ1/(°) 6.4176 6.4239 NI 7 7
CT 44.327 43.73
Control strategy 5 PdR/pu 0.4 0.4 V3/pu 1.0194 1.0194 VdR/pu 1.004 2.3017
IdR/pu 0.3984 0.1738
VdI/pu 1 2.3 θ3/ (°) 6.611 6.6178 αR/ (°) 6.2125 9.5726
aI 1.0754 0.9209
aR 1.03 0.86 V1/pu 1.0167 1.0167 cosφR 0.95 0.97
cosφI 0.91 0.93
γ I/( °) 18 18 θ1/(°) 6.3904 6.3986 NI 7 7
CT 43.20 43.5601
Control strategy 6 PdR/pu 0.4 0.4 V3/pu 1.0186 1.0187 VdR/pu 1.0264 2.8311
IdR/pu 0.3897 0.1413
aR 1.08 1.08 θ3/ (°) 6.6228 6.6279 VdI/pu 1.0225 2.8297
αR/ (°) 14.424 15.884
aI 1.1 1.1 V1/pu 1.0146 1.015 cosφR 0.93 0.95
cosφI 0.91 0.93
γI/ (°) 18 18 θ1/(°) 6.4085 6.414 NI 8 8
CT 44.706 50.267
Tab.5  First study of IEEE 300-bus system (HVDC link: From bus No. 3 to bus No. 1; Pbase=0.2404 pu)
HVDC link specification/pu Power flow solution
AC terminal buses HVDC variables
Spec. values Model 1 Model 2 ACSV Model 1 Model 2 DCSV Model 1 Model 2
Control strategy 1 PdR/pu 0.4 0.4 V270/pu 1.008 1.0017 VdR/pu 1.004 2.4017
IdR/pu 0.3984 0.1666
VdI/pu 1.0 2.4 θ270/ (°) −11.41 −11.41 aR 1.047 0.9029
aI 1.0934 0.9467
αR/ (°) 5 5 V292/pu 1.00 1.00 cosφR 0.95 0.98
cosφI 0.91 0.93
γI /(°) 18 18 θ292/ (°) −10.69 −10.65 NI 7 7
CT 44.1922 42.0610
Control strategy 2 PdR/pu 0.4 0.4 V270/pu 1.0005 1.0031 VdR/pu 1.004 2.4017
IdR/pu 0.3984 0.1666
VdI/pu 1 2.4 θ270/ (°) −11.41 −11.66 αR/ (°) 10.174 12.514
γ I/( °) 15.673 21.844
aR 1.06 0.92 V292/pu 1.00 1.00 cosφR 0.94 0.96
cosφI 0.92 0.91
aI 1.08 0.97 θ292/(°) −10.68 −10.66 NI 10 7
CT 62.7693 43.072
Control strategy 3 IdR/pu 0.4 0.4 V270/pu 1.008 0.9963 VdR/pu 1.004 2.404
PdR/pu 0.4016 0.9616
VdI/pu 1 2.3 θ270/(°) −11.41 −11.42 aR 1.0935 0.9253
aI 1.004 0.964
αR/ (°) 5 5 V292/pu 1.00 1.00 cosφR 0.95 0.96
cosφI 0.91 0.92
γ I/( °) 18 18 θ292/(°) −10.65 −10.54 NI 7 7
CT 43.486 43.934
Control strategy 4 PdR/pu 0.4 0.4 V270/pu 1.008 1.0017 VdR/pu 1.004 2.4017
IdR/pu 0.3984 0.1666
VdI/pu 1 2.4 θ270/ (°) −11.41 −11.41 aR 1.047 0.9029
γ I/( °) 19.036 21.844
αR /(°) 5 5 V292/pu 1.00 1.00 cosφR 0.95 0.98
cosφI 0.90 0.91
aI 1.1 0.97 θ292/(°) −10.69 −10.65 NI 7 7
CT 43.6352 43.45
Control strategy 5 PdR/pu 0.4 0.4 V270/pu 1.0031 1.003 VdR/pu 1.004 2.4071
IdR/pu 0.3984 0.1666
VdI/pu 1 2.3 θ270/ (°) −11.42 −11.41 αR/ (°) 7.6894 9.0385
aI 1.0934 0.9436
aR 1.05 0.91 V292/pu 1.00 1.00 cosφR 0.95 0.97
cosφI 0.91 0.93
γ I/( °) 18 18 θ292/(°) −10.69 −10.66 NI 7 7
CT 44.0450 43.015
Control strategy 6 PdR/pu 0.4 0.4 V270/pu 1.002 1.0007 VdR/pu 1.0105 2.3446
IdR/pu 0.3958 0.1706
aR 1.08 0.91 θ270/ (°) −11.41 −11.41 VdI/pu 1.0066 2.3429
αR/ (°) 13.551 19.868
aI 1.1 0.93 V292/pu 1.00 1.00 cosφR 0.93 0.95
cosφI 0.91 0.93
γI /(°) 18 18 θ292/(°) −10.68 −10.65 NI 10 11
CT 59.5337 70.0756
Tab.6  Second study of IEEE 300-bus system (HVDC link: From bus No. 270 to bus No. 292; Pbase=0.3652 pu)
HVDC link specification Power flow solution
AC terminal buses HVDC variables
Spec. values Model 1 Model 2 ACSV Model 1 Model
2
DCSV Model 1 Model 2
Control strategy 1 PdR/pu 0.4 0.4 V199/pu 1.008 1.008 VdR/pu 0.9044 2.2018
IdR/pu 0.4423 0.1817
VdI/pu 0.9 2.2 θ199/ (°) −22.19 −22.18 aR 0.9556 0.83
aI 1.0025 0.87
αR /(°) 10 10 V197/pu 1.0159 1.0164 cosφR 0.93 0.96
cosφI 0.88 0.91
γI /(°) 22 22 θ197/ (°) −22.63 −22.62 NI 7 8
CT 42.9965 49.7154
Control strategy 2 PdR/pu 0.4 0.4 V199/pu 1.00 1.00 VdR/pu 0.9044 2.2018
IdR/pu 0.4423 0.1817
VdI/pu 0.9 2.2 θ199/(°) −22.15 −22.13 αR/ (°) 8.819 9.6773
γ I/( °) 21.44 20.563
aR 0.96 0.84 V197/pu 1.0124 1.0157 cosφR 0.94 0.97
cosφI 0.88 0.92
aI 1 0.87 θ197/(°) −22.64 −22.63 NI 9 7
CT 55.1537 42.9122
Control strategy 3 IdR/pu 0.4 0.4 V199/pu 1.000 1.008 VdR/pu 0.9040 2.2043
PdR/pu 0.3616 0.8816
VdI/pu 0.9 2.2 θ199/(°) −22.65 −22.47 aR 0.9510 0.8505
aI 0.9976 0.8976
αR /(°) 10 10 V197/pu 1.0162 1.0127 cosφR 0.94 0.95
cosφI 0.88 0.89
γI /(°) 22 22 θ197/(°) −22.65 −22.34 NI 7 7
CT 43.62 42.35
Control strategy 4 PdR/pu 0.4 0.4 V199/pu 1.000 1.000 VdR/pu 0.9044 2.2018
IdR/pu 0.4423 0.1817
VdI/pu 0.9 2.2 θ199/(°) −22.15 −22.13 aR 0.9633 0.8408
γ I/( °) 21.625 20.653
αR/ (°) 10 10 V197/pu 1.0157 1.0157 cosφR 0.93 0.96
cosφI 0.88 0.92
aI 1.0 0.87 θ197/(°) −22.15 −22.63 NI 7 7
CT 42.4364 41.94
Control strategy 5 PdR/pu 0.4 0.4 V199/pu 1.008 1.008 VdR/pu 0.9044 2.2018
IdR/pu 0.4423 0.1817
VdI/pu 0.9 2.2 θ199/(°) −22.18 −22.17 αR/ (°) 7.839 8.218
aI 0.991 0.97
aR 0.95 0.83 V197/pu 1.0193 1.0193 cosφR 0.94 0.91
cosφI 0.83 0.93
γ I/( °) 22 22 θ197/(°) −22.63 −22.62 NI 7 7
CT 38.5849 38.889
Control strategy 6 PdR/pu 0.4 0.4 V199/pu 1.000 1.000 VdR/pu 0.8985 2.3137
IdR/pu 0.4452 0.1729
aR 0.95 0.89 θ199/(°) −22.15 −22.14 VdI/pu 0.8941 2.312
αR/ (°) 6.947 12.51
aI 1 0.93 V197/pu 1.00123 1.0127 cosφR 0.94 0.96
cosφI 0.88 0.90
γ I/( °) 22 22 θ197/(°) −22.64 −22.63 NI 9 7
CT 52.7786 40.6926
Tab.7  Third study of IEEE 300-bus system (HVDC link: From bus No. 199 to bus No. 197; Pbase=0.3213 pu)
Sbase Base MVA
Vac? base,Iac?base,Zac? base AC base voltage, AC base current and AC base impedance
Vdc? base,Idc?base,Zdc? base DC base voltage, DC base current and DC base impedance
nb Number of bridges
Xc Commutating reactance
Vd, Id DC voltage and current
φR, φI Power factor angles at the rectifier and inverter ends (Transformer’s primary side)
αR, γI Firing angle of the rectifier and extinction angle of the inverter
VdR ,VdI DC voltages at the rectifier and inverter sides
aR, aI Converter transformer tap ratios on the rectifier and inverter sides
Rd Resistance of DC link
Vi θi AC bus voltage magnitude (rms) and phase angle at ith bus
Vj θj AC bus voltage magnitude (rms) and phase angle at jth bus
VdoR ,VdoI No load direct voltages at the rectifier and inverter sides
PdR ,QdR Active and reactive powers at the rectifier side
PdI ,QdI Active and reactive powers at the inverter side
  
Convention 1 Convention 2
Vdc? base=k Vac?base where k= 32π nb Vdc? base=V ac?base
Idc? base=3kIac? base Idc? base=3Iac? base
Zdc? base=k 2Z ac?base Zdc? base=Z ac?base
Rdc? base=3π nbX c?base Rdc? base=X c?base
  Table A1 Different base values for DC system
1 J Arrillaga, N R Watson. Computer Modelling of Electrical Power Systems. 2nd ed. Sinapore: John Wiley & Sons Ltd, 2003
2 P Kundur. Power System Stability and Control. New York: Tata McGraw-Hill Publishing Co. Ltd., 2007
3 X F Wang, Y H Song, M Irving. Modern Power Systems Analysis. New York: Springer, 2008
4 E Acha, B Kazemtabrizi, L M Castro. A new VSC-HVDC model for power flows using the Newton-Raphson method. IEEE Transactions on Power Systems, 2013, 28(3): 2602–2612
https://doi.org/10.1109/TPWRS.2012.2236109
5 C Angeles-Camacho, O L Tortelli, E Acha, C R Fuerte-Esquivel. Inclusion of a high voltage DC-voltage source converter model in a Newton-Raphson power flow algorithm. IEE Proceedings-Generation, Transmission and Distribution, 2003, 150(6): 691–696
https://doi.org/10.1049/ip-gtd:20030737
6 X P Zhang. Multiterminal voltage-sourced converter-based HVDC models for power flow analysis. IEEE Transactions on Power Systems, 2004, 19(4): 1877–1884
https://doi.org/10.1109/TPWRS.2004.836250
7 D A Braunagel, L A Kraft, J L Whysong. Inclusion of DC converter and transmission equations directly in a Newton power flow. IEEE Transactions on Power Apparatus and Systems, 1976, PAS-95(1): 76–88
https://doi.org/10.1109/T-PAS.1976.32079
8 J Arritlaga, P Bodger. AC-DC load flows with realistic representation of the converter plant. Proceedings of the Institution of Electrical Engineers, 1978, 125(1): 41–46
https://doi.org/10.1049/piee.1978.0010
9 M M El-marsafawy, R M Mathur. A new, fast technique for load flow solution of integrated multi terminal DC/AC systems. IEEE Transactions on Power Apparatus and Systems, 1980, PAS-99(1): 246–255
https://doi.org/10.1109/TPAS.1980.319634
10 J Arritlaga, B J Harker, K S Turner. Clarifying an ambiguity in recent AC-DC load flow formulations. IEE Proceedings C Generation, Transmission and Distribution, 1980, 127(5): 324–325
https://doi.org/10.1049/ip-c.1980.0049
11 T Smed, G Andersson, G B Sheble, L L Grigsby. A new approach to AC/DC power flow. IEEE Transactions on Power Systems, 1991, 6(3): 1238–1244
https://doi.org/10.1109/59.119272
12 J Reeve, G Fahny, B Stott. Versatile load flow method for multi terminal HVDC systems. IEEE Transactions on Power Apparatus and Systems, 1977, PAS-96(3): 925–933
https://doi.org/10.1109/T-PAS.1977.32405
13 H Fudeh, C M Ong. A simple and efficient AC-DC load flow method for multiterminal DC systems. IEEE Transactions on Power Apparatus and Systems, 1981, PAS-100(11): 4389–4396
https://doi.org/10.1109/TPAS.1981.316850
14 M E El-Hawary, S T Ibrahim. A new approach to AC-DC load flow analysis. Electric Power Research, 1995, 33(3): 193–200
https://doi.org/10.1016/0378-7796(95)00945-E
15 J Beerten, S Cole, R Belmans. Generalized steady-state VSC MTDC model for sequential AC/DC power flow algorithms. IEEE Transactions on Power Systems, 2012, 27(2): 821–829
https://doi.org/10.1109/TPWRS.2011.2177867\
16 UW Electrical Engineering. Power systems test case archive. 2014-10-02
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed