Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2016, Vol. 10 Issue (1) : 29-36    https://doi.org/10.1007/s11708-015-0388-0
RESEARCH ARTICLE
Water film coated composite liquid metal marble and its fluidic impact dynamics phenomenon
Yujie DING1,Jing LIU2,*()
1. Key Lab of Cryogenics and Beijing Key Lab of CryoBiomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
2. Key Lab of Cryogenics and Beijing Key Lab of CryoBiomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190; Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
 Download: PDF(1274 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A composite liquid metal marble made of metal droplet coated with water film was proposed and its impact dynamics phenomenon was disclosed. After encapsulating the liquid metal into water droplets, the fabricated liquid marble successfully avoided being oxygenized by the metal fluid and thus significantly improved its many physical capabilities such as surface tension modification and shape control. The striking behaviors of the composite liquid metal marbles on a substrate at room temperature were experimentally investigated in a high speed imaging way. It was disclosed that such marbles could disintegrate, merge, and even rebound when impacting the substrate, unlike the existing dynamic fluidic behaviors of liquid marble or metal droplet. The mechanisms lying behind these features were preliminarily interpreted. This fundamental finding raised profound multiphase fluid mechanics for understanding the complex liquid composite which was also critical for a variety of practical applications such as liquid metal jet cooling, inkjet printed electronics, 3D printing or metal particle fabrication etc.

Keywords liquid metal marble      metallic droplet      composite fluid      impact dynamics      multiphase fluid mechanics     
Corresponding Author(s): Jing LIU   
Just Accepted Date: 02 November 2015   Online First Date: 04 January 2016    Issue Date: 29 February 2016
 Cite this article:   
Yujie DING,Jing LIU. Water film coated composite liquid metal marble and its fluidic impact dynamics phenomenon[J]. Front. Energy, 2016, 10(1): 29-36.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-015-0388-0
https://academic.hep.com.cn/fie/EN/Y2016/V10/I1/29
Fig.1  Exhibition and preparation of liquid metal droplets at different conditions

(a) Liquid metal droplet covered by oxide layer in the air; (b) liquid metal droplet coated with water; (c) a drop of water was put at the needle point; (d) contact the liquid metal droplet and water together; (e) liquid metal was pumped into the water droplet to form a composite liquid metal marble

Fig.2  Dynamic impact processes of metal droplets at a speed of 1.90 m/s

(a) 4.77 mm liquid metal droplet; (b) 5.38 mm composite liquid metal marble; (c) side view of (a); (d) side view of (b)

Fig.3  Dynamic impact process of 5.38 mm composite liquid metal marble at a speed of 2.95 m/s
Fig.4  Dynamic impact processes of metal droplets at various impact velocities

(a) At a velocity of 1.90 m/s and a diameter of 2.61 mm; (b) at a velocity of 1.27 m/s and a diameter of 2.75 mm; (c) at a velocity of 1.90 m/s and a diameter of 2.75 mm; (d) at a velocity of 2.95 m/s and a diameter of 2.75 mm

Fig.5  Variation of droplets diameter with dimensionless time for various impact velocities

(a) At a velocity of 1.90 m/s and a diameter of 2.61 mm; (b) at a velocity of 1.27 m/s and a diameter of 2.75 mm; (c) at a velocity of 1.90 m/s and a diameter of 2.75 mm; (d) at a velocity of 2.95 m/s and a diameter of 2.75 mm

1 Aussillous  P, Quéré  D. Liquid marbles. Nature, 2001, 411(6840): 924–927
https://doi.org/10.1038/35082026
2 Aussillous  P, Quéré  D. Properties of liquid marbles. Proceedings of the Royal Society A, 2006, 462(2067): 973–999
https://doi.org/10.1098/rspa.2005.1581
3 Bormashenko  E, Musin  A. Revealing of water surface pollution with liquid marbles. Applied Surface Science, 2009, 255(12): 6429–6431
https://doi.org/10.1016/j.apsusc.2009.02.027
4 Tian  J, Arbatan  T, Li  X, Shen  W. Liquid marble for gas sensing. Chemical Communications, 2010, 46(26): 4734–4736
https://doi.org/10.1039/c001317j
5 Arbatan  T, Li  L, Tian  J, Shen  W. Liquid marbles as micro-bioreactors for rapid blood typing. Advanced Healthcare Materials, 2012, 1(1): 80–83
https://doi.org/10.1002/adhm.201100016
6 Gao  L, McCarthy  T J. Ionic liquid marbles. Langmuir, 2007, 23(21): 10445–10447
https://doi.org/10.1021/la701901b
7 Dandan  M, Erbil  H Y. Evaporation rate of graphite liquid marbles: comparison with water droplets. Langmuir, 2009, 25(14): 8362–8367
https://doi.org/10.1021/la900729d
8 Sen  P, Kim  C J. Microscale liquid-metal switches: a review. IEEE Transactions on Industrial Electronics, 2009, 56(4): 1314–1330
https://doi.org/10.1109/TIE.2008.2006954
9 Ma  K Q, Liu  J. Liquid metal cooling in thermal management of computer chip. Frontiers of Energy and Power Engineering in China, 2007, 1(4): 384–402
https://doi.org/10.1007/s11708-007-0057-3
10 Gao  Y, Li  H, Liu  J. Direct writing of flexible electronics through room temperature liquid metal ink. PloS One, 2012, 7(9): e45485 (10 pages)
11 Jin  C, Zhang  J, Li  X, Yang  X, Li  J, Liu  J. Injectable 3-D fabrication of medical electronics at the target biological tissues. Scientific Reports, 2013, 3: 3442 (7 pages)
12 Scharmann  F, Cherkashinin  G, Breternitz  V, Knedlik  C, Hartung  G, Weber  T, Schaefer  J A. Viscosity effect on GaInSn studied by XPS. Surface and Interface Analysis, 2004, 36(8): 981–985
https://doi.org/10.1002/sia.1817
13 Sivan  V, Tang  S Y, O'Mullane  A P, Petersen  P, Eshtiaghi  N, Kalantar-zadeh  K, Mitchell  A. Liquid metal marbles. Advanced Functional Materials, 2013, 23(2): 144–152
https://doi.org/10.1002/adfm.201200837
14 Morley  N B, Burris  J, Cadwallader  L C, Nornberg  M D. GaInSn usage in the research laboratory. Review of Scientific Instruments, 2008, 79(5): 056107
https://doi.org/10.1063/1.2930813
15 Li  H, Mei  S, Wang  L, Gao  Y, Liu  J. Splashing phenomena of room temperature liquid metal droplet striking on the pool of the same liquid under ambient air environment. International Journal of Heat and Fluid Flow, 2014, 47: 1–8
https://doi.org/10.1016/j.ijheatfluidflow.2014.02.002
16 Zrnic  D, Swatik  D S. On the resistivity and surface tension of the eutectic alloy of gallium and indium. Journal of the Less Common Metals, 1969, 18(1): 67–68
https://doi.org/10.1016/0022-5088(69)90121-0
17 Sheng  L, Zhang  J, Liu  J. Diverse transformation effects of liquid metal among different morphologies. Advanced Materials, 2014, 26(34): 6036–6042
https://doi.org/10.1002/adma.201400843
18 Pasandideh-Fard  M, Bhola  R, Chandra  S, Mostaghimi  J. Deposition of tin droplets on a steel plate: simulations and experiments. International Journal of Heat and Mass Transfer, 1998, 41(19): 2929–2945
https://doi.org/10.1016/S0017-9310(98)00023-4
19 Chandra  S, Avedisian  C T. On the collision of a droplet with a solid-surface. Proceedings: Mathematical and Physical Sciences, 1991, 432(1884): 13–41
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed