Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2017, Vol. 11 Issue (4) : 437-451    https://doi.org/10.1007/s11708-017-0509-z
REVIEW ARTICLE
Solar fuel from photo-thermal catalytic reactions with spectrum-selectivity: a review
Sanli TANG, Jie SUN(), Hui HONG, Qibin LIU
Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
 Download: PDF(609 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Solar fuel is one of the ideal energy sources in the future. The synergy of photo and thermal effects leads to a new approach to higher solar fuel production under relatively mild conditions. This paper reviews different approaches for solar fuel production from spectrum-selective photo-thermal synergetic catalysis. The review begins with the meaning of synergetic effects, and the mechanisms of spectrum-selectivity and photo-thermal catalysis. Then, from a technical perspective, a number of experimental or theoretical works are sorted by the chemical reactions and the sacrificial reagents applied. In addition, these works are summarized and tabulated based on the operating conditions, spectrum-selectivity, materials, and productivity. A discussion is finally presented concerning future development of photo-thermal catalytic reactions with spectrum-selectivity.

Keywords photo-thermal catalysis      spectrum-selectivity      solar fuel      full-spectrum     
Corresponding Author(s): Jie SUN   
Just Accepted Date: 30 October 2017   Online First Date: 29 November 2017    Issue Date: 14 December 2017
 Cite this article:   
Sanli TANG,Jie SUN,Hui HONG, et al. Solar fuel from photo-thermal catalytic reactions with spectrum-selectivity: a review[J]. Front. Energy, 2017, 11(4): 437-451.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-017-0509-z
https://academic.hep.com.cn/fie/EN/Y2017/V11/I4/437
Fig.1  Photo-thermal catalytic reactionswith spectrum-selectivity
Fig.2  LSPR absorption of around550 nm for catalyst films
Fig.3  Schematic of the prototypereactor with measurement of the time dependent graph
Fig.4  Testing the properties ofPt/TiO2 for photo-thermal synergy
Fig.5  Testing the properties ofnoble metal loaded SBA-15
Fig.6  Testing the properties ofRu/TiO(2−x)Nx
Fig.7  Absorbance
Fig.8  Test of photocatalytic activityin different conditions
Fig.9  Hydrogen production fromsunlight through the SO2/sulfuric acid cycle
Fig.10  SEM images
Reference Catalyst Preparation methods Light absorption Light Source and intensity Temperature (°C)/Pressure (atm) Reactants/Reactions Yields
Liu et al. [10] 1 wt.% Pt/TiO2 Photo-deposited 300 W Xenon lamp
UV-Vis-IR
54/– 50 mL of 10 vol.% methanol aqueoussolution H2, 22 mmol/(gcat·h)
Mangrulkar et al.
[11]
Nanocomposite of Zn/ZnO and 10 mgcarbonic anhydrase Directly mixed Before 400 nm and a peak around 800nm two 200 W tungsten
filament lamps
70–80/– 100 mL of CO2 saturated water H2, 1.238 mmol/(gcat·h)
Nikitenko et al. [17] Ti@TiO2 Primary passivation of Ti nanopowderand crystallization of TiO2 nanoparticles atthe surface of metallic Ti core. >80% from UV to NIR region 100 W halogen lamp
500 W·m2
60/– 10 mL of 25 vol. % methanol aqueoussolution H2, 0.468 mmol/(gcat·h)
Liang et al. [36] Pt/TiO2 Photo-deposited Before 400 nm 300 W Xenon lamp
6500 W·m2
55/– 100 mL aqueous solutions containing0.02 mL ethylene glycol H2, 3.795 mmol/(gcat·h)
Gao et al. [48] SiO2/Ag@TiO2 SiO2/Ag: Stöbermethod TiO2 coating: sol-gel method Full spectrum Real sun, 1 sun 100/1 300 mL of 20 vol.% glycerol with 10.5g of sodium chloride H2, 13.3 mmol/(gcat·h)
Song et al. [51] Non plasmonic Pt/TiO2 In situ photodecomposition >70% (<400 nm) = 70% (400–800nm) Purple LED light 90/– 120 mL of 10 vol.% HCOOH aqueous solution H2, 714.3 mmol/(gcat·h)
Puangpetch et al.
[53]
0.5 wt.% Pt-loaded SrTiO3 Mesoporous-assembled Before 450 nm 176 W Hg lamps 45/– 500 mL of 50 vol.% methanol aqueoussolution H2, 500 mmol/(gcat·h)
500 mL of 1 mol/L Na2SO3 aqueous solution H2, 170 mmol/(gcat·h)
Shimura et al. [55] Pt(0.1)/NaTaO3:La(2%) Solid-state reaction method; impreganationmethod for Pt loading Before 320 nm 300W Xenon lamp 140/1 10% CH4, 1%H2O with Ar carrier gas with total flow rateof 50 mL/min H2, 270 mmol/(gcat·h)
Shimura et al. [56] Pt(7%)/Ga2O3 Homogeneous precipitation for Ga2O3, impreganation method forPt loading 300 W Xenon lamp 71/– Mixture of water vapor and methanewith total flow rate of 40 mL/min H2, 50.3 mmol/(gcat·h)
CO, 3.82 mmol/(gcat·h)
and hydrocarbon<1 μmol/(gcat?h)
Yuliati et al. [59] b-Ga2O3 Commercial products pretreated at1073 K in 13.3 kPa oxygen 300 W Xenon lamp 400/– 400 mmol of 1:1 (molar ratio) CH4 and CO2 H2, 10.53 mmol/(gcat?h)
Liu et al. [60] Rh-Au/SBA-15 Au deposition: precipitation method;Rude position: impregnation method Before 600 nm 300 W Xenon lamp, 3000 W/m2 500/– 1:1 CH4:CO2 with total flow rate of 20 mL/min H2: 414 mmol/(gcat?h)
CO: 408 mmol/(gcat?s)
Han et al. [61] Black TiO2 on light diffuse-reflection surface Hydrogenation Peak before 400 nm, relatively strongbefore 800 nm AM 1.5G, 1000 W/m2, UV light filtered 650/– 1:1 CH4: CO2 with total flow rate of 10 mL/min H2, 129 mmol/(gcat?h)
CO, 370 mmol/(gcat?h)
Ghuman et al. [65] Hydroxylated In2O3−x(OH)y Temperature controlled decompositionof In(OH)3 >90%(<400 nm) = 20% (400–800 nm) 300W Xe lamp 2200 W/m2 150/3 1:1 CO2: H2 with total flow rate of 6 mL/min CO,15 mmol/(gcat?h)
Hoch et al. [66] Evenly coated In2O3−x(OH)y/SiNW film Metal assisted chemical etching fornanowires >95% (full spectrum) 300 W Xe lamp ~20 kW/m2 150/2 12 mL of 1:1 CO2 and H2 CO, 22 mmol/(gcat?h)
Jia et al. [67] Ru/SiNW Metalassistedchemical etching fornanowires >70% before 1100 nm,>40% before 2500 nm Xe lamp
25 kW/m2
160/1.84 1.8 mL of 4:1 H2 and CO2 CO, 4.9 mmol/(gcat?h)
Lin et al. [62] Ru/TiO2 Facile impregnation reduction method. Before 600 nm UV light irradiation from a Xenonlamp 200/1 0.5 vol.% CO, 20.0 vol. % H2 and balance He, with total flow rate of 100 mL/min (CO conversion 100%)
Lin et al. [63] Ni/TiO2 Facile impregnation reduction method Before 400 nm 250/1 1 vol.% CO, 39 vol.% H2, and balance gas He with total flow rate of 100 mL/min (CO conversion 100%)
Lin et al. [22] Ru/TiO(2−x)Nx Sol-gel method Full spectrum Visible light 190/1 0.6 vol. % CO2, 2.4 vol.% H2, and t balance gas He withtotal flow rate of 60 mL/min 20 (turned CO over per Ru atom perhour)
Upadhye et al. [68] Au-TiO2(DP) Deposition-precipitation method >65% before 700 nm Visible light 5216 W/m2 400/7.49 2:1 H2 andCO2 with total flow rate of 15 mL/min CO2 reduction2.663 mmol/(gcat?h)
Tab.1  Summary of photo-thermalcatalytic reactions with spectrum-selectivity and sacrificial reagents
Reference Photothermal catalysts Light absorption Light source and intensity Temperature (°C)/ Pressure(atm) Reactants or reactions Yields
Hisatomi et al. [72] Rh2−yCryO3 loadedGa2O3:Zn 300 W Xe lamp (200–500 nm) 72/– 140 mL of distilled water H2, 387 mmol/(gcat?h); O2, ~194 mmol/(gcat?h)
Wang et al. [76] m-WO3 treatedin H2 at 250°C UV-Vis light 300 W Xenon lamp (>420 nm) 250/– 120 mL of H2O and CO2 mixture CH4 2.083 mmol/(gcat?h), CH3OH 0.208 mmol/(gcat?h)
Wang et al. [76] m-WO3 treatedin H2 at 550°C UV-Vis light 300 W Xenon lamp (>420 nm) 250/– 120 mL of H2O and CO2 mixture CH4 0.417 mmol/(gcat?h), CH3OH 0.83 mmol/(gcat?h)
Chanmanee et al. [79] 5%Co/TiO2 4 surrounding 250 W Hg lamps 200/6.1 p(H2O)/p(CO2) = 0.6, with total flow rate of 40 mL/min O2 40 mg/(gcat?h), hydrocarbon10 mg/(gcat?h), H2 2 mg/(gcat?h)
Docao et al. [81] Cu(1.0)/TiO2 Before 420 nm AM 1.5 G solar simulator, 3 suns Room temperature for water splitting,140 for reduction of oxide Water steam with N2 carrier gas 4 mmol/(cm2?h)
(0.25 g catalyst, irradiated area=6 cm2)
Tab.2  Summary of photo-thermalcatalytic reactions with spectrum-selectivity but without sacrificialreagents
1 Harvey P R, Rudham  R, Ward S. Photocatalytic oxidation of liquid 2-propanol by titanium dioxide. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1983, 79(6): 1381–1390
62 Lin X, Yang  K, Si R,  Chen X, Dai  W, Fu X. Photo-assisted catalytic methanation of CO in H2-rich stream over Ru/TiO2. Applied Catalysis B: Environmental, 2014, 147: 585–591
https://doi.org/10.1016/j.apcatb.2013.09.035
2 Okamoto K, Yamamoto  Y, Tanaka H,  Itaya A. Kinetics of heterogeneous photocatalytic decomposition of phenol over anatase TiO2 powder. Bulletin of the Chemical Society of Japan, 1985, 58(7): 2023–2028
https://doi.org/10.1246/bcsj.58.2023
3 Chen L C, Chou  T C. Kinetics of photodecolorization of methyl-orange using titanium-dioxide as catalyst. Industrial & Engineering Chemistry Research, 1993, 32(7): 1520–1527
https://doi.org/10.1021/ie00019a028
4 Vorontsov A V,  Stoyanova I V,  Kozlov D V,  Simagina V I,  Savinov E N. Kinetics of the photocatalytic oxidation of gaseous acetone over platinized titanium dioxide. Journal of Catalysis, 2000, 189(2): 360–369
https://doi.org/10.1006/jcat.1999.2717
5 Yamazoe S, Hitomi  Y, Shishido T,  Tanaka T. Kinetic study of photo-oxidation of NH3 over TiO2. Applied Catalysis B: Environmental, 2008, 82(1–2): 67–76
https://doi.org/10.1016/j.apcatb.2007.12.023
63 Lin X, Lin  L, Huang K,  Chen X, Dai  W, Fu X. CO methanation promoted by UV irradiation over Ni/TiO2. Applied Catalysis B: Environmental, 2015, 168–169: 416–422
https://doi.org/10.1016/j.apcatb.2014.12.049
64 Hoch L B, Wood  T E, O’Brien  P G, Liao  K, Reyes L M,  Mims C A,  Ozin G A. The rational design of a single-component photocatalyst for gas-phase CO2 reduction using both UV and visible light. Advancement of Science, 2014, 1(1): 1400013
65 Ghuman K K, Wood  T E, Hoch  L B, Mims  C A, Ozin  G A, Singh  C V. Illuminating CO2 reduction on frustrated Lewis pair surfaces: investigating the role of surface hydroxides and oxygen vacancies on nanocrystalline In2O3−x(OH)y. Physical Chemistry Chemical Physics, 2015, 17(22): 14623–14635
https://doi.org/10.1039/C5CP02613J
66 Hoch L B, O’Brien  P G, Jelle  A, Sandhel A,  Perovic D D,  Mims C A,  Ozin G A. Nanostructured indium oxide coated silicon nanowire arrays: a hybrid photothermal/photochemical approach to solar fuels. ACS Nano, 2016, 10(9): 9017–9025
https://doi.org/10.1021/acsnano.6b05416
67 Jia J, O'Brien  P G, He  L, Qiao Q,  Fei T, Reyes  L M, Burrow  T E, Dong  Y, Liao K,  Varela M,  Pennycook S J,  Hmadeh M,  Helmy A S,  Kherani N P,  Perovic D D,  Ozin G A. Visible and near-infrared photothermal catalyzed hydrogenation of gaseous CO2 over nanostructured Pd@Nb2O5. Advanced Science, 2016, 3(10): 1600189
68 Upadhye A A, Ro  I, Zeng X,  Kim H J,  Tejedor I,  Anderson M A,  Dumesic J A,  Huber G W. Plasmon-enhanced reverse water gas shift reaction over oxide supported Au catalysts. Catalysis Science & Technology, 2015, 5(5): 2590–2601
https://doi.org/10.1039/C4CY01183J
69 Tahir M, Amin  N S. Performance analysis of nanostructured NiO-In2O3/TiO2 catalyst for CO2 photoreduction with H2 in a monolith photoreactor. Chemical Engineering Journal, 2016, 285: 635–649
https://doi.org/10.1016/j.cej.2015.10.033
70 O'Brien P G, Sandhel  A, Wood T E,  Jelle A A,  Hoch L B,  Perovic D D,  Mims C A,  Ozin G A. Photomethanation of gaseous CO2 over Ru/silicon nanowire catalysts with visible and near-infrared photons. Advanced Science, 2014, 1(1): 1400001
71 Hisatomi T, Maeda  K, Takanabe K,  Kubota J,  Domen K. Aspects of the water splitting mechanism on (Ga1−xZnx)(N1−xOx) photocatalyst modified with Rh2−yCryO3 cocatalyst. Journal of Physical Chemistry C, 2009, 113(51): 21458–21466
https://doi.org/10.1021/jp9079662
72 Hisatomi T, Miyazaki  K, Takanabe K,  Maeda K,  Kubota J,  Sakata Y,  Domen K. Isotopic and kinetic assessment of photocatalytic water splitting on Zn-added Ga2O3 photocatalyst loaded with Rh2−yCryO3 cocatalyst. Chemical Physics Letters, 2010, 486(4–6): 144–146
https://doi.org/10.1016/j.cplett.2010.01.006
73 Hou X, Hou  H J M. Roles of manganese in photosystem II dynamics to irradiations and temperatures. Frontiers in Biology, 2013, 8(3): 312–322
https://doi.org/10.1007/s11515-012-1214-2
74 Zhang F, Cady  C W, Brudvig  G W, Hou  H J M. Thermal stability of [Mn(III)(O)2Mn(IV)(H2O)2(Terpy)2](NO3)3 (Terpy= 2,2′:6′,2″-terpyridine) in aqueous solution. Inorganica Chimica Acta, 2011, 366(1): 128–133
https://doi.org/10.1016/j.ica.2010.10.021
75 Hou H J M. Hydrogen energy production using manganese/semiconductor system inspired by photosynthesis. International Journal of Hydrogen Energy, 2017, 42(12): 8530–8538
https://doi.org/10.1016/j.ijhydene.2017.01.100
76 Wang L, Wang  Y, Cheng Y,  Liu Z, Guo  Q, Ha M N,  Zhao Z. Hydrogen-treated mesoporous WO3 as a reducing agent of CO2 to fuels (CH4 and CH3OH) with enhanced photothermal catalytic performance. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(14): 5314–5322
https://doi.org/10.1039/C5TA10180H
77 Zheng Z J, He  Y, He Y L,  Wang K. Numerical optimization of catalyst configurations in a solar parabolic trough receiver-reactor with non-uniform heat flux. Solar Energy, 2015, 122: 113–125
https://doi.org/10.1016/j.solener.2015.08.012
78 Han S, Chen  Y, Abanades S,  Zhang Z. Improving photoreduction of CO2 with water to CH4 in a novel concentrated solar reactor. Journal of Energy Chemistry, 2017, 26(4): 743–749
https://doi.org/10.1016/j.jechem.2017.03.006
79 Chanmanee W, Islam  M F, Dennis  B H, MacDonnell  F M. Solar photothermochemical alkane reverse combustion. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(10): 2579–2584
https://doi.org/10.1073/pnas.1516945113
80 T-Raissi A, Muradov  N, Huang C,  Adebiyi O. Hydrogen from solar via light-assisted high-temperature water splitting cycles. Journal of Solar Energy Engineering, Transactions of the ASME, 2007, 129(2):184–189
81 Docao S, Koirala  A R, Kim  M G, Hwang  I C, Song  M K, Yoon  K B. Solar photochemical-thermal water splitting at 140°C with Cu-loaded TiO2. Energy & Environmental Science, 2017, 10(2): 628–640
https://doi.org/10.1039/C6EE02974D
82 Schwartzenberg K C,  Hamilton J W J,  Lucid A K,  Weitz E,  Notestein J,  Nolan M,  Byrne J A,  Gray K A. Multifunctional photo/thermal catalysts for the reduction of carbon dioxide. Catalysis Today, 2017, 280(Part 1): 65–73
https://doi.org/10.1016/j.cattod.2016.06.002
6 Hussein F H, Rudham  R. Photocatalytic dehydrogenation of liquid alcohols by platinized anatase. Journal of the Chemical Society, Faraday Transactions I, 1987, 83(5): 1631–1639
https://doi.org/10.1039/f19878301631
7 Naito S. Study of photocatalytic reaction of methanol with water over Rh-loaded, and Pd-loaded TiO2 catalysts––the role of added alkali-metal cations. Canadian Journal of Chemistry-Revue Canadienne De Chimie, 1986, 64(9): 1795–1799
https://doi.org/10.1139/v86-295
8 Karakitsou K, Verykios  X E. Definition of the intrinsic rate of photocatalytic cleavage of water over Pt-RuO2/TiO2 catalysts. Journal of Catalysis, 1995, 152(2): 360–367
https://doi.org/10.1006/jcat.1995.1090
9 Zhang J, Tang  Y L, Hu  G, Gao B L,  Gan Z X,  Chu P K. Carbon nanodots-based nanocomposites with enhanced photocatalytic performance and photothermal effects. Applied Physics Letters, 2017, 111(1): 013904
https://doi.org/10.1063/1.4992132
10 Liu X, Ye  L, Ma Z,  Han C, Wang  L, Jia Z,  Su F, Xie  H. Photothermal effect of infrared light to enhance solar catalytic hydrogen generation. Catalysis Communications, 2017, 102: 13–16
https://doi.org/10.1016/j.catcom.2017.08.014
11 Mangrulkar P A,  Chilkalwar A A,  Kotkondawar A V,  Manwar N R,  Antony P S,  Hippargi G,  Labhsetwar N,  Trachtenberg M C,  Rayalu S S. Plasmonic nanostructured Zn/ZnO composite enhances carbonic anhydrase driven photocatalytic hydrogen generation. Journal of CO2 Utilization, 2017, 17: 207–212
12 Panayotov D A,  Morris J R. Surface chemistry of Au/TiO2: thermally and photolytically activated reactions. Surface Science Reports, 2016, 71(1): 77–271
https://doi.org/10.1016/j.surfrep.2016.01.002
13 Wentworth W E,  Batten C F,  Wei G. The photo-assisted thermal decomposition of methanol and isopropanol in a fluidized bed. Energy, 1987, 12(3–4): 319–331
https://doi.org/10.1016/0360-5442(87)90091-0
14 Yu S, Zhang  T, Xie Y,  Wang Q, Gao  X, Zhang R,  Zhang Y,  Su H. Synthesis and characterization of iron-based catalyst on mesoporous titania for photo-thermal F-T synthesis. International Journal of Hydrogen Energy, 2015, 40(1): 870–877
https://doi.org/10.1016/j.ijhydene.2014.10.121
15 Verma R, Samdarshi  S K, Bojja  S, Paul S,  Choudhury B. A novel thermophotocatalyst of mixed-phase cerium oxide (CeO2/Ce2O3) homocomposite nanostructure: role of interface and oxygen vacancies. Solar Energy Materials and Solar Cells, 2015, 141: 414–422
https://doi.org/10.1016/j.solmat.2015.06.027
16 Huang K, Lin  L, Yang K,  Dai W, Chen  X, Fu X. Promotion effect of ultraviolet light on NO+ CO reaction over Pt/TiO2 and Pt/CeO2-TiO2 catalysts. Applied Catalysis B: Environmental, 2015, 179: 395–406
https://doi.org/10.1016/j.apcatb.2015.05.044
17 Nikitenko S I,  Chave T,  Cau C, Brau  H P, Flaud  V. Photothermal hydrogen production using noble-metal-free Ti@TiO2 core–shell nanoparticles under Visible–NIR light irradiation. ACS Catalysis, 2015, 5(8): 4790–4795
https://doi.org/10.1021/acscatal.5b01401
18 Ren J, Ouyang  S, Xu H,  Meng X, Wang  T, Wang D,  Ye J. Targeting activation of CO2 and H2 over Ru-loaded ultrathin layered double hydroxides to achieve efficient photothermal CO2 methanation in flow-type system. Advanced Energy Materials, 2017, 7(5): 1601657
19 Kho E T, Tan  T H, Lovell  E, Wong R J,  Scott J,  Amal R. A review on photo-thermal catalytic conversion of carbon dioxide. Green Energy & Environment, 2017, 2(3): 204–217
https://doi.org/10.1016/j.gee.2017.06.003
20 Delasa H, Rosales  B S. Photocatalytic Technologies. Beijing: Science Press, 2010
21 Li Y, Wang  C, Zheng H,  Wan F, Yu  F, Zhang X,  Liu Y. Surface oxygen vacancies on WO3 contributed to enhanced photothermo-synergistic effect. Applied Surface Science, 2017, 391, Part B: 654–661
22 Lin L, Wang  K, Yang K,  Chen X, Fu  X, Dai W. The visible-light-assisted thermocatalytic methanation of CO2 over Ru/TiO(2−x)Nx. Applied Catalysis B: Environmental, 2017, 204: 440–455
https://doi.org/10.1016/j.apcatb.2016.11.054
23 Xie S, Wang  Z, Cheng F,  Zhang P,  Mai W, Tong  Y. Ceria and ceria-based nanostructured materials for photoenergy applications. Nano Energy, 2017, 34: 313–337
https://doi.org/10.1016/j.nanoen.2017.02.029
24 Kale M J, Avanesian  T, Christopher P. Direct photocatalysis by plasmonic nanostructures. ACS Catalysis, 2014, 4(1): 116–128
https://doi.org/10.1021/cs400993w
25 Wang C, Ranasingha  O, Natesakhawat S,  Ohodnicki P R,  Andio M,  Lewis J P,  Matranga C. Visible light plasmonic heating of Au-ZnO for the catalytic reduction of CO2. Nanoscale, 2013, 5(15): 6968–6974
https://doi.org/10.1039/c3nr02001k
26 Looser R, Vivar  M, Everett V. Spectral characterisation and long-term performance analysis of various commercial heat transfer fluids (HTF) as direct-absorption filters for CPV-T beam-splitting applications. Applied Energy, 2014, 113: 1496–1511
https://doi.org/10.1016/j.apenergy.2013.09.001
27 Draine B T, Flatau  P J. Discrete-dipole approximation for scattering calculations. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 1994, 11(4): 1491–1499
https://doi.org/10.1364/JOSAA.11.001491
28 Oubre C, Nordlander  P. Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method. Journal of Physical Chemistry B, 2004, 108(46): 17740–17747
https://doi.org/10.1021/jp0473164
29 Bohren C F, Huffman  D R. Absorption and Scattering of Light by Small Particles. New York: Wiley, 1986
30 Duan H, Xuan  Y. Enhanced optical absorption of the plasmonic nanoshell suspension based on the solar photocatalytic hydrogen production system. Applied Energy, 2014, 114: 22–29
https://doi.org/10.1016/j.apenergy.2013.09.035
31 Tauc J, Grigorovici  R, Vancu A. Optical properties and electronic structure of amorphous germanium. Physica Status Solidi, 1966, 15(2): 627–637 (b) 
https://doi.org/10.1002/pssb.19660150224
32 Ren L, Mao  M, Li Y,  Lan L, Zhang  Z, Zhao X. Novel photothermocatalytic synergetic effect leads to high catalytic activity and excellent durability of anatase TiO2 nanosheets with dominant {001} facets for benzene abatement. Applied Catalysis B: Environmental, 2016, 198: 303–310
https://doi.org/10.1016/j.apcatb.2016.05.073
33 Ohtani B. Revisiting the fundamental physical chemistry in heterogeneous photocatalysis: its thermodynamics and kinetics. Physical Chemistry Chemical Physics, 2014, 16(5): 1788–1797
https://doi.org/10.1039/C3CP53653J
34 Archer M D, Bolton  J R. Requirements for ideal performance of photochemical and photovoltaic solar energy converters. Journal of Physical Chemistry, 1990, 94(21): 8028–8036
https://doi.org/10.1021/j100384a011
35 Liu B, Zhao  X. A kinetic model for evaluating the dependence of the quantum yield of nano-TiO2 based photocatalysis on light intensity, grain size, carrier lifetime, and minority carrier diffusion coefficient: indirect interfacial charge transfer. Electrochimica Acta, 2010, 55(12): 4062–4070
https://doi.org/10.1016/j.electacta.2010.01.087
36 Liang H, Wang  F, Cheng Z,  Hu S, Xiao  B, Gong X,  Lin B, Tan  J, Li X,  Cao R, Liang  W, Liu L. Analyzing the effects of reaction temperature on photo-thermo chemical synergetic catalytic water splitting under full-spectrum solar irradiation: an experimental and thermodynamic investigation. International Journal of Hydrogen Energy, 2017, 42(17): 12133–12142
https://doi.org/10.1016/j.ijhydene.2017.03.194
37 Fuentes M, Vivar  M, Scott J,  Srithar K,  Skryabin I. Results from a first autonomous optically adapted photocatalytic-photovoltaic module for water purification. Solar Energy Materials and Solar Cells, 2012, 100: 216–225
https://doi.org/10.1016/j.solmat.2012.01.020
38 Vivar M, Fuentes  M, Dodd N,  Scott J,  Skryabin I,  Srithar K. First lab-scale experimental results from a hybrid solar water purification and photovoltaic system. Solar Energy Materials and Solar Cells, 2012, 98: 260–266
https://doi.org/10.1016/j.solmat.2011.11.012
39 Vivar M, Skryabin  I, Everett V,  Blakers A. A concept for a hybrid solar water purification and photovoltaic system. Solar Energy Materials and Solar Cells, 2010, 94(10): 1772–1782
https://doi.org/10.1016/j.solmat.2010.05.045
40 Zamfirescu C, Dincer  I. Assessment of a new integrated solar energy system for hydrogen production. Solar Energy, 2014, 107: 700–713
https://doi.org/10.1016/j.solener.2014.05.036
41 Coridan R H, Nielander  A C, Francis  S A, McDowell  M T, Dix  V, Chatman S M,  Lewis N S. Methods for comparing the performance of energy-conversion systems for use in solar fuels and solar electricity generation. Energy & Environmental Science, 2015, 8(10): 2886–2901
https://doi.org/10.1039/C5EE00777A
42 Christopher K, Dimitrios  R. A review on exergy comparison of hydrogen production methods from renewable energy sources. Energy & Environmental Science, 2012, 5(5): 6640–6651
https://doi.org/10.1039/c2ee01098d
43 Ni M, Leung  M K H, Leung  D Y C, Sumathy  K. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable & Sustainable Energy Reviews, 2007, 11(3): 401–425
https://doi.org/10.1016/j.rser.2005.01.009
44 Adleman J R, Boyd  D A, Goodwin  D G, Psaltis  D. Heterogenous catalysis mediated by plasmon heating. Nano Letters, 2009, 9(12): 4417–4423
https://doi.org/10.1021/nl902711n
45 Christopher P, Xin  H, Linic S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nature Chemistry, 2011, 3(6): 467–472
46 Marimuthu A, Zhang  J, Linic S. Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of Cu oxidation state. Science, 2013, 339(6127): 1590–1593
https://doi.org/10.1126/science.1231631
47 Tan T H, Scott  J, Ng Y H,  Taylor R A,  Aguey-Zinsou K F,  Amal R. Understanding plasmon and band gap photoexcitation effects on the thermal-catalytic oxidation of ethanol by TiO2-supported gold. ACS Catalysis, 2016, 6(3): 1870–1879
https://doi.org/10.1021/acscatal.5b02785
48 Gao M, Connor  P K N, Ho  G W. Plasmonic photothermic directed broadband sunlight harnessing for seawater catalysis and desalination. Energy & Environmental Science, 2016, 9(10): 3151–3160
https://doi.org/10.1039/C6EE00971A
49 He Y L, Xiao  J, Cheng Z D,  Tao Y B A. MCRT and FVM coupled simulation method for energy conversion process in parabolic trough solar collector. Renewable Energy, 2011, 36(3): 976–985
https://doi.org/10.1016/j.renene.2010.07.017
50 Cheng Z D, He  Y L, Cui  F Q, Xu  R J, Tao  Y B. Numerical simulation of a parabolic trough solar collector with nonuniform solar flux conditions by coupling FVM and MCRT method. Solar Energy, 2012, 86(6): 1770–1784
https://doi.org/10.1016/j.solener.2012.02.039
51 Song R, Luo  B, Jing D. Efficient photothermal catalytic hydrogen production over nonplasmonic Pt metal supported on TiO2. In: Proceeding of SPIE 9935, Solar Hydrogen and Nanotechnology XI, 2016, 9935,9935C
52 Song R, Luo  B, Liu M,  Geng J, Jing  D, Liu H. Synergetic coupling of photo and thermal energy for efficient hydrogen production by formic acid reforming. AIChE Journal, 2017, 63(7): 2916–2925
https://doi.org/10.1002/aic.15663
53 Puangpetch T, Sreethawong  T, Yoshikawa S,  Chavadej S. Hydrogen production from photocatalytic water splitting over mesoporous-assembled SrTiO3 nanocrystal-based photocatalysts. Journal of Molecular Catalysis A Chemical, 2009, 312(1–2): 97–106
https://doi.org/10.1016/j.molcata.2009.07.012
54 Yoshida H, Hirao  K, Nishimoto J I,  Shimura K,  Kato S, Itoh  H, Hattori T. Hydrogen production from methane and water on platinum loaded titanium oxide photocatalysts. Journal of Physical Chemistry C, 2008, 112(14): 5542–5551
https://doi.org/10.1021/jp077314u
55 Shimura K, Kato  S, Yoshida T,  Itoh H, Hattori  T, Yoshida H. Photocatalytic steam reforming of methane over sodium tantalate. Journal of Physical Chemistry C, 2010, 114(8): 3493–3503
https://doi.org/10.1021/jp902761x
56 Shimura K, Maeda  K, Yoshida H. Thermal acceleration of electron migration in gallium oxide photocatalysts. Journal of Physical Chemistry C, 2011, 115(18): 9041–9047
https://doi.org/10.1021/jp110824n
57 Kohno Y, Tanaka  T, Funabiki T,  Yoshida S. Reaction mechanism in the photoreduction of CO2 with CH4 over ZrO2. Physical Chemistry Chemical Physics, 2000, 2(22): 5302–5307
https://doi.org/10.1039/b005315p
58 Teramura K, Tanaka  T, Ishikawa H,  Kohno Y,  Funabiki T. Photocatalytic reduction of CO2 to CO in the presence of H2 or CH4 as a reductant over MgO. Journal of Physical Chemistry B, 2004, 108(1): 346–354
https://doi.org/10.1021/jp0362943
59 Yuliati L, Itoh  H, Yoshida H. Photocatalytic conversion of methane and carbon dioxide over gallium oxide. Chemical Physics Letters, 2008, 452(1–3): 178–182
https://doi.org/10.1016/j.cplett.2007.12.051
60 Liu H, Meng  X, Dao T D,  Zhang H,  Li P, Chang  K, Wang T,  Li M, Nagao  T, Ye J. Conversion of carbon dioxide by methane reforming under visible-light irradiation: surface-plasmon-mediated nonpolar molecule activation. Angewandte Chemie International Edition, 2015, 54(39): 11545–11549
https://doi.org/10.1002/anie.201504933
61 Han B, Wei  W, Chang L,  Cheng P,  Hu Y H. Efficient visible light photocatalytic CO2 reforming of CH4. ACS Catalysis, 2016, 6(2): 494–497
https://doi.org/10.1021/acscatal.5b02653
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed