Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2018, Vol. 12 Issue (1) : 143-157    https://doi.org/10.1007/s11708-018-0520-z
REVIEW ARTICLE
Thermal reffusivity: uncovering phonon behavior, structural defects, and domain size
Yangsu XIE1, Bowen ZHU2, Jing LIU2, Zaoli XU2, Xinwei WANG2()
1. College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
2. Department of Mechanical Engineering, 2025 Black Engineering Building, Iowa State University, Ames, IA 50011, USA
 Download: PDF(512 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

To understand the relation between different nanostructures and thermal properties, a simple yet effective model is in demand for characterizing the underlying phonons and electrons scattering mechanisms. Herein, we make a systematic review on the newly developed thermal reffusivity theory. Like electrical resistivity which has been historically used as a theory for analyzing structural domain size and defect levels of metals, the thermal reffusivity can also uncover phonon behavior, structure defects and domain size of materials. We highlight that this new theory can be used for not only metals, but also nonmetals, even for amorphous materials. From the thermal reffusivity against temperature curves, the Debye temperature of the material and the ideal thermal diffusivity of single perfect crystal can be evaluated. From the residual thermal reffusivity at the 0 K limit, the structural thermal domain (STD) size of crystalline and amorphous materials can be obtained. The difference of white hair and normal black hair from heat conduction perspective is reported for the first time. Loss of melanin results in a worse thermal protection and a larger STD size in the white hair. By reviewing the different variation of thermal reffusivity against decreasing temperature profiles, we conclude that they reflected the structural connection in the materials. Ultimately, the future application of thermal reffusivity theory in studying 2D materials and amorphous materials is discussed.

Keywords thermal reffusivity theory      phonon behavior      structure defects      structural thermal domain (STD) size      2D material      amorphous material     
Corresponding Author(s): Xinwei WANG   
Online First Date: 05 January 2018    Issue Date: 08 March 2018
 Cite this article:   
Yangsu XIE,Bowen ZHU,Jing LIU, et al. Thermal reffusivity: uncovering phonon behavior, structural defects, and domain size[J]. Front. Energy, 2018, 12(1): 143-157.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-018-0520-z
https://academic.hep.com.cn/fie/EN/Y2018/V12/I1/143
Fig.1  The re-T profile of nanoscale metal and compared with that of bulk metal from RT down to 10 K
Fig.2  The k-T and Q-T curve of silver nanowire and compared with that of bulk silver
Fig.3  Thermal reffusivity against temperature profile
Fig.4  Thermal reffusivity of crystalline ultrahigh molecular weight polyethylene (UHMWPE) fibers (The residual thermal reffusivity was determined to be 3.95 × 104 and 3.30 × 104 s/m2 for the two samples denoted as S1 and S2 respectively [16]. Adapted with permission from Liu J et al., Acs Applied Materials & Interfaces, 2015. 7(49): 27279-27288. Copyright (2015) American Chemical Society.)
Fig.5  The XRD and low-temperature thermal reffusivity of high-quality GP for extracting crystallite size
Index R/W k/(W·(m·K)-1) a/(m2·s-1) Q0/(s·m-1) l0/nm
S6 Pre-annealed 136 2.0 1.36 × 10-6 7.13 × 105 0.9
Post-annealed 67.7 2.9 1.88 × 10-6 4.11 × 105 1.55
S7 Pre-annealed 149.4 1.65 1.07 × 10-6 8.10 × 105 0.79
Post-annealed 104.4 2.0 1.34 × 10-6 6.31 × 105 1.01
Tab.1  The annealing effect on the structural domain size of carbon fibers. Summarization and comparison of electrical resistance, thermal conductivity/diffusivity at RT, residual thermal diffusivity and STD size [20]. (Reprinted from Carbon, 121, Liu et al., Thermal conductivity and annealing effect on structure of lignin-based microscale carbon fibers, 35–47., Copyright (2017), with permission from Elsevier.)
Fig.6  SEM image of l-DNA nanofiber and its thermal reffusivity against temperature
Fig.7  The SEM images and the thermal reffusivity profile of human hair
Fig.8  XRD pattern for human black hair (About 30 hair strands are aligned as a thin film for XRD characterization. The domain size, denoted as crystallite in the figure, is extracted from the width of the peak at 21.445°.)
Fig.9  Thermal reffusivity against temperature profiles
1 Simon S H. The Oxford Sold State Basics. Oxford: Oxford University Press, 2013
2 Jackson H E, Walker  C T. Thermal conductivity, second sound, and phonon-phonon interactions in NaF. Physical Review B: Condensed Matter and Materials Physics, 1971, 3(4): 1428–1439 
https://doi.org/10.1103/PhysRevB.3.1428
3 Jackson H E, Walker  C T, Mcnelly  T F. Second sound in NaF. Physical Review Letters, 1970, 25(1): 26–28 
https://doi.org/10.1103/PhysRevLett.25.26
4 Kittel C, Allen  K R. Thermal physics. Physics Today, 1970, 23(8): 61–63
5 Kittel C, Holcomb  D F. Introduction to solid state physics. American Journal of Physics, 1967, 35(6): 547–548
https://doi.org/10.1119/1.1974177
6 Mayadas A F, Shatzkes  M. Electrical-resistivity model for polycrystalline films-case of arbitrary reflection at external surfaces. 1970, 1(4): 1382–1389
7 Chelikowsky J R,  Louie S G. Quantum Theory of Real Materials. Berlin: Springer, 2012
8 Xu Z L, Wang  X W, Xie  H Q. Promoted electron transport and sustained phonon transport by DNA down to 10 K. Polymer, 2014, 55(24): 6373–6380 
https://doi.org/10.1016/j.polymer.2014.10.016
9 Clusius K, Losa  C G. Low temperature research results XIV. The atomic and electronic heat of rhodium and irrdium between 10°K and 273°K. Zeitschrift Fur Naturforschung A, 1955, 10(7): 545–551
10 Cheng Z, Liu  L, Xu S,  Lu M, Wang  X. Temperature dependence of electrical and thermal conduction in single silver nanowire. Scientific Reports, 2015, 5: 10718
11 Kittel C, Masi  J F. Introduction to solid state physics. Physics Today , 1957, 10(6): 43–44
12 Xie Y S, Xu  Z, Xu S,  Cheng Z,  Hashemi  N. The defect level and ideal thermal conductivity of graphene uncovered by residual thermal reffusivity at the 0 K limit. Nanoscale, 2015, 7(22): 10101–10110
13 Zhang J C, Huang  X, Yue Y,  Wang J,  Wang  X. Dynamic response of graphene to thermal impulse. Physical Review B, 2011, 84(23): 235116
14 Denault K A, Brgoch  J,  Kloß S D,  Gaultois M W,  Siewenie J. Average and local structure, debye temperature, and structural rigidity in some oxide compounds related to phosphor hosts. Acs Applied Materials & Interfaces, 2015, 7(13): 7264–7272
15 Chen S S, Wu  Q,  Mishra C,   Kang J, Zhang  H.  Thermal conductivity of isotopically modified graphene. Nature Materials, 2012, 11(3): 203–207
16 Liu J, Xu  Z,  Cheng Z,  Xu S,  Wang X. Thermal conductivity of ultrahigh molecular weight polyethylene crystal: defect effect uncovered by 0 K limit phonon diffusion. Acs Applied Materials & Interfaces, 2015, 7(49): 27279–27288
17 Klemens P G, Pedraza  D F. Thermal-conductivity of graphite in the basal-plane. Carbon, 1994, 32(4): 735–741 
https://doi.org/10.1016/0008-6223(94)90096-5
18 Henry A, Chen  G. High thermal conductivity of single polyethylene chains using molecular dynamics simulations. Physical Review Letters, 2008, 101(23): 235502 
https://doi.org/10.1103/PhysRevLett.101.235502
19 Xie Y S, Yuan  P, Wang T,   Hashemi N,  Wang X. Switch on the high thermal conductivity of graphene paper. Nanoscale, 2016, 8(40): 17581–17597
20 Liu J, Qu W, Xie Y,   Zhu B, Wang  T. Thermal conductivity and annealing effect on structure of lignin-based microscale carbon fibers. Carbon, 2017, 121: 35–47
21 Stankovich S, Dikin  D A,  Piner  R D,  Kohlhaas  K A, Kleinhammes  A.  Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007, 45(7): 1558–1565
22 Hu H, Zhao  Z,  Wan W,   Gogotsi Y,   Qiu J. Ultralight and highly compressible graphene aerogels. Advanced Materials, 2013, 25(15): 2219–2223
23 Kadir M, Wang  X,  Zhu B,   Liu J,  Harland  D.  The structure of the “Amorphous” matrix of keratins. Journal of Structural Biology, 2017, 198(2): 116–123
24 Sarsfield B A,   Futernik S,   Hilden J L,   Yin S,  Young  G. Powder X-ray diffraction detection of crystalline phases in amorphous pharmaceuticals. Powder Diffraction, 2006, 20(2): 178–178
25 Gouadec G, Colomban  P. Raman spectroscopy of nanomaterials: how spectra relate to disorder, particle size and mechanical properties. Progress in Crystal Growth and Characterization of Materials, 2007, 53(1): 1–56 
https://doi.org/10.1016/j.pcrysgrow.2007.01.001
26 Svergun D I, Petoukhov  M V, Koch  M H J. Determination of domain structure of proteins from X-Ray solution scattering. Biophysical Journal, 2001, 80(6): 2946–2953 
https://doi.org/10.1016/S0006-3495(01)76260-1
27 Williams A C, Edwards  H G M, Barry  B W. Raman spectra of human keratotic biopolymers: skin, callus, hair and nail. Journal of Raman Spectroscopy: JRS, 1994, 25(1): 95–98 
https://doi.org/10.1002/jrs.1250250113
28 Barhoumi A, Zhang  D,  Tam F,   Halas N J. Surface-enhanced Raman spectroscopy of DNA. Journal of the American Chemical Society, 2008, 130(16): 5523–5529
29 Xu S, Tang  X,  Yue Y,   Wang X. Sub-micron imaging of sub-surface nanocrystalline structure in silicon. Journal of Raman Spectroscopy, 2013, 44(11): 1523–1528
30 Matsuo H, Walters  K J,  Teruya  K,  Tanaka T,   Gassner G T.  Identification by NMR spectroscopy of residues at contact surfaces in large, slowly exchanging macromolecular complexes. Journal of the American Chemical Society, 1999, 121(42): 9903–9904
31 Cahill D G, Pohl  R O. Lattice vibrations and heat transport in crystals and glasses. Annual Review of Physical Chemistry, 1988, 39(1): 93–121 
https://doi.org/10.1146/annurev.pc.39.100188.000521
32 Pohl R O, Liu  X, Thompson E. Low-temperature thermal conductivity and acoustic attenuation in amorphous solids. Reviews of Modern Physics, 2002, 74(4): 991–1013 
https://doi.org/10.1103/RevModPhys.74.991
33 Xu Z L. Thermal transport in DNA. Dissertation for the Doctoral Degree. Ames: Iowa State University, 2015
34 Liu G Q, Lin  H,  Tang X,   Bergler K,  Wang X. Characterization of thermal transport in one-dimensional solid materials. Jove-Journal of Visualized Experiments, 2014(83): e51144
35 Guo J Q, Wang  X W, Wang  T. Thermal characterization of microscale conductive and nonconductive wires using transient electrothermal technique. Journal of Applied Physics, 2007, 101(6): 063537–063537-7 
https://doi.org/10.1063/1.2714679
36 Deng C H, Sun  Y,  Pan L,   Wang T,  Xie  Y.  Thermal diffusivity of a single carbon nanocoil: uncovering the correlation with temperature and domain size. Acs Nano, 2016, 10(10): 9710–9719
37 Achterhold K, Keppler  C,  Ostermann A,   Van B U,   Sturhahn W.  Vibrational dynamics  of  myoglobin  determined  by  the phonon-assisted Mӧssbauer effect. Physical Review E, 2002, 65(5): 051916
38 Kadir M, Wang  X,  Zhu B,   Liu J,  Harland  D.  The structure of the “amorphous” matrix of keratins. Journal of Structural Biology, 2017, 198(2): 116–123
39 Xie Y S, Xu  S,  Xu Z,   Wu H, Deng  C. Interface-mediated extremely low thermal conductivity of graphene aerogel. Carbon, 2016, 98: 381–390
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed