Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2018, Vol. 12 Issue (1) : 169-177    https://doi.org/10.1007/s11708-018-0527-5
RESEARCH ARTICLE
Effect of light scattering on the performance of a direct absorption solar collector
Kwang Hyun WON, Bong Jae LEE()
Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
 Download: PDF(423 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Recently, a solar thermal collector often employs nanoparticle suspension to absorb the solar radiation directly by a working fluid as well as to enhance its thermal performance. The collector efficiency of a direct absorption solar collector (DASC) is very sensitive to optical properties of the working fluid, such as absorption and scattering coefficients. Most of the existing studies have neglected particle scattering by assuming that the size of nanoparticle suspension is much smaller than the wavelength of solar radiation (i.e., Rayleigh scattering is applicable). If the nanoparticle suspension is made of metal, however, the scattering cross-section of metallic nanoparticles could be comparable to their absorption cross-section depending on the particle size, especially when the localized surface plasmon (LSP) is excited. Therefore, for the DASC utilizing a plasmonic nanofluid supporting the LSP, light scattering from metallic particle suspension must be taken into account in the thermal analysis. The present study investigates the scattering effect on the thermal performance of the DASC employing plasmonic nanofluid as a working fluid. In the analysis, the Monte Carlo method is employed to numerically solve the radiative transfer equation considering the volume scattering inside the nanofluid. It is found that the light scattering can improve the collector performance if the scattering coefficient of nanofluid is carefully engineered depending on its value of the absorption coefficient.

Keywords direct absorption solar collector      plasmonic nanofluid      light scattering     
Corresponding Author(s): Bong Jae LEE   
Online First Date: 09 January 2018    Issue Date: 08 March 2018
 Cite this article:   
Kwang Hyun WON,Bong Jae LEE. Effect of light scattering on the performance of a direct absorption solar collector[J]. Front. Energy, 2018, 12(1): 169-177.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-018-0527-5
https://academic.hep.com.cn/fie/EN/Y2018/V12/I1/169
Fig.1  Optical properties of silica-gold nanoshells
Fig.2  Schematic of a direct absorption solar collector used in simulation
Parameter Reference value Variation range
Collector length, L/m 1 Fixed
Collector height, H/cm 1.5 1–2
Absorption coeffcient, α/(cm 1) 0.3 0.05 –1
Scattering coeffcient, σ/(cm 1) 1 0–2
Mass flow rate per unit width, m˙ /( kg·(m· s)1) 0.004 Fixed
Tab.1  Parameters of solar collector
Fig.3  Performance of the solar collector with respect to the absorption coefficient of nanofluid at no scattering
Fig.4  Volumetric heat generation q˙gen (y) along the channel depth for various values of σ at α = 0.3 cm–1
Fig.5  Effect of scattering coefficient
Fig.6  Collector efficiency and gain temperature of solar collector at α = 0.3 cm–1
Fig.7  Heat loss (via convection as well as radiation) from top glass cover
Fig.8  Collector efficiency and gain temperature of the solar collector at an absorption coefficient variation of 0.10.6 ?cm 1
Fig.9  Effect of channel height on collector efficiency
Fig.10  Performance of solar collector with or without scattering
1 Steinfeld A. Solar thermochemical production of hydrogen–a review. Solar Energy, 78(5), 2005, 78(5): 603–615
2 Thirugnanasambandam M,  Iniyan S,  Goic R. A review of solar thermal technologies. Renewable & Sustainable Energy Reviews, 2010, 14(1): 312–322 
https://doi.org/10.1016/j.rser.2009.07.014
3 Parida B, Iniyan  S, Goic R. A review of solar photovoltaic technologies. Renewable & Sustainable Energy Reviews, 2011, 15(3): 1625–1636 
https://doi.org/10.1016/j.rser.2010.11.032
4 Zhang H L, Baeyens  J, Degrève J,  Cacères G. Concentrated solar power plants: review and design methodology. Renewable & Sustainable Energy Reviews, 2013, 22: 466–481 
https://doi.org/10.1016/j.rser.2013.01.032
5 Lenel U, Mudd  P. A review of materials for solar heating systems for domestic hot water. Solar Energy, 1984, 32(1): 109–120 
https://doi.org/10.1016/0038-092X(84)90054-9
6 Fisch M, Guigas  M, Dalenbäck J. A review of large-scale solar heating systems in Europe. Solar Energy, 1998, 63(6): 355–366 
https://doi.org/10.1016/S0038-092X(98)00103-0
7 Tian Y, Zhao  C Y. A review of solar collectors and thermal energy storage in solar thermal applications. Applied Energy, 2013, 104(4): 538–553
https://doi.org/10.1016/j.apenergy.2012.11.051
8 Duffie J A, Beckman  W A, Mcgowan  J. Solar engineering of thermal processes. Journal of Solar Energy Engineering,  1994,  116(1): 549
9 Hewakuruppu Y L,  Taylor R A,  Tyagi H,  Khullar V,  Otanicar T,  Coulombe S,  Hordy N. Limits of selectivity of direct volumetric solar absorption. Solar Energy, 2015, 114: 206–216 
https://doi.org/10.1016/j.solener.2015.01.043
10 Minardi J E, Chuang  H N. Performance of a “black” liquid flat-plate solar collector. Solar Energy, 1975, 17(3): 179–183
https://doi.org/10.1016/0038-092X(75)90057-2
11 Ito A, Shinkai  M, Honda H,  Kobayashi T. Medical application of functionalized magnetic nanoparticles. Journal of Bioscience and Bioengineering, 2005, 100(1): 1–11 
https://doi.org/10.1263/jbb.100.1 pmid: 16233845
12 Medintz I L, Uyeda  H T, Goldman  E R, Mattoussi  H. Quantum dot bioconjugates for imaging, labelling and sensing. Nature Materials, 2005, 4(6): 435–446 
https://doi.org/10.1038/nmat1390  pmid: 15928695
13 Yu W, France  D M, Routbort  J L, Choi  S U. Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transfer Engineering, 2008, 29(5): 432–460 
https://doi.org/10.1080/01457630701850851
14 Taylor R A, Phelan  P E, Otanicar  T P, Adrian  R, Prasher R. Nanofluid optical property characterization: towards efficient direct absorption solar collectors. Nanoscale Research Letters, 2011, 6(1): 225  
https://doi.org/10.1186/1556-276X-6-225 pmid: 21711750
15 Bohren C F, Huffman  D R. Absorption and scattering of light by small particles (Wiley, New York). Optics & Laser Technology,  1998,  31(1): 328–328
16 Otanicar T P, Phelan  P E, Prasher  R S, Rosengarten  G, Taylor R A. Nanofluid-based direct absorption solar collector. Journal of Renewable and Sustainable Energy, 2010, 2(3): 033102 
https://doi.org/10.1063/1.3429737
17 Xuan Y, Duan  H, Li Q. Enhancement of solar energy absorption using a plasmonicnanofluid based on TiO2/Ag composite nanoparticles. RSC Advances, 2014, 4(31): 16206–16213 
https://doi.org/10.1039/C4RA00630E
18 Chen M, He  Y, Zhu J,  Shuai Y,  Jiang B,  Huang Y. An experimental investigation on sunlight absorption characteristics of silver nanofluids. Solar Energy, 2015, 115(12): 85–94 
https://doi.org/10.1016/j.solener.2015.01.031
19 Gupta H K, Agrawal  G D, Mathur  J. An experimental investigation of a low temperature Al2O3-H2O nanofluid based direct absorption solar collector. Solar Energy, 2015, 118: 390–396
https://doi.org/10.1016/j.solener.2015.04.041
20 Karami M, Akhavan-Bahabadi  M, Delfani S,  Raisee M. Experimental investigation of CuO nanofluid-based Direct Absorption Solar Collector for residential applications. Renewable & Sustainable Energy Reviews, 2015, 52: 793–801
https://doi.org/10.1016/j.rser.2015.07.131
21 Jeon J, Park  S, Lee B J. Analysis on the performance of a flat-plate volumetric solar collector using blended plasmonic nanofluid. Solar Energy, 2016, 132: 247–256
https://doi.org/10.1016/j.solener.2016.03.022
22 Tyagi H, Phelan  P, Prasher R. Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector. Journal of Solar Energy Engineering, 2009, 131(4): 041004
https://doi.org/10.1115/1.3197562
23 Veeraragavan A, Lenert  A, Yilbas B,  Al-Dini S,  Wang E N. Analytical model for the design of volumetric solar flow receivers. International Journal of Heat and Mass Transfer, 2012, 55(4): 556–564
https://doi.org/10.1016/j.ijheatmasstransfer.2011.11.001
24 Cregan V, Myers  T G. Modelling the efficiency of a nanofluid direct absorption solar collector. International Journal of Heat and Mass Transfer, 2015, 90: 505–514
https://doi.org/10.1016/j.ijheatmasstransfer.2015.06.055
25 Gorji T B, Ranjbar  A A. Geometry optimization of a nanofluid-based direct absorption solar collector using response surface methodology. Solar Energy, 2015, 122: 314–325
https://doi.org/10.1016/j.solener.2015.09.007
26 Liu B J, Lin  K Q, Hu  S, Wang X,  Lei Z C,  Lin H X,  Ren B. Extraction of absorption and scattering contribution of metallic nanoparticles toward rational synthesis and application. Analytical Chemistry, 2015, 87(2): 1058–1065 
https://doi.org/10.1021/ac503612b pmid: 25494875
27 Jain P K, Lee  K S, El-Sayed  I H, El-Sayed  M A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. Journal of Physical Chemistry B, 2006, 110(14): 7238–7248  
https://doi.org/10.1021/jp057170o pmid: 16599493
28 Rativa D, Gómez-Malagón  L A. Solar radiation absorption of nanofluids containing metallic nanoellipsoids. Solar Energy, 2015, 118: 419–425 
https://doi.org/10.1016/j.solener.2015.05.048
29 Wu Y, Zhou  L, Du X,  Yang Y. Optical and thermal radiative properties of plasmonic nanofluids containing core–shell composite nanoparticles for efficient photothermal conversion. International Journal of Heat and Mass Transfer, 2015, 82: 545–554 
https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.026
30 Lee B J, Park  K, Walsh T,  Xu L. Radiative heat transfer analysis in plasmonic nanofluids for direct solar thermal absorption. Journal of Solar Energy Engineering, 2012, 134(2): 021009 
https://doi.org/10.1115/1.4005756
31 Kalogirou S A. Solar thermal collectors and applications. Progress in Energy and Combustion Science, 2004, 30(3): 231–295 
https://doi.org/10.1016/j.pecs.2004.02.001
32 Howell J R. The Monte Carlo method in radiative heat transfer. Journal of Heat Transfer, 1998, 120(3): 547–560
https://doi.org/10.1115/1.2824310
33 Weller H G, Tabor  G, Jasak H,  Fureby C. A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in Physics, 1998, 12(6): 620–631
https://doi.org/10.1063/1.168744
34 Qin C, Kang  K, Lee I,  Lee B J. Optimization of a direct absorption solar collector with blended plasmonic nanofluids. Solar Energy, 2017, 150: 512–520
https://doi.org/10.1016/j.solener.2017.05.007
35 Das S K, Choi  S U, Yu  W, Pradeep T. Nanofluids: Science and Technology. Hoboken: John Wiley & Sons, 2007
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed