Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2020, Vol. 14 Issue (1) : 105-113    https://doi.org/10.1007/s11708-018-0536-4
RESEARCH ARTICLE
Experimental study on performance of passive and active solar stills in Indian coastal climatic condition
R. LALITHA NARAYANA1(), V. RAMACHANDRA RAJU2
1. Department of Mechanical Engineering, Jawaharlal Nehru Technological University (JNTUK), Kakinada 533003, India
2. Department of Mechanical Engineering, Rajiv Gandhi University of Knowledge Technologies, Nuzivid 521201, India
 Download: PDF(792 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This present work is aimed to examine the effect of mass flow rate on distillate output and performance of a solar still in active mode. Outdoor experiments were conducted at the coastal town, Kakinada (16°93′N/83°33′E), Andhra Pradesh, India. A solar still with a 30° of fixed cover inclination, 1m2 of effective basin area, and a flat-plate collector (FPC) with an effective area of 2 m2 were used. An attempt was also made earlier in passive mode to optimize the water depth for the same solar still for maximum yield and distillation efficiency. For the passive still, it is observed that the capacity of heat storage and heat drop are significant parameters that affect the still performance. For the selected still design, the study reveals that 0.04 m water depth is the optimum value for specific climatic conditions. In the active solar still, with the optimum water depth, different flow rates of 0.5, 1 and 1.5 L/min are considered through FPC. It is observed that both the mass flow rate and the variation of internal heat transfer coefficients with the mass flow rate have a significant effect on the yield and performance of the still. The experimental results show that the combination of 1.5 L/min mass flow rate and an optimum water depth of 0.04 m leads to a maximum yield for the active solar still. The enhanced yield of the active solar still is 57.55%, compared with that of the passive solar still, due to increase in area of radiation collection and more heat absorption rate.

Keywords distillation efficiency      solar still      heat transfer coefficient      water depth      optimum and mass flow rate     
Corresponding Author(s): R. LALITHA NARAYANA   
Just Accepted Date: 20 December 2017   Online First Date: 02 February 2018    Issue Date: 16 March 2020
 Cite this article:   
R. LALITHA NARAYANA,V. RAMACHANDRA RAJU. Experimental study on performance of passive and active solar stills in Indian coastal climatic condition[J]. Front. Energy, 2020, 14(1): 105-113.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-018-0536-4
https://academic.hep.com.cn/fie/EN/Y2020/V14/I1/105
Fig.1  Line diagram of an active solar still coupled with FPC
Fig.2  Photograph of a passive solar still
Fig.3  Photograph of an active solar still coupled with FPC
S No. Instrument Least count Range Error
1 Thermocouple 0.1°C 0–100°C 0.2%
2 Solarimeter 1 W/m2 0–5000 W/m2 0.25%
3 Thermometer 1°C 0–100°C 0.5%
4 Hygrometer 1 0–100 1%
5 Measuring jar 1 mL 0–1000 mL 5%
Tab.1  Ranges and least counts of measuring instruments
S. No. Time I(t)/(W·m2) Tci/°C Tv/°C Tw/°C mew/kgs hcw/(W·m2·°C1) hew/(W·m2·°C1) hcwDM/(W·m2·°C1) hewDM/(W·m2·°C1)
1 8–9 am 540.0 40.35 42.51 33.64 0.008 1.72 3.26 4.42 8.38
2 9–10 730.0 48.57 50.19 40.38 0.025 1.75 1.81 4.74 4.89
3 10–11 900.0 50.2 50.80 46.61 0.065 1.81 15.97 3.44 30.33
4 11–12 990.0 51.29 49.16 50.14 0.105 1.87 74.33 2.30 91.14
5 12–13 970.0 51.7 50.18 54.36 0.145 1.85 51.05 2.94 81.14
6 13–14 880.0 49.49 52.92 56.00 0.185 1.81 29.03 3.84 61.71
7 14–15 730.0 46.82 52.29 55.71 0.195 1.79 23.85 4.19 55.95
8 15–16 510.0 44.78 49.90 53.57 0.225 1.78 21.35 4.18 50.32
9 16–17 280.0 44.01 49.26 50.99 0.215 1.78 21.01 3.94 46.54
10 17–18 130.0 42.32 43.73 47.34 0.165 1.78 18.73 3.59 37.87
11 18–19 40.0 39.81 40.69 44.50 0.125 1.76 14.58 3.53 29.16
12 19–20 - 37.10 37.89 41.19 0.055 1.75 12.08 3.40 23.40
13 20–21 - 34.72 36.40 38.65 0.035 1.74 10.15 3.36 19.60
14 21–22 - 33.43 34.19 36.18 0.03 1.75 9.19 3.02 15.91
15 22–23 - 32.43 33.25 34.69 0.025 1.75 8.22 2.85 13.40
16 23–24 - 31.01 32.10 32.48 0.02 1.76 7.28 2.49 10.34
17 24–1 - 29.88 30.81 30.96 0.015 1.76 6.85 2.26 8.78
18 1–2 - 29.36 29.82 30.21 0.012 1.77 6.66 2.09 7.88
19 2–3 - 28.89 29.28 29.87 0.01 1.76 6.50 2.19 8.09
20 3–4 - 28.36 28.76 29.53 0.008 1.75 6.32 2.32 8.39
21 4–5 - 27.95 28.21 29.15 0.008 1.75 6.19 2.34 8.30
22 5–6 20.0 28.87 28.61 28.91 0.005 1.74 6.84 0.76 2.75
23 6–7 90.0 31.57 32.63 29.67 0.005 1.74 5.81 2.80 9.37
24 7–8am 270.0 35.22 38.81 31.32 0.008 1.75 5.51 3.62 11.56
I(t) = 7080 mew = 1.694
Tab.2  Hourly average values calculated using 24hr experimental data for a passive solar still with an optimum water depth
Fig.4  Variation of hcw with water depth using K&T model
Fig.5  Variation of hew with water depth using K&T model
Fig.6  Variation of ∑m and hD with water depth
Water depth/m C N hcw/( W·m2·°C1) hew/( W·m2·°C1)
0.02 39.2236 0.00021674 1.323 10.562
0.03 44.2808 -0.03156897 1.391 11.975
0.04 49.7721 -0.02430013 1.775 15.524
0.05 43.5571 -0.00893258 2.087 14.926
0.06 41.3356 0.00113825 1.531 12.671
Tab.3  Values obtained for various water depths in passive mode for the observations of 24 h from K&T model
Fig.7  Variation of hcw with mass flow rate using K&T model
Fig.8  Variation of hew with mass flow rate using K&T model
Fig.9  Variation of ∑m and hD with mass flow rate
S.No. Time I(t)/(W·m²) Ic(t)/(W·m²) Tci/°C Tv/oC Tw/°C mew/kg
kg
hcw/(W·m−2°C1) hew/(W·m−2°C1) hcwDM/(W·m−2°C1) hewDM/(W·m−2°C1)
1 8–9 am 590 690 39.72 42.51 37.38 0.020 1.311 2.149 0.981 1.608
2 9–10 845 970 47.13 50.19 47.44 0.065 1.366 11.502 0.705 95.729
3 10–11 980 1115 52.43 53.80 55.69 0.160 1.367 32.451 1.626 48.133
4 11–12 1090 1240 55.92 58.16 62.14 0.290 1.379 25.401 2.104 41.817
5 12–13 1080 1250 57.07 61.18 65.22 0.340 1.384 23.076 2.349 39.728
6 13–14 990 1110 56.14 59.92 63.40 0.330 1.380 19.962 2.232 32.281
7 14–15 790 1035 53.06 56.29 59.31 0.310 1.368 17.077 2.059 25.698
8 15–16 580 830 50.94 54.90 56.66 0.275 1.360 15.376 1.961 22.170
9 16–17 335 - 47.97 50.26 53.23 0.220 1.349 13.282 1.862 18.343
10 17–18 180 - 42.35 45.73 48.33 0.165 1.327 10.413 1.877 14.725
11 18–19 90 - 37.18 40.69 43.13 0.130 1.308 8.107 1.818 11.276
12 19–20 - - 34.60 37.89 39.23 0.095 1.298 6.920 1.644 8.767
13 20–21 - - 33.58 36.40 36.89 0.065 1.295 6.354 1.459 7.160
14 21–22 - - 32.68 34.19 35.24 0.045 1.293 5.963 1.331 6.143
15 22–23 - - 31.60 33.25 34.05 0.034 1.289 5.639 1.305 5.711
16 23–24 - - 30.91 32.10 33.23 0.025 1.286 5.437 1.277 5.397
17 24–1 - - 30.69 31.81 32.78 0.018 1.286 5.336 1.232 5.112
18 1–2 - - 30.49 31.82 32.44 0.016 1.286 5.278 1.202 4.934
19 2–3 - - 30.39 31.28 32.23 0.014 1.286 5.210 1.179 4.781
20 3–4 - - 30.31 30.76 32.08 0.012 1.286 5.209 1.162 4.710
21 4–5 - - 30.06 30.21 31.75 0.012 1.285 5.119 1.144 4.557
22 5–6 50 - 29.92 30.01 31.38 0.005 1.286 5.056 1.088 4.282
23 6–7 140 - 32.93 33.63 31.63 0.003 1.293 3.121 0.855 2.065
24 7–8am 330 - 37.56 38.81 32.99 0.020 1.292 4.623 1.269 4.543
I(t) = 8100 Ic(t) = 8240 mew= 2.669
Tab.4  Hourly average values calculated using 24hexperimental data for an active solar still at an optimum water depth of 0.04 m and mass flow rate of 1.5 L/min
Mass flow rate/ (L·min1) C N hcw/(W·m2·°C1) hew/(W·m2·°C1)
0.5 25.23347 0.018652 1.919 15.297
1.0 11.88071 0.066726 2.062 16.811
1.5 27.278889 -0.00781 1.319 10.328
Tab.5  Values obtained for various mass flow rates in active mode for the observations of 24 h from K&T model
Sample pH TDS/(mg·L1) Total/hardness /(mg·L1) EC/(mSi·m1)
Initial characteristics of the sample 9.99 800 70 1230
Final characteristics of the sample 6.98 15 0 24
Tab.6  Comparative analysis of samples
Aw Evaporative surface area/m2
Ag Area of glass cover/m2
Ac Area of collector/m2
C Unknownn Constant
Gr Grashof number
hcw Convective heat transfer coefficient/(W·m2·°C1)
hew Evaporative heat transfer coefficient/(W·m2·°C1)
I(t) Incident radiation on still/(W·m2)
Ic(t) Incident radiation on collector/(W·m2)
Kv Thermal conductivity of the Humid air/(W·m1·°C1)
L Latent heat of vaporization of water (J·kg?1)
Lv Characteristic dimension of condensing cover/m
mew Yield/kg
n Unknown constant
Pci Partial saturated vapor pressure at condensing cover temperature/Pa
Pr Prandtl number
Pw Partial saturated vapor pressure at water temperature/Pa
qew Rate of evaporative heat transfer/(W·m2)
t Time/s
Tw Water temperature/°C
Tci Inner temperatures of a condensing cover /°C
?T Temperature difference between water and inner glass surface/°C
ηD Distillation efficiency/%
  
1 R V Dunkle. Solar water distillation, the roof type still and a multiple effect diffusion still, international developments in heat transfer. In: Proceedings of ASME International Heat Transfer Conference, Part 5, University of Colorado, 1961, 895–902
2 S Kumar, G N Tiwari. Estimation of convective mass transfer in solar distillation system. Solar Energy, 1996, 57(6): 459–464
https://doi.org/10.1016/S0038-092X(96)00122-3
3 M R Rajamanickam, A Ragupathy. Influence of water depth on internal heat and mass transfer in a double slope solar still. Energy Procedia, 2012, 14: 1701–1708
https://doi.org/10.1016/j.egypro.2011.12.1155
4 S N Rai, G N Tiwari. Single basin solar still coupled with flat plate collector. Energy Conversion and Management, 1983, 23(3): 145–149
https://doi.org/10.1016/0196-8904(83)90057-2
5 H N Singh, G N Tiwari. Monthly performance of passive and active solar stills for different Indian climatic conditions. Desalination, 2004, 168(1–3): 145–150
https://doi.org/10.1016/j.desal.2004.06.180
6 V K Dwivedi, G N Tiwari. Experimental validation of thermal model of a double slope active solar still under natural circulation mode. Desalination, 2010, 250(1): 49–55
https://doi.org/10.1016/j.desal.2009.06.060
7 M Feilizadeh, M R K Estahbanati, A Ahsan, K Jafarpur, A Mersaghian. Effects of water and basin depths in single basin solar stills: an experimental and theoretical study. Energy Conversion and Management, 2016, 122: 174–181
https://doi.org/10.1016/j.enconman.2016.05.048
8 H Taghvaei, H Taghvaei, K Jafarpur, M Feilizadeh, M R Karimi Estahbanati. Experimental investigation of the effect of solar collecting area on the performance of active solar stills with different brine depths. Desalination, 2015, 358: 76–83
https://doi.org/10.1016/j.desal.2014.11.032
9 H Taghvaei, H Taghvaei, K Jafarpur, M R K Estahbanati, M Feilizadeh. A thorough investigation of the effects of water depth on the performance of active solar stills. Desalination, 2014, 347: 77–85
https://doi.org/10.1016/j.desal.2014.05.038
10 R Bhardwaj , M V ten Kortenaar, R F Mudde. Maximized production of water by increasing area of condensation surface for solar distillation. Applied Energy, 2015, 154: 480–490
11 R Dev, S A Abdul-wahab, G N Tiwari. Performance study of the inverted absorber solar still with water depth and total dissolved solid. Applied Energy, 2011, 88(1): 252–264
https://doi.org/10.1016/j.apenergy.2010.08.001
12 A Ahsan, M Imteaz, U A Thomas, M Azmi, A Rahman, N N Nik Daud. Parameters affecting the performance of a low cost solar still. Applied Energy, 2014, 114(2): 924–930
https://doi.org/10.1016/j.apenergy.2013.08.066
13 R Tripathi, G N Tiwari. Thermal modeling of passive and active solar stills for different depths of water by using the concept of solar fraction. Solar Energy, 2006, 80(8): 956–967
https://doi.org/10.1016/j.solener.2005.08.002
14 T Elango, K Kalidasa Murugavel. The effect of the water depth on the productivity for single and double basin double slope glass solar stills. Desalination, 2015, 359: 82–91
https://doi.org/10.1016/j.desal.2014.12.036
15 N S Somanchi, S L S Sagi, T A Kumar, S P D Kakarlamudi, A Parik. Modelling and analysis of single slope solar still at different water depth. Aquatic Procedia, 2015, 4: 1477–1482
https://doi.org/10.1016/j.aqpro.2015.02.191
16 P Durkaieswaran, K Kailas Murugavel. Various special designs of single basin passive solar still—a review. Renewable & Sustainable Energy Reviews, 2015, 49: 1048–1060
https://doi.org/10.1016/j.rser.2015.04.111
17 F F Tabrizi, M Dashtban, H Moghaddam, K Razzaghi. Effect of water flow rate on internal heat and mass transfer and daily productivity of a weir-type cascade solar still. Desalination, 2010, 260(1–3): 239–247
https://doi.org/10.1016/j.desal.2010.03.037
18 H N Panchal, M I Patel, B Patel, R Goswami, M Doshi. A comparatıve analysıs of sıngle slope solar stıll coupled wıth flat plate collector and passıve solar. IJRRAS, 2011, 7: 111–116
19 S Kumar, A Dubey, G N Tiwari. A solar still augmented with an evacuated tube collector in forced mode. Desalination, 2014, 347: 15–24
https://doi.org/10.1016/j.desal.2014.05.019
20 H N Panchal. Performance analysis of solar still with cow dung cakes and blue metal stones. Frontiers in Energy, 2015, 9(2): 180–186
https://doi.org/10.1007/s11708-015-0361-y
21 H N Panchal, P K Shah. Enhancement of distillate output of double basin solar still with vacuum tubes. Frontiers in Energy, 2014, 8(1): 101–109
https://doi.org/10.1007/s11708-014-0299-5
22 R V Singh, S Kumar, M M Hasan, M E Khan, G N Tiwari. Performance of a solar still integrated with evacuated tube collector in natural mode. Desalination, 2013, 318: 25–33
https://doi.org/10.1016/j.desal.2013.03.012
23 S A El-Agouz, Y A F El-Samadony, A E Kabeel. Performance evaluation of a continuous flow inclined solar still desalination system. Energy Conversion and Management, 2015, 101: 606–615
https://doi.org/10.1016/j.enconman.2015.05.069
24 R Sathyamurthy, S A El-Agouz, P K Nagarajan, J Subramani, T Arunkumar, D Mageshbabu, B Madhu, R Bharathwaaj, N Prakash. A review of integrating solar collectors to solar still. Renewable & Sustainable Energy Reviews, 2017, 77: 1069–1097
https://doi.org/10.1016/j.rser.2016.11.223
25 H N Panchal, P K Shah. Effect of varying glass cover thickness on performance of solar still: in a winter climate conditions. International Journal of Renewable Energy Research, 2011, 1(4): 212–223
26 B C Nakra. Instrumentation Measurement and Analysis. New Delhi: Tata Mc Graw-Hill, 1985
[1] Jie GUO,Danmei XIE,Hengliang ZHANG,Wei JIANG,Yan ZHOU. Effect of heat transfer coefficient of steam turbine rotor on thermal stress field under off-design condition[J]. Front. Energy, 2016, 10(1): 57-64.
[2] Hitesh N. PANCHAL. Performance analysis of solar still with cow dung cakes and blue metal stones[J]. Front. Energy, 2015, 9(2): 180-186.
[3] Foued CHABANE,Nesrine HATRAF,Noureddine MOUMMI. Experimental study of heat transfer coefficient with rectangular baffle fin of solar air heater[J]. Front. Energy, 2014, 8(2): 160-172.
[4] Hitesh N PANCHAL, P K SHAH. Enhancement of distillate output of double basin solar still with vacuum tubes[J]. Front Energ, 2014, 8(1): 101-109.
[5] Manli LUO, Jing LIU. Experimental investigation of liquid metal alloy based mini-channel heat exchanger for high power electronic devices[J]. Front Energ, 2013, 7(4): 479-486.
[6] SHI Jinyuan, DENG Zhicheng, YANG Yu, JUN Ganwen. Heat transfer coefficient of wheel rim of large capacity steam turbines[J]. Front. Energy, 2008, 2(1): 20-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed