Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2018, Vol. 12 Issue (1) : 158-168    https://doi.org/10.1007/s11708-018-0542-6
RESEARCH ARTICLE
Design and analysis of Salisbury screens and Jaumann absorbers for solar radiation absorption
Xing FANG1, C. Y. ZHAO1(), Hua BAO2
1. Institute of Engineering Thermophysics, Shanghai Jiao Tong University, Shanghai 200240, China
2. University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
 Download: PDF(567 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Two types of resonance absorbers, i.e., Salisbury screens and Jaumann absorbers are systematically investigated in solar radiation absorption. Salisbury screen is a metal-dielectric-metal structure which overcomes the drawback of bulky thickness for solar spectrum. Such structures have a good spectral selective absorption property, which is also insensitive to incident angles and polarizations. To further broaden absorption bandwidth, more metal and dielectric films are taken in the structure to form Jaumann absorbers. To design optimized structural parameters, the admittance matching equations have been derived in this paper to give good initial structures, which are valuable for the following optimization. Moreover, the analysis of admittance loci has been conducted to directly show the effect of each layer on the spectral absorptivity, and then the effect of thin films is well understood. Since the fabrication of these layered absorbers is much easier than that of other nanostructured absorbers, Salisbury screen and Jaumann absorbers have a great potential in large-area applications.

Keywords thin films      admittance loci      solar absorber     
Corresponding Author(s): C. Y. ZHAO   
Just Accepted Date: 03 January 2018   Online First Date: 30 January 2018    Issue Date: 08 March 2018
 Cite this article:   
Xing FANG,C. Y. ZHAO,Hua BAO. Design and analysis of Salisbury screens and Jaumann absorbers for solar radiation absorption[J]. Front. Energy, 2018, 12(1): 158-168.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-018-0542-6
https://academic.hep.com.cn/fie/EN/Y2018/V12/I1/158
Fig.1  Schematic of Salisbury screen and plot of admittance loci diagram
Fig.2  Optimized Salisbury screens and their absorptivity spectra
Fig.3  Total conversion efficiency and absorptivity spectrum of absorber
Fig.4  Spectral absorptivity of solar absorber with maximal efficiency when incident angle varies at (a) TE polarization; (b) TM polarization
Fig.5  Spectral absorptivity and admittance loci diagrams of double layered structures
Fig.6  Absorptivity spectra and admittance loci diagrams of Salisbury screens
Fig.7  Absorptivity spectra and admittance loci diagrams of Salisbury screens
Fig.8  Absorptivity and emissivity spectra of Salisbury screens
Fig.9  SEM images of a Salisbury screen sample
Fig.10  Absorptivity spectra of optimized Jaumann absorbers
No. SiO2 W SiO2 W SiO2 Efficiency/%
1 90.7 61.11
2 3.8 84.9 78.64
3 93.8 7.4 77.8 86.01
4 0.5 92.0 7.8 78.2 86.19
5 96.5 6.1 83.7 14.3 176.0 87.91
Tab.1  Thicknesses (unit: nm) and efficiency of Jaumann absorbers
1 Bao H, Ruan  X. Absorption spectra and electron-vibration coupling of Ti: Sapphire from first principles. Journal of Heat Transfer, 2016, 138(4): 042702
https://doi.org/ 10.1115/1.4032177
2 Landy N I, Sajuyigbe  S, Mock J J,  Smith D R,  Padilla W J. Perfect metamaterial absorber. Physical Review Letters, 2008, 100(20): 207402
https://doi.org/10.1103/PhysRevLett.100.207402 pmid: 18518577
3 Atwater H A, Polman  A. Plasmonics for improved photovoltaic devices. Nature Materials, 2010, 9(3): 205–213
https://doi.org/10.1038/nmat2629 pmid: 20168344
4 Wang L P, Zhang  Z M. Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics. Applied Physics Letters, 2012, 100(6): 063902 
https://doi.org/10.1063/1.3684874
5 Wang H, Wang  L. Perfect selective metamaterial solar absorbers. Optics Express, 2013, 21 Suppl 6(22): A1078–A1093 
https://doi.org/10.1364/OE.21.0A1078
6 Fang X, Zhao  C Y, Bao  H. Radiative behaviors of crystalline silicon nanowire and nanohole arrays for photovoltaic applications. Journal of Quantitative Spectroscopy & Radiative Transfer, 2014, 133(2): 579–588
https://doi.org/10.1016/j.jqsrt.2013.09.021
7 Fang X, Lou  M, Bao H,  Zhao C Y. Thin films with disordered nanohole patterns for solar radiation absorbers. Journal of Quantitative Spectroscopy & Radiative Transfer, 2015, 158: 145–153
https://doi.org/10.1016/j.jqsrt.2015.01.002
8 Feng R, Qiu  J, Cao Y,  Liu L, Ding  W, Chen L. Wide-angle and polarization independent perfect absorber based on one-dimensional fabrication-tolerant stacked array. Optics Express, 2015, 23(16): 21023–21031
https://doi.org/10.1364/OE.23.021023 pmid: 26367954
9 Bai Y, Zhao  L, Ju D,  Jiang Y,  Liu L. Wide-angle, polarization-independent and dual-band infrared perfect absorber based on  L-shaped metamaterial. Optics Express, 2015, 23(7): 8670–8680
https://doi.org/10.1364/OE.23.008670 pmid: 25968705
10 Hadley L N, Dennison  D M. Reflection and transmission interference filters part I. theory.  Journal of the Optical Society of America, 1947, 37(6): 451–465
https://doi.org/ 10.1364/JOSA.37.000451 pmid: 20245352
11 Hadley L N, Dennison  D M. Reflection and transmission interference filters part II. experimental, comparison with theory, results. Journal of the Optical Society of America, 1948, 38(6): 483–496
https://doi.org/10.1364/JOSA.38.000483 pmid: 18866817
12 Phillip R W, Bleikolm  A F. Optical coatings for document security. Applied Optics, 1996, 35(28): 5529–5534
https://doi.org/ 10.1364/AO.35.005529 pmid: 21127552
13 Berning P H, Turner  A F. Induced transmission in absorbing films applied to band pass filter design. Journal of the Optical Society of America, 1957, 47(3): 230–239
https://doi.org/10.1364/JOSA.47.000230
14 Kats M A, Blanchard  R, Genevet P,  Capasso F. Nanometre optical coatings based on strong interference effects in highly absorbing media. Nature Materials, 2013, 12(1): 20–24
https://doi.org/ 10.1038/nmat3443 pmid: 23064496
15 Wang Z, Luk  T S, Tan  Y, Ji D,  Zhou M, Gan  Q, Yu Z F. Tunneling-enabled spectrally selective thermal emitter based on flat metallic films. Applied Physics Letters, 2015, 106(10): 101104 
https://doi.org/10.1063/1.4914886
16 Lee B J, Zhang  Z M. Design and fabrication of planar multilayer structures with coherent thermal emission characteristics. Journal of Applied Physics, 2006, 100(6): 063529
https://doi.org/10.1063/1.2349472
17 Wang L, Lee  B, Wang X,  Zhang Z. Spatial and temporal coherence of thermal radiation in asymmetric Fabry-Perot resonance cavities. International Journal of Heat and Mass Transfer, 2015, 52(13): 3024–3031
18 Wang L P, Basu  S, Zhang Z M. Direct measurement of thermal emission from a Fabry-Perot cavity resonator. Journal of Heat Transfer, 2012, 134(7): 072701
https://doi.org/10.1115/1.4006088
19 Narayanaswamy A, Chen  G. Thermal emission control with one-dimensional metallodielectric photonic crystals. Physical Review B: Condensed Matter, 2004, 70(12): 125101 
https://doi.org/10.1103/PhysRevB.70.125101
20 Kats M A, Sharma  D, Lin J,  Genevet P,  Blanchard R,  Yang Z, Qazilbash  M M, Basov  D N, Ramanathan  S, Capasso F.  Ultra-thin perfect absorber employing a tunable phase change material. Applied Physics Letters, 2012, 101(22): 221101
https://doi.org/10.1063/1.4767646
21 Shu S, Li  Z, Li Y Y. Triple-layer Fabry-Perot absorber with near-perfect absorption in visible and near-infrared regime. Optics Express, 2013, 21(21): 25307–25315
https://doi.org/10.1364/OE.21.025307 pmid: 24150371
22 Li Z, Palacios  E, Butun S,  Kocer H,  Aydin K. Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings. Scientific Reports, 2015, 5(1): 15137
https://doi.org/10.1038/srep15137 pmid: 26450563
23 Kocer H, Butun  S, Li Z,  Aydin K. Reduced near-infrared absorption using ultra-thin lossy metals in Fabry-Perot cavities. Scientific Reports, 2015, 5(1): 8157
https://doi.org/10.1038/srep08157 pmid: 25640732
24 Li Z, Butun  S, Aydin K. Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films. ACS Photonics, 2015, 2(2): 183–188
https://doi.org/10.1021/ph500410u
25 Yan M. Metal-insulator-metal light absorber: a continuous structure. Journal of Optics, 2013, 15(2): 025006
https://doi.org/10.1088/2040-8978/15/2/025006
26 You J B, Lee  W J, Won  D, Yu K. Multiband perfect absorbers using metal-dielectric films with optically dense medium for angle and polarization insensitive operation. Optics Express, 2014, 22(7): 8339–8348
https://doi.org/10.1364/OE.22.008339 pmid: 24718208
27 Brahmachari K, Ray  M. Performance of admittance loci based design of plasmonic sensor at infrared wavelength. Optical Engineering, 2013, 52(8): 087112 
https://doi.org/10.1117/1.OE.52.8.087112
28 Brahmachari K, Ray  M. Admittance loci based design of a nanobioplasmonic sensor and its performance analysis. Sensors and Actuators. B: Chemical, 2015, 208: 283–290
https://doi.org/10.1016/j.snb.2014.11.046
29 Badsha M A, Jun  Y C, Hwangbo  C K. Admittance matching analysis of perfect absorption in unpatterned thin films. Optics Communications, 2014, 332(4): 206–213
https://doi.org/ 10.1016/j.optcom.2014.07.004
30 Palik E D. Handbook of Optical Constants of Solids. San Diego, CA: Academic Press, 1985
31 MacLeod H A. Thin-film Optical Filters. Boca Raton: CRC Press, 2017
32 Fang X, Zhao  C Y. Unified analyses and optimization for achieving perfect absorption of layered absorbers with ultrathin films. International Journal of Heat and Mass Transfer, 2017, 111: 1098–1106
https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.085
33 Watjen J I, Bright  T J, Zhang  Z M, Muratore  C, Voevodin A A. Spectral radiative properties of tungsten thin films in the infrared. International Journal of Heat and Mass Transfer, 2013, 61(6): 106–113
https://doi.org/10.1016/j.ijheatmasstransfer.2013.01.063
[1] LI Youjie, LUO Peiqing, ZHOU Zhibin, CUI Rongqiang, HUANG Jianhua, WANG Jingxiao. Application of rapid thermal processing on SiN thin film to solar cells[J]. Front. Energy, 2008, 2(4): 519-523.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed