Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2018, Vol. 12 Issue (2) : 249-258    https://doi.org/10.1007/s11708-018-0547-1
RESEARCH ARTICLE
Decoration of vertically aligned TiO2 nanotube arrays with WO3 particles for hydrogen fuel production
Heba ALI1(), N. ISMAIL1, M. S. AMIN2, Mohamed MEKEWI3
1. Physical Chemistry Department, National Research Centre, Dokki, Cairo 12622, Egypt
2. Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo 12622, Egypt; Chemistry Department, Faculty of Science, Taibah University, Madinah Munawwarah, Saudi Arabia;
3. Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo 12622, Egypt
 Download: PDF(471 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

WO3 decorated photoelectrodes of titanium nanotube arrays (W-oxide TNTAs) were synthesized via a two-step process, namely, electrochemical oxidation of titanium foil and electrodeposition of W-oxide for various interval times of 1, 2, 3, 5, and 20 min to improve the photoelectrochemical performance and the amount of hydrogen generated. The synthesized photoelectrodes were characterized by various characterization techniques. The presence of tungsten in the modified TNTAs was confirmed using energy dispersive X-ray spectroscopy (EDX). Field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscope (HRTEM) proved the deposition of W-oxide as small particles staked up on the surface of the tubes at lower deposition time whereas longer times produced large and aggregate particles to mostly cover the surface of TiO2 nanotubes. Additionally, the incorporation of WO3 resulted in a shift of the absorption edge toward visible light as confirmed by UV-Vis diffuse reflectance spectroscopy and a decrease in the estimated band gap energy values hence, modified TNTAs facilitated a more efficient utilization of solar light for water splitting. From the photoelectrochemical measurement data, the optimal photoelectrode produced after 2 min of deposition time improved the photo conversion efficiency and the hydrogen generation by 30% compared to that of the pure TNTA.

Keywords titanium dioxide nanotube arrays      potentiostaticanodization      electrodeposition method      tungsten oxide      photoelectrochemical water splitting     
Corresponding Author(s): Heba ALI   
Just Accepted Date: 25 January 2018   Online First Date: 26 March 2018    Issue Date: 04 June 2018
 Cite this article:   
Heba ALI,N. ISMAIL,M. S. AMIN, et al. Decoration of vertically aligned TiO2 nanotube arrays with WO3 particles for hydrogen fuel production[J]. Front. Energy, 2018, 12(2): 249-258.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-018-0547-1
https://academic.hep.com.cn/fie/EN/Y2018/V12/I2/249
Fig.1  Schematic illustration of the synthesis process of vertically aligned TiO2 nanotube arrays modified with WO3
Fig.2  Schematic presentation of the experimental setup for the photoelectrochemical measurements. C, R and W are connected to Pt, Ag/AgCl and W-TNTAs, respectively
Fig.3  FESEM images
Sample Element Wt/% At/%
TNTA O 25.1 50.1
T 74.9 49.9
TW 2 min O 24.4 49.3
T 74.8 50.6
W 0.8 0.1
Tab.1  Elemental composition of pure TiO2 nanotube array (TNTA) and TiO2 array modified with W-oxide, prepared after 2 min of deposition time (TW 2 min)
Fig.4  HRTEM images
Fig.5  XRD patterns
Fig.6  UV-Vis diffuse reflectance spectra
Fig.7  Tauc plot for band gap evaluation
Fig.8  Photocurrent density-potential characteristics of (a) T, (b) TW 1 min, (c) TW 2 min, (d) TW 3 min, (e) TW 5 min, (f) TW 20 min and the inset figure represents their current density-voltage curves under dark conditions
Fig.9  The charge transfer mechanism in TiO2-WO3 mixed oxide nanotube arrays
Fig.10  Photoconversion efficiency of (a) T, (b) TW 1 min, (C) TW 2 min, (d) TW 3 min, (e) TW 5 min, and (f) TW 20 min
Fig.11  Hydrogen production rate of T, TW 1 min, TW 2 min, TW 3 min, TW 5 min, and TW 20 min under solar simulator illumination (110 mW cm-2) and 0.6 V vs. Ag/AgCl in 1 M KOH containing 10 wt.% of ethylene glycol
1 Hunge Y M, Mahadik M A, Moholkar A V, Bhosale C H. Photoelectrocatalytic degradation of oxalic acid using WO3 and stratified WO3/TiO2 photocatalysts under sunlight illumination. Ultrasonics Sonochemistry, 2017, 35(Pt A): 233–242
https://doi.org/10.1016/j.ultsonch.2016.09.024 pmid: 27720594
2 Van de Krol R, Grätzel M. Photoelectrochemical Hydrogen Production. New York: Springer, 2012
3 Wydrzynski T J, Hillier W. Molecular Solar Fuels. Cambridge: Royal Society of Chemistry, 2012
4 Archer M D, Nozik A J. Nanostructured and Photoelectrochemical Systems for Solar Photon Conversion. London: Imperial College Press, 2008
5 Grätzel M. Photoelectrochemical cells. Nature, 2001, 414(6861): 338–344
https://doi.org/10.1038/35104607 pmid: 11713540
6 Grimes C A, Varghese O K, Ranjan S. Light, Water, Hydrogen: The Solar Generation of Hydrogen by Water Photoelectrolysis. New York: Springer, 2008
7 Bhattacharyya R, Misra A, Sandeep K C. Photovoltaic solar energy conversion for hydrogen production by alkaline water electrolysis: conceptual design and analysis. Energy Conversion and Management, 2017, 133: 1–13
https://doi.org/10.1016/j.enconman.2016.11.057
8 Viswanathan B, Subramanian V, Lee J S. Materials and Processes for Solar Fuel Production. New York: Springer, 2014
9 Ge M, Cao C, Huang J, Li S, Chen Z, Zhang K Q, Al-Deyab S S, Lai Y. A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications. Journal of Materials Chemistry. A, 2016, 4(18): 6772–6801
https://doi.org/10.1039/C5TA09323F
10 Pagnout C, Jomini S, Dadhwal M, Caillet C, Thomas F, Bauda P. Role of electrostatic interactions in the toxicity of titanium dioxide nanoparticles toward Escherichia coli. Colloids and Surfaces. B, Biointerfaces, 2012, 92: 315–321
https://doi.org/10.1016/j.colsurfb.2011.12.012 pmid: 22218337
11 Khataee A, Mansoori G A. Nanostructured Materials Titanium Dioxide Properties, Preparation and applications. Singapore: World Scientific, 2012
12 Anpo M, Kamat P V. Environmentally Benign Photocatalysts: Applications of Titanium Oxide-Based Materials. London: Springer, 2010
13 Momeni M M, Ghayeb Y, Ghonchegi Z. Photocatalytic properties of Cr–TiO2 nanocomposite photoelectrodes produced by electrochemical anodisation of titanium. Surface Engineering, 2016, 32(7): 520–525
https://doi.org/10.1179/1743294415Y.0000000061
14 Momeni M M, Ghayeb Y. Photoelectrochemical water splitting on chromium-doped titanium dioxide nanotube photoanodes prepared by single-step anodizing. Journal of Alloys and Compounds, 2015, 637: 393–400
https://doi.org/10.1016/j.jallcom.2015.02.137
15 Momeni M M, Ghayeb Y. Fabrication, characterization and photoelectrochemical performance of chromium-sensitized titania nanotubes as efficient photoanodes for solar water splitting. Journal of Solid State Electrochemistry, 2016, 20(3): 683–689
https://doi.org/10.1007/s10008-015-3093-3
16 Momeni M M. Dye-sensitized solar cell and photocatalytic performance of nanocomposite photocatalyst prepared by electrochemical anodization. Bulletin of Materials Science, 2016, 39(6): 1389–1395
https://doi.org/10.1007/s12034-016-1280-1
17 Momeni M M, Ghayeb Y. Fabrication, characterization and photoelectrochemical behavior of Fe–TiO2 nanotubes composite photoanodes for solar water splitting. Journal of Electroanalytical Chemistry, 2015, 751: 43–48
https://doi.org/10.1016/j.jelechem.2015.05.035
18 Momeni M M, Ghayeb Y. Cobalt modified tungsten–titania nanotube composite photoanodes for photoelectrochemical solar water splitting. Journal of Materials Science Materials in Electronics, 2016, 27(4): 3318–3327
https://doi.org/10.1007/s10854-015-4161-2
19 Ghayeb Y, Momeni M M. Solar water-splitting using palladium modified tungsten trioxide-titania nanotube photocatalysts. Journal of Materials Science Materials in Electronics, 2016, 27(2): 1805–1811
https://doi.org/10.1007/s10854-015-3957-4
20 Momeni M M, Ghayeb Y, Ghonchegi Z. Fabrication and characterization of copper doped TiO2 nanotube arrays by in situ electrochemical method as efficient visible-light photocatalyst. Ceramics International, 2015, 41(7): 8735–8741
https://doi.org/10.1016/j.ceramint.2015.03.094
21 Ge M Z, Cao C Y, Li S H, Tang Y X, Wang L N, Qi N, Huang J Y, Zhang K Q, Al-Deyab S S, Lai Y K. In situ plasmonic Ag nanoparticle anchored TiO2 nanotube arrays as visible-light-driven photocatalysts for enhanced water splitting. Nanoscale, 2016, 8(9): 5226–5234
https://doi.org/10.1039/C5NR08341A pmid: 26878901
22 Momeni M M, Ghayeb Y. Photoinduced deposition of gold nanoparticles on TiO2-WO3 nanotube films as efficient photoanodes for solar water splitting. Applied Physics. A, Materials Science & Processing, 2016, 122(6): 620
https://doi.org/10.1007/s00339-016-0145-1
23 Momeni M M, Ghayeb Y. Visible light-driven photoelectrochemical water splitting on ZnO–TiO2 heterogeneous nanotube photoanodes. Journal of Applied Electrochemistry, 2015, 45(6): 557–566
https://doi.org/10.1007/s10800-015-0836-x
24 Momeni M M, Ghayeb Y, Davarzadeh M. Single-step electrochemical anodization for synthesis of hierarchical WO3–TiO2 nanotube arrays on titanium foil as a good photoanode for water splitting with visible light. Journal of Electroanalytical Chemistry, 2015, 739: 149–155
https://doi.org/10.1016/j.jelechem.2014.12.030
25 Ge M Z, Li S H, Huang J Y, Zhang K Q, Al-Deyab S S, Lai Y K. TiO2 nanotube arrays loaded with reduced graphene oxide films: facile hybridization and promising photocatalytic application. Journal of Materials Chemistry. A, 2015, 3(7): 3491–3499
https://doi.org/10.1039/C4TA06354F
26 Ge M, Li Q, Cao C, Huang J, Li S, Zhang S, Chen Z, Zhang K, Al-Deyab S S, Lai Y. One-dimensional TiO2 nanotube photocatalysts for solar water splitting. Advancement of Science, 2017, 4(1): 1600152
https://doi.org/10.1002/advs.201600152 pmid: 28105391
27 Beydoun D, Amal R, Low G, McEvoy S. Role of nanoparticles in photocatalysis. Journal of Nanoparticle Research, 1999, 1(4): 439–458
https://doi.org/10.1023/A:1010044830871
28 Iliev V, Tomova D, Rakovsky S, Eliyas A, Puma G L. Enhancement of photocatalytic oxidation of oxalic acid by gold modified WO3/TiO2 photocatalysts under UV and visible light irradiation. Journal of Molecular Catalysis A Chemical, 2010, 327(1–2): 51–57
https://doi.org/10.1016/j.molcata.2010.05.012
29 Lee W J, Shinde P S, Go G H, Ramasamy E. Ag grid induced photocurrent enhancement in WO3 photoanodes and their scale-up performance toward photoelectrochemical H2 generation. International Journal of Hydrogen Energy, 2011, 36(9): 5262–5270
https://doi.org/10.1016/j.ijhydene.2011.02.013
30 Subash B, Krishnakumar B, Pandiyan V, Swaminathan M, Shanthi M. Synthesis and characterization of novel WO3 loaded Ag–ZnO and its photocatalytic activity. Materials Research Bulletin, 2013, 48(1): 63–69
https://doi.org/10.1016/j.materresbull.2012.10.010
31 Khare C, Sliozberg K, Meyer R, Savan A, Schuhmann W, Ludwig A. Layered WO3/TiO2 nanostructures with enhanced photocurrent densities. International Journal of Hydrogen Energy, 2013, 38(36): 15954–15964
https://doi.org/10.1016/j.ijhydene.2013.09.142
32 Rajeshwar K, McConnell R, Licht S. Solar Hydrogen Generation: Toward a Renewable Energy Future. New York: Springer, 2008
33 Choi T, Kim J S, Kim J H. Transparent nitrogen doped TiO2/WO3 composite films for self-cleaning glass applications with improved photodegradation activity. Advanced Powder Technology, 2016, 27(2): 347–353
https://doi.org/10.1016/j.apt.2016.01.005
34 Dozzi M V, Marzorati S, Longhi M, Coduri M, Artiglia L, Selli E. Photocatalytic activity of TiO2-WO3 mixed oxides in relation to electron transfer efficiency. Applied Catalysis B: Environmental, 2016, 186: 157–165
https://doi.org/10.1016/j.apcatb.2016.01.004
35 Srinivasan A, Miyauchi M. Chemically stable WO3 based thin-film for visible light induced oxidation and superhydrophilicity. Journal of Physical Chemistry C, 2012, 116(29): 15421–15426
https://doi.org/10.1021/jp303472p
36 Souvereyns B, Elen K, De Dobbelaere C, Kelchtermans A, Peys N, D’Haen J, Mertens M, Mullens S, Van den Rul H, Meynen V, Cool P, Hardy A, Van Bael M K. Hydrothermal synthesis of a concentrated and stable dispersion of TiO2 nanoparticles. Chemical Engineering Journal, 2013, 223: 135–144
https://doi.org/10.1016/j.cej.2013.02.047
37 Somasundaram S, Chenthamarakshan C R, de Tacconi N R, Basit N A, Rajeshwar K. Composite WO3–TiO2 films: pulsed electrodeposition from a mixed bath versus sequential deposition from twin baths. Electrochemistry Communications, 2006, 8(4): 539–543
https://doi.org/10.1016/j.elecom.2006.01.016
38 Shiyanovskaya I, Hepel M. Bicomponent WO3/TiO2 films as photoelectrodes. Journal of the Electrochemical Society, 1999, 146(1): 243–249
https://doi.org/10.1149/1.1391593
39 Shiyanovskaya I, Hepel M. Decrease of recombination losses in bicomponent WO3/TiO2 films photosensitized with cresyl violet and thionine. Journal of the Electrochemical Society, 1998, 145(11): 3981–3985
https://doi.org/10.1149/1.1838902
40 He T, Ma Y, Cao Y, Hu X, Liu H, Zhang G, Yang W, Yao J. Photochromism of WO3 colloids combined with TiO2 nanoparticles. Journal of Physical Chemistry. B, 2002, 106(49): 12670–12676
https://doi.org/10.1021/jp026031t
41 He Y, Wu Z, Fu L, Li C, Miao Y, Cao L, Fan H, Zou B. Photochromism and size effect of WO3 and WO3-TiO2 aqueous sol. Chemistry of Materials, 2003, 15(21): 4039–4045
https://doi.org/10.1021/cm034116g
42 Paramasivam I, Nah Y C, Das C, Shrestha N K, Schmuki P. WO3/TiO2 nanotubes with strongly enhanced photocatalytic activity. Chemistry (Weinheim an der Bergstrasse, Germany), 2010, 16(30): 8993–8997
https://doi.org/10.1002/chem.201000397 pmid: 20645336
43 Nazari M, Golestani-Fard F, Bayati R, Eftekhari-Yekta B. Enhanced photocatalytic activity in anodized WO3-loaded TiO2 nanotubes. Superlattices and Microstructures, 2015, 80: 91–101
https://doi.org/10.1016/j.spmi.2014.12.008
44 Momeni M, Ghayeb Y. Fabrication, characterization and photocatalytic properties of Au/TiO2-WO3 nanotubular composite synthesized by photo-assisted deposition and electrochemical anodizing methods. Journal of Molecular Catalysis. A: Chemical, 2016, 417: 107–115
https://doi.org/10.1016/j.molcata.2016.03.024
45 Zhong M, Zhang G, Yang X. Preparation of Ti mesh supported WO3/TiO2 nanotubes composite and its application for photocatalytic degradation under visible light. Materials Letters, 2015, 145: 216–218
https://doi.org/10.1016/j.matlet.2015.01.091
46 Ali H, Ismail N, Hegazy A, Mekewi M. A novel photoelectrode from TiO2-WO3 nanoarrays grown on FTO for solar water splitting. Electrochimica Acta, 2014, 150: 314–319
https://doi.org/10.1016/j.electacta.2014.10.142
47 de Tacconi N R, Chenthamarakshan C R, Rajeshwar K, Pauporté T, Lincot D. Pulsed electrodeposition of WO3–TiO2 composite films. Electrochemistry Communications, 2003, 5(3): 220–224
https://doi.org/10.1016/S1388-2481(03)00021-3
48 Ruan C, Paulose M, Varghese O K, Mor G K, Grimes C A. Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte. Journal of Physical Chemistry. B, 2005, 109(33): 15754–15759
https://doi.org/10.1021/jp052736u pmid: 16852999
49 Ali H, Ismail N, Mekewi M, Hengazy A C. Facile one-step process for synthesis of vertically aligned cobalt oxide doped TiO2 nanotube arrays for solar energy conversion. Journal of Solid State Electrochemistry, 2015, 19(10): 3019–3026
https://doi.org/10.1007/s10008-015-2919-3
50 Ma J, Yang M, Sun Y, Li C, Li Q, Gao F, Yu F, Chen J. Fabrication of Ag/TiO2 nanotube array with enhanced photocatalytic degradation of aqueous organic pollutant. Physica E, Low-Dimensional Systems and Nanostructures, 2014, 58: 24–29
https://doi.org/10.1016/j.physe.2013.11.006
51 Li Y, Yu H, Zhang C, Song W, Li G, Shao Z, Yi B. Effect of water and annealing temperature of anodized TiO2 nanotubes on hydrogen production in photoelectrochemical cell. Electrochimica Acta, 2013, 107: 313–319
https://doi.org/10.1016/j.electacta.2013.05.090
52 Xie K, Sun L, Wang C, Lai Y, Wang M, Chen H, Lin C. Photoelectrocatalytic properties of Ag nanoparticles loaded TiO2 nanotube arrays prepared by pulse current deposition. Electrochimica Acta, 2010, 55(24): 7211–7218
https://doi.org/10.1016/j.electacta.2010.07.030
53 Bai S, Liu H, Sun J, Tian Y, Chen S, Song J, Luo R, Li D, Chen A, Liu C C. Improvement of TiO2 photocatalytic properties under visible light by WO3/TiO2 and MoO3/TiO2 composites. Applied Surface Science, 2015, 338: 61–68
https://doi.org/10.1016/j.apsusc.2015.02.103
54 Smith Y R, Sarma B, Mohanty S K, Misra M. Formation of TiO2–WO3 nanotubular composite via single-step anodization and its application in photoelectrochemical hydrogen generation. Electrochemistry Communications, 2012, 19: 131–134
https://doi.org/10.1016/j.elecom.2012.03.023
55 Palmas S, Castresana P A, Mais L, Vacca A, Mascia M, Ricci P C. TiO2–WO3 nanostructured systems for photoelectrochemical applications. RSC Advances, 2016, 6(103): 101671–101682
https://doi.org/10.1039/C6RA18649A
56 Yoong L S, Chong F K, Dutta B K. Development of copper-doped TiO2 photocatalyst for hydrogen production under visible light. Energy, 2009, 34(10): 1652–1661
https://doi.org/10.1016/j.energy.2009.07.024
57 Kuvarega A T, Krause R W M, Mamba B B. Multiwalled carbon nanotubes decorated with nitrogen, palladium co-doped TiO2 (MWCNT/N, Pd co-doped TiO2) for visible light photocatalytic degradation of Eosin Yellow in water. Journal of Nanoparticle Research, 2012, 14(4): 776–791
https://doi.org/10.1007/s11051-012-0776-x
58 Kubelka P, Munk F. A contribution to the look of the paints. Journal of Technical Physics, 1931, 12: 593–601
59 Riboni F, Bettini L G, Bahnemann D W, Selli E. WO3-TiO2 vs. TiO2 photocatalysts: effect of the W precursor and amount on the photocatalytic activity of mixed oxides. Catalysis Today, 2013, 209: 28–34
https://doi.org/10.1016/j.cattod.2013.01.008
60 Park J H, Park O O, Kim S. Photoelectrochemical water splitting at titanium dioxide nanotubes coated with tungsten trioxide. Applied Physics Letters, 2006, 89(16): 163106
https://doi.org/10.1063/1.2357878
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed