Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2018, Vol. 12 Issue (2) : 198-224    https://doi.org/10.1007/s11708-018-0552-4
FEATURE ARTICLE
Redox flow batteries—Concepts and chemistries for cost-effective energy storage
Matthäa Verena HOLLAND-CUNZ, Faye CORDING, Jochen FRIEDL, Ulrich STIMMING()
Chemistry-School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
 Download: PDF(675 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Electrochemical energy storage is one of the few options to store the energy from intermittent renewable energy sources like wind and solar. Redox flow batteries (RFBs) are such an energy storage system, which has favorable features over other battery technologies, e.g. solid state batteries, due to their inherent safety and the independent scaling of energy and power content. However, because of their low energy-density, low power-density, and the cost of components such as redox species and membranes, commercialised RFB systems like the all-vanadium chemistry cannot make full use of the inherent advantages over other systems. In principle, there are three pathways to improve RFBs and to make them viable for large scale application: First, to employ electrolytes with higher energy density. This goal can be achieved by increasing the concentration of redox species, employing redox species that store more than one electron or by increasing the cell voltage. Second, to enhance the power output of the battery cells by using high kinetic redox species, increasing the cell voltage, implementing novel cell designs or membranes with lower resistance. The first two means reduce the electrode surface area needed to supply a certain power output, thereby bringing down costs for expensive components such as membranes. Third, to reduce the costs of single or multiple components such as redox species or membranes. To achieve these objectives it is necessary to develop new battery chemistries and cell configurations. In this review, a comparison of promising cell chemistries is focused on, be they all-liquid, slurries or hybrids combining liquid, gas and solid phases. The aim is to elucidate which redox-system is most favorable in terms of energy-density, power-density and capital cost. Besides, the choice of solvent and the selection of an inorganic or organic redox couples with the entailing consequences are discussed.

Keywords electrochemical energy storage      redox flow battery      vanadium     
Corresponding Author(s): Ulrich STIMMING   
Just Accepted Date: 12 February 2018   Online First Date: 04 April 2018    Issue Date: 04 June 2018
 Cite this article:   
Matthäa Verena HOLLAND-CUNZ,Faye CORDING,Jochen FRIEDL, et al. Redox flow batteries—Concepts and chemistries for cost-effective energy storage[J]. Front. Energy, 2018, 12(2): 198-224.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-018-0552-4
https://academic.hep.com.cn/fie/EN/Y2018/V12/I2/198
Fig.1  Schematics of different electrochemical energy storage devices (The location where the active material is stored is highlighted in red)
Fig.2  Ragone plot for four electrochemical devices, supercapacitors, batteries, redox flow batteries, and fuel cells
Fig.3  Figure illustrating the creation of a RFB system through the building up of individual cells into modular stacks (Reprinted with permission from Ref. [29])
Fig.4  A schematic diagram of the all-vanadium RFB in discharge mode
Type Advantages Challenges Ref.
Solid- liquid
(e.g. Zn/Br)
High energy density due to solid state • Internal short-circuits;
• High self-discharge
[58]
Slurries
(e.g. LiCoO2/Li4Ti5O12)
High energy density due to high concentration of redox species • Limited conductivity of the slurries;
• High viscosities;
• Potentially sluggish kinetics of non-dissolved species
[59]
Mediated FB (Ferrocene as shuttle and LiFePO4 as storage material) • Low viscosity of shuttles;
• Good conductivity
• Limited variety of suitable redox mediators;
• Complicated reaction mechanism
[61,62]
Liquid-liquid
(e.g. Fe/Cr)
Capacity that is only limited by the size of the tank Lower concentration of charge carriers than in the solid state [46]
Liquid-gaseous
(e.g. V/O2 or H2/V)
• Low costs for gaseous species;
• High concentrations of gaseous species can be reached, therefore high energy density
• Low energy efficiency;
• Self-discharge;
• Oxygen gas permeation through membrane need for catalyst loading on electrode;
• Pt leaching into the cell
[49,52]
Tab.1  Summary of advantages and drawbacks of various RFB concepts
Electrolyte Advantages Challenges Ref.
Aqueous • Environmental friendly;
• Inexpensive;
• High conductivities;
• Often high solubilities for redox species
• Small potential window
• Restriction by temperature range
• Corrosion processes by chloride ions
[71]
Non-Aqueous • Larger potential window than aqueous electrolytes;
• Larger temperature range than aqueous electrolytes
• Potential window limited by decomposition of additives;
• Safety risks;
• Low conductivity;
• Environmental hazards;
• Higher (maintenance) costs
[70,73]
Room temperature ionic liquids • Non-volatile;
• Non-flammable;
• Highly conductive;
• Chemically stable;
• Wide potential window;
• Environmental friendly?
• High viscosity;
• High (maintenance) costs;
• Low conductivity
[7779]
Tab.2  Summary of advantages and challenges of various types of electrolytes used in RFBs
Fig.5  Performance data of a VRFB employing 3 M vanadium in 5 M total sulfate electrolyte with 1 wt% H3PO4 + 2 wt% ammonium sulphate additives
Fig.6  Cyclic voltammograms recorded at 0.5 V/s at a glassy carbon electrode in 0.5 M TEABF4 in CH3CN (dashed line) and 0.01 M V(acac)3 and 0.5 M TEABF4 in CH3CN (solid line) (Measurements were taken at room temperature. Reprinted with permission from Ref. [105])
Fig.7  A co-laminar flow cell by Goulet et al. [111]
Fig.8  Schematic representation of the polymer-based RFB and the fundamental electrode reactions of the TEMPO and viologen radicals
Fig.9  Performance data of a polymer-based RFB presented by Winsberg et al. [118]
Fig.10  Chemical structure of 9,10-anthraquinone-2,7-disulphonic acid
Fig.11  Alloxazine 7/8-carboxylic acid (ACA)
Fig.12  Redox reactions in the negative and positive electrolyte during charge and discharge in a hybrid TEMPO – Li RFB
Redox couples U0 vs. SHE Aqueous/non-aqueous k0/(cm s1) Concentration Number of electrons Energy content realized Reference
Br/Br2 1.09 V Aqueous 2 3 MWh [32,135]
Zn/Zn2+ −0.76 V Aqueous - 2
Fe2+/Fe3+ 0.77 V Aqueous 6 × 105 2 M 1 12 kWh in 1981 [136,137]
Cr2+/Cr3+ −0.41 Aqueous 2.2 × 105 2 M 1
VO2+/VO2+ 1.0 V Aqueous 106 1.6 – 2 M 1 800 MWh contract signed in 2016 [26,138]
V2+/V3+ −0.25 V Aqueous 106 1.6 – 2 M 1
Br3/Br +1.09 V Aqueous 4 × 105 1 M NaBr saturated with Br 2 120 MWh in 2002 [42,139,140]
S42–/S22 −0.265 V Aqueous 3 × 106 2 M Na2S 2
I3/I +0.54 V Aqueous - 5.0 M ZnI2 2 Approx. 0.01 Wh in 2015 [116]
Zn/Zn2+ −0.76 V Aqueous - 5.0 M ZnI2 2
Ce3+/Ce4+ +1.28 to+1.72 V Aqueous - 0.2 M Ce(III) methanesulfonate
(0.5 M methanesulfonic acid)
1 Approx. 3 Wh in 2011 [141]
Zn/Zn2+ −0.76 V Aqueous - 1.5 M zinc methanesulfonate
(0.5 M methanesulfonic acid)
2
Mn2+/Mn3+ +1.3 V vs Ag/AgCl Aqueous - 1 M MnSO4 + 1.5 M TiOSO4
(3 M H2SO4)
1 Approx. 20 Wh in 2015 [142]
Ti3+/TiO22+ ~–0.09 V vs Ag/AgCl Aqueous - 1 M MnSO4 + 1.5 M TiOSO4
(3 M H2SO4)
1
Fe2+/Fe3+ +0.77 V Aqueous 6 × 105 1 M FeCl2 + 0.5 M CdSO4
(3 M HCl)
No flow cell demonstrated. [143]
Cd/Cd2+ −0.40 V Aqueous - 1 M FeCl2 + 0.5 M CdSO4
(3 M HCl)
2
NiOOH/Ni(OH)2 0.490 V Aqueous - 1 M ZnO (10 M KOH) 2 Approx. 0.3Wh in 2007 [144]
Zn/Zn(OH)42– −1.215 V - 1 M ZnO (10 M KOH) 2
VIII(acac)3/[VIV(acac)3]+ +0.45 V vs. Ag/Ag+ Non-aqueous 1.3 × 104 0.01 M
(0.5 M TEABF4/acetonitrile)
1 No flow cell demonstrated. [66,105]
VIII(acac)3/[VII(acac)3] −1.8 V vs. Ag/Ag+ Non-aqueous - 1
RuIII(acac)3/[RuIV(acac)3]+ +1.0 V vs. SCE Non-aqueous 3.4 × 103 0.1 M
(0.5 M TEABF4/acetonitrile)
1 Approx 0.2 Wh in 2011 [145,146]
RuIII(acac)3/[RuII(acac)3] −0.85 V vs. SCE Non-aqueous 1
MnIII(acac)3/[MnIV(acac)3]+ +0.7 V vs. Ag/Ag+ Non-aqueous - 0.05 M
(0.5 M TEABF4/acetonitrile)
1 No flow cell demonstrated. [67]
MnIII(acac)3/[MnII(acac)3] −0.4 V vs. Ag/Ag+ Non-aqueous - 1
CrIII(acac)3/[CrIV(acac)3]+ +1.2 V vs. Ag/Ag+ Non-aqueous - 0.05 M
(0.5 M TEABF4/acetonitrile)
1 No flow cell demonstrated. [105]
CrIII(acac)3/[CrII(acac)3]/ −2.2 vs. Ag/Ag+ Non-aqueous - 1
[RuII(bpy)3]2+ /[RuIII(bpy)3]3+ +1.0 V vs. Ag/Ag+ Non-aqueous - 0.02 M
(0.1 M Et4NBF4/acetonitrile)
1 n.a. [68]
[RuII(bpy)3]2+/[RuI(bpy)3]+ −1.6 V vs. Ag/Ag+ Non-aqueous 1
[V(mnt)3]2–/[V(mnt)] 0.856 V Non-aqueous - 0.02 M
(0.1 M TBAPF6/acetonitrile)
1 No flow cell demonstrated. [147]
[V(mnt)3]2–/[V(mnt)3]3– −0.227 V Non-aqueous - 1
Fc/Fc+ (Fc= ferrocene) 0.041 V vs. Ag/Ag+ Non-aqueous - 0.01 M
(1 M TEAPF6/acetonitrile)
1 Approx. 0.3 mWh [148]
Cc/Cc+ (Cc= cobaltocene) −1.290 V vs. Ag/Ag+ Non-aqueous - 1
CoII(acacen)/[CoI(acacen)] −0.2 V vs. Ag/Ag+ Non-aqueous - 0.01 M
(0.1 M TEAPF6/acetonitrile)
1 No flow cell demonstrated. [149]
CoII(acacen)/[CoIII(acacen)]+ −2.2 V vs Ag/Ag+ Non-aqueous - 1
QCl4/QH2Cl4
(QCl4 = Tetrachloro-p-benzoquinone)
0.71 V Aqueous - 0.5 M CdSO4
(1 M (NH4)2SO4 + 0.5 M H2SO4)
2 Approx. 0.2 Wh [150]
Cd/Cd2+ −0.402 Aqueous - 2
BQDS/H2BQDS
(BQDS= 1,2-benzoquinone-3,5-disulfonic acid)
0.85 V Aqueous 1.55 × 104 0.2 M
(1 M H2SO4)
2 Approx. 0.1 Wh [151]
AQS/H2AQS
(AQS= anthraquinone-2-sulfonic acid)
0.09 V 2.25 × 104 0.2 M
(1 M H2SO4)
2
TEMPO/TEMPO+ 0.30 V vs. Ag Non-aqueous - 0.1 M
(1 M NaClO4/acetonitrile)
1 <1 mWh [69]
N-methylphthalimide/
N-methylphthalimide-•
−1.30 V vs. Ag Non-aqueous - 0.1 M
(1 M NaClO4/acetonitrile)
1
TEMPTMA/TEMPTMA+ 0.79 vs. AgCl/Ag Aqueous 4.2 × 103 2 M
(in NaCl)
1 Approx. 0.6 Wh [117]
Methyl Viol2+ /Methyl Viol+• −0.63 V vs. AgCl/Ag 3.3 × 103 1
Polythiophene/Polythiophene+ +0.5 V vs. Ag/Ag+ Non-aqueous - Suspension of polythiophene (0.1 eq. L1 of thiophene repeating units)
(1 M TEABF4/propylene carbonate)
1 Approx. 1.5 mWh [152]
Polythiophene/Polythiophene −2.0 V vs. Ag/Ag+ Non-aqueous - 1
TEMPO/TEMPO+ +0.7 V vs. Ag/AgCl Aqueous (4.5±0.1) × 104 polymer solutions
(2 M NaCl)
1 Approx. 80 mWh [89]
Viol2+/Viol+• ~–0.4 V vs. Ag/AgCl (9±2) × 105 1
Poly(BODIPY)/Poly(BODIPY)+ 0.69 V vs. AgNO3/Ag Non-aqueous - polymer solution
(0.5 M Bu4NClO4/propylene carbonate)
1 Approx. 0.006 mWh [118]
Poly(BODIPY)/Poly(BODIPY) −1.51 V vs. AgNO3/Ag Non-aqueous - 1
Tab.3  Overview of redox reactions of importance for RFBs
1 Yang Z, Zhang J, Kintner-Meyer M C W, Lu X, Choi D, Lemmon J P, Liu J. Electrochemical energy storage for green grid. Chemical Reviews, 2011, 111(5): 3577–3613
https://doi.org/10.1021/cr100290v pmid: 21375330
2 Offer G J, Howey D, Contestabile M, Clague R, Brandon N P. Comparative analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system. Energy Policy, 2010, 38(1): 24–29
https://doi.org/10.1016/j.enpol.2009.08.040
3 Ramachandran S, Stimming U. Well to wheel analysis of low carbon alternatives for road traffic. Energy & Environmental Science, 2015, 8(11): 3313–3324
https://doi.org/10.1039/C5EE01512J
4 Scrosati B, Garche J. Lithium batteries: status, prospects and future. Journal of Power Sources, 2010, 195(9): 2419–2430
https://doi.org/10.1016/j.jpowsour.2009.11.048
5 Armand M, Tarascon J M. Building better batteries. Nature, 2008, 451(7179): 652–657
https://doi.org/10.1038/451652a pmid: 18256660
6 Vetter K J. Electrochemical Kinetics—Theoretical and Experimental Aspects. English ed. New York/London: Academic Press Inc., 1967
7 Friedl J, Stimming U. The importance of electrochemistry for the development of sustainable mobility. In: Bruhns H, ed. Energ. Forsch. Und Konzepte, Arbeitskreis Energie (AKE) in der Deutschen Physikalischen Gesellschaft, 2014
8 McCreery R L. Advanced carbon electrode materials for molecular electrochemistry. Chemical Reviews, 2008, 108(7): 2646–2687
https://doi.org/10.1021/cr068076m pmid: 18557655
9 Fischer U, Saliger R, Bock V, Petricevic R, Fricke J. Carbon aerogels as electrode material in supercapacitors. Journal of Porous Materials, 1997, 4(4): 281–285
https://doi.org/10.1023/A:1009629423578
10 Barbieri O, Hahn M, Herzog A, Kötz R. Capacitance limits of high surface area activated carbons for double layer capacitors. Carbon, 2005, 43(6 ): 1303–1310
https://doi.org/10.1016/j.carbon.2005.01.001
11 Tessonnier J P, Rosenthal D, Hansen T W, Hess C, Schuster M E, Blume R, Girgsdies F, Pfänder N, Timpe O, Su D S. Analysis of the structure and chemical properties of some commercial carbon nanostructures. Carbon, 2009, 47(7): 1779–1798
https://doi.org/10.1016/j.carbon.2009.02.032
12 Béguin F, Presser V, Balducci A, Frackowiak E. Carbons and electrolytes for advanced supercapacitors. Advanced Materials, 2014, 26(14): 2219–2251
https://doi.org/10.1002/adma.201304137 pmid: 24497347
13 Ruiz V, Blanco C, Raymundo-Piñero E, Khomenko V, Béguin F, Santamaría R. Effects of thermal treatment of activated carbon on the electrochemical behaviour in supercapacitors. Electrochimica Acta, 2007, 52(15): 4969–4973
https://doi.org/10.1016/j.electacta.2007.01.071
14 Marder M P. Condensed Matter Physics. 2nd ed. Hoboken: John Wiley & Sons, Inc., 2010
15 Zeier W G, Janek J. A solid future for battery development. Nature Energy, 2016, 1: 1–4
https://doi.org/10.1038/nenergy.2016.141
16 Lin D, Liu Y, Cui Y. Reviving the lithium metal anode for high-energy batteries. Nature Nanotechnology, 2017, 12(3): 194–206
https://doi.org/10.1038/nnano.2017.16 pmid: 28265117
17 Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y, Zhang J G. Lithium metal anodes for rechargeable batteries. Energy & Environmental Science, 2014, 7(2): 513–537
https://doi.org/10.1039/C3EE40795K
18 Friedl J, Stimming U. Model catalyst studies on hydrogen and ethanol oxidation for fuel cells. Electrochimica Acta, 2013, 101: 41–58
https://doi.org/10.1016/j.electacta.2012.12.130
19 Schmickler W, Santos E. Interfacial Electrochemistry. 2nd ed. Berlin: Springer, 2010
https://doi.org/10.1007/978-3-642-04937-8
20 Zhang J, Vukmirovic M B, Xu Y, Mavrikakis M, Adzic R R. Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angewandte Chemie International Edition, 2005, 44(14): 2132–2135
https://doi.org/10.1002/anie.200462335 pmid: 15714453
21 Greeley J, Stephens I E L, Bondarenko A S, Johansson T P, Hansen H A, Jaramillo T F, Rossmeisl J, Chorkendorff I, Nørskov J K. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nature Chemistry, 2009, 1(7): 552–556
https://doi.org/10.1038/nchem.367 pmid: 21378936
22 Nørskov J K, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin J R, Bligaard T, Jónsson H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. Journal of Physical Chemistry B, 2004, 108(46): 17886–17892
https://doi.org/10.1021/jp047349j
23 Marshall R J, Walsh F C. A review of some recent electrolytic cell designs. Surface Technology, 1985, 24(1): 45–77
https://doi.org/10.1016/0376-4583(85)90015-9
24 Walsh F C, Pletcher D. Electrochemical engineering and cell design. In: Pletcher D, Tian Z-Q, Williams D (eds.), Developments in Electrochemistry: Science Inspired by Martin Felischmann. Hoboken: John Wiley & Sons, 2014: 95–112
25 Bond M, Henderson T L E, Mann D R, Mann T F, Thormann W, Zoski C G. A fast electron transfer rate for the oxidation of ferrocene in acetonitrile or dichloromethane at platinum disk ultramicroelectrodes. Analytical Chemistry, 1988, 60(18): 1878–1882
https://doi.org/10.1021/ac00169a008
26 Friedl J, Stimming U. Determining electron transfer kinetics at porous electrodes. Electrochimica Acta, 2017, 227: 235–245
https://doi.org/10.1016/j.electacta.2017.01.010
27 Friedl J, Bauer C M, Rinaldi A, Stimming U. Electron transfer kinetics of the VO2+/VO2+– reaction on multi-walled carbon nanotubes. Carbon, 2013, 63: 228–239
https://doi.org/10.1016/j.carbon.2013.06.076
28 Chalamala B R, Soundappan T, Fisher G R, Anstey M R, Viswanathan V V, Perry M L. Redox flow batteries: an engineering perspective. Proceedings of the IEEE, 2014, 102(6): 976–999
https://doi.org/10.1109/JPROC.2014.2320317
29 Arenas L F, de León C P, Walsh F C. Engineering aspects of the design, construction and performance of modular redox flow batteries for energy storage. Journal of Energy Storage, 2017, 11: 119–153
https://doi.org/10.1016/j.est.2017.02.007
30 Remick R J, Ang P G, Hearn B E, Kalafut S J, Speckman T W. Electrically rechargeable anionically active reduction-oxidation electrical storage-supply system. US Patent 4485154, 1984
31 Skyllas-Kazacos M, Rychcik M, Robins R G, Fan G. New all-vanadium redox flow cell. Journal of the Electrochemical Society, 1986, 133(5): 1057–1058
https://doi.org/10.1149/1.2108706
32 Lim H S, Lackner A M, Knechtli R C. Zinc-bromine secondary battery. Journal of the Electrochemical Society, 1977, 124(8): 1154–1157
https://doi.org/10.1149/1.2133517
33 Perry M L, Darling R M, Zaffou R. High power density redox flow battery cells. ECS Transactions, 2013, 53(7): 7–16
https://doi.org/10.1149/05307.0007ecst
34 Akhil A A, Huff G, Currier A B, Kaun B C, Rastler D M, Chen S B, Cotter A L, Bradshaw D T, Gauntlett W D. DOE / EPRI 2013 Electricity Storage Handbook in Collaboration with NRECA. Sandia National Laboratories, 2013
35 Eckroad S.Vanadium Redox Flow Batteries: an In-Depth Analysis. Palo Alto, CA: Electric Power Research Institute, 2007
36 Livermore L, Labs N, Livermore L, Labs N, Independence E, Curtright A, Apt J, Generation W, Guttromson R. arpa-e GRIDS program overview. 2010,
37 Zhang M, Moore M, Watson J S, Zawodzinski T A, Counce R M. Capital cost sensitivity analysis of an all-vanadium redox-flow battery. Journal of the Electrochemical Society, 2012, 159(8): A1183–A1188
https://doi.org/10.1149/2.041208jes
38 Viswanathan V, Crawford A, Thaller L, Stephenson D, Kim S, Wang W, Coffey G, Balducci P, Gary Z, Li L, Sprenkle V.Estimation of capital and levelized cost for redox flow batteries. The Electrochemical Society, 2012
39 Noack J, Roznyatovskaya N, Herr T, Fischer P. The chemistry of redox-flow batteries. Angewandte Chemie International Edition, 2015, 54(34): 9776–9809
https://doi.org/10.1002/anie.201410823 pmid: 26119683
40 Pan F, Wang Q. Redox species of redox flow batteries: a review. Molecules, 2015, 20(11): 20499–20517
https://doi.org/10.3390/molecules201119711
41 Weber A Z, Mench M M, Meyers J P, Ross P N, Gostick J T, Liu Q. Redox flow batteries: a review. Journal of Applied Electrochemistry, 2011, 41(10): 1137–1164
https://doi.org/10.1007/s10800-011-0348-2
42 Ponce de León C, Friasferrer A, Gonzalezgarcia J, Szanto D, Walsh F. Redox flow cells for energy conversion. Journal of Power Sources, 2006, 160(1): 716–732
https://doi.org/10.1016/j.jpowsour.2006.02.095
43 Leung P, Shah A A, Sanz L, Flox C, Morante J R, Xu Q, Mohamed M R, Ponce de León C, Walsh F C. Recent developments in organic redox flow batteries: a critical review. Journal of Power Sources, 2017, 360: 243–283
https://doi.org/10.1016/j.jpowsour.2017.05.057
44 Zhao Y, Ding Y, Li Y, Peng L, Byon H R, Goodenough J B, Yu G. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage. Chemical Society Reviews, 2015, 44(22): 7968–7996
https://doi.org/10.1039/C5CS00289C pmid: 26265165
45 Soloveichik G L. Flow batteries: current status and trends. Chemical Reviews, 2015, 115(20): 11533–11558
https://doi.org/10.1021/cr500720t pmid: 26389560
46 Thaller L H. Electrically rechargable redox flow cell. US Patent 3996064, 1976
47 Sum E, Skyllas-Kazacos M. A study of the V (II)/V (III) redox couple for redox flow cell applications. Journal of Power Sources, 1985, 15(2–3): 179–190
https://doi.org/10.1016/0378-7753(85)80071-9
48 Rychcik M, Skyllas-Kazacos S. Evaluation of electrode materials for vanadium redox cell. Journal of Power Sources, 1987, 19(1): 45–54
https://doi.org/10.1016/0378-7753(87)80006-X
49 Hosseiny S S, Saakes M, Wessling M. A polyelectrolyte membrane-based vanadium/air redox flow battery. Electroche-mistry Communications, 2011, 13(8): 751–754
https://doi.org/10.1016/j.elecom.2010.11.025
50 Derr I, Bruns M, Langner J, Fetyan A, Melke J, Roth C. Degradation of all-vanadium redox flow batteries (VRFB) investigated by electrochemical impedance and X-ray photoelectron spectroscopy: Part 2 electrochemical degradation. Journal of Power Sources, 2016, 325: 351–359
https://doi.org/10.1016/j.jpowsour.2016.06.040
51 Miller M A, Bourke A, Quill N, Wainright J S, Lynch R P, Buckley D N, Savinell R F. Kinetic study of electrochemical treatment of carbon fiber microelectrodes leading to in situ enhancement of vanadium flow battery efficiency. Journal of the Electrochemical Society, 2016, 163(9): A2095–A2102
https://doi.org/10.1149/2.1091609jes
52 Yufit V, Hale B, Matian M, Mazur P, Brandon N P. Development of a regenerative hydrogen-vanadium fuel cell for energy storage applications. Journal of the Electrochemical Society, 2013, 160(6): A856–A861
https://doi.org/10.1149/2.086306jes
53 Tucker M C, Srinivasan V, Ross P N, Weber A Z. Performance and cycling of the iron-ion/hydrogen redox flow cell with various catholyte salts. Journal of Applied Electrochemistry, 2013, 43(7): 637–644
https://doi.org/10.1007/s10800-013-0553-2
54 Hewa Dewage H, Wu B, Tsoi A, Yufit V, Offer G, Brandon N. A novel regenerative hydrogen cerium fuel cell for energy storage applications. Journal of Materials Chemistry A, 2015, 3(18): 9446–9450
https://doi.org/10.1039/C5TA00571J
55 Schweiss R, Pritzl A, Meiser C. Parasitic hydrogen evolution at different carbon fiber electrodes in vanadium redox flow batteries. Journal of the Electrochemical Society, 2016, 163(9): A2089–A2094
https://doi.org/10.1149/2.1281609jes
56 Shah A A, Al-Fetlawi H, Walsh F C. Dynamic modelling of hydrogen evolution effects in the all-vanadium redox flow battery. Electrochimica Acta, 2010, 55(3): 1125–1139
https://doi.org/10.1016/j.electacta.2009.10.022
57 Weber J, Samec Z, Marecek V. The effect of anion adsorption on the kinetics of the Fe3+/Fe2+ reacion on Pt and Au electrodes in HClO4. Journal of Electroanalytical Chemistry, 1978, 89(2): 271–288
https://doi.org/10.1016/S0022-0728(78)80190-9
58 Jonshagen B, Lex P. The zinc/bromine battery system for utility and remote area applications. Power Engineering Journal, 1999, 13(3): 142–148
https://doi.org/10.1049/pe:19990307
59 Duduta M, Ho B, Wood V C, Limthongkul P, Brunini V E, Carter W C, Chiang Y M. Semi-solid lithium rechargeable flow battery. Advanced Energy Materials, 2011, 1(4): 511–516
https://doi.org/10.1002/aenm.201100152
60 Huang Q, Wang Q. Next-generation, high-energy-density redox flow batteries. ChemPlusChem, 2015, 80(2): 312–322
https://doi.org/10.1002/cplu.201402099
61 Huang Q, Li H, Grätzel M, Wang Q. Reversible chemical delithiation/lithiation of LiFePO4: towards a redox flow lithium-ion battery. Physical Chemistry Chemical Physics, 2013, 15(6): 1793–1797
https://doi.org/10.1039/C2CP44466F pmid: 23262995
62 Pan F, Yang J, Huang Q, Wang X, Huang H, Wang Q. Redox targeting of anatase TiO2 for redox flow lithium-Ion batteries. Advanced Energy Materials, 2014, 4(15): 1400567
https://doi.org/10.1002/aenm.201400567
63 Zanzola E, Dennison C R, Battistel A, Peljo P, Vrubel H, Amstutz V, Girault H H. Redox solid energy boosters for flow batteries: polyaniline as a case study. Electrochimica Acta, 2017, 235: 664–671
https://doi.org/10.1016/j.electacta.2017.03.084
64 Wang W, Kim S, Chen B, Nie Z, Zhang J, Xia G G, Li L, Yang Z. A new redox flow battery using Fe/V redox couples in chloride supporting electrolyte. Energy & Environmental Science, 2011, 4(10): 4068
https://doi.org/10.1039/c0ee00765j
65 Izutsu K. Electrochemistry in Nonaqueous Solutions. Weinheim: Wiley-VCH GmbH & Co., 2002
66 Liu Q, Sleightholme A E S, Shinkle A A, Li Y, Thompson L T. Non-aqueous vanadium acetylacetonate electrolyte for redox flow batteries. Electrochemistry Communications, 2009, 11(12): 2312–2315
https://doi.org/10.1016/j.elecom.2009.10.006
67 Sleightholme A E S, Shinkle A A, Liu Q, Li Y, Monroe C W, Thompson L T. Non-aqueous manganese acetylacetonate electrolyte for redox flow batteries. Journal of Power Sources, 2011, 196(13): 5742–5745
https://doi.org/10.1016/j.jpowsour.2011.02.020
68 Matsuda Y, Tanaka K, Okada M, Takasu Y, Morita M, Matsumura-Inoue T. A rechargeable redox battery utilizing ruthenium complexes with non-aqueous organic electrolyte. Journal of Applied Electrochemistry, 1988, 18(6): 909–914
https://doi.org/10.1007/BF01016050
69 Li Z, Li S, Liu S, Huang K, Fang D, Wang F, Peng S. Electrochemical properties of an all-organic redox flow battery using 2,2,6,6-Tetramethyl-1-Piperidinyloxy and N-Methylphthalimide. Electrochemical and Solid-State Letters, 2011, 14(12): A171–A173
https://doi.org/10.1149/2.012112esl
70 Gong K, Fang Q, Gu S, Li S F Y, Yan Y. Nonaqueous redox-flow batteries: organic solvents, supporting electrolytes, and redox pairs. Energy & Environmental Science, 2015, 8(12): 3515–3530
https://doi.org/10.1039/C5EE02341F
71 Zoski C G. Handbook of Electrochemistry. Amsterdam: Elsevier B.V., 2007
72 Wei X, Xu W, Vijayakumar M, Cosimbescu L, Liu T, Sprenkle V, Wang W. TEMPO-based catholyte for high-energy density nonaqueous redox flow batteries. Advanced Materials, 2014, 26(45): 7649–7653
https://doi.org/10.1002/adma.201403746 pmid: 25327755
73 Metzger J O. Lösungsmittelfreie organische synthesen. Angewandte Chemie, 1998, 110(21): 3145–3148
https://doi.org/10.1002/(SICI)1521-3757(19981102)110:21<3145::AID-ANGE3145>3.0.CO;2-U
74 Helmut GREIM. Occupational Toxicants: Critical Data Evaluation for MAK Values and Classfication of Carcinogens, Band 19, The MAK-Collection for Occupational Health and Safety. Part 1: MAK Value Documentations (DFG). Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2003
75 Toxicology Data Network. U.S. National Library of Medicine. 2017–7,
76 Ejigu A, Greatorex-Davies P A, Walsh D A. Room temperature ionic liquid electrolytes for redox flow batteries. Electrochemistry Communications, 2015, 54: 55–59
https://doi.org/10.1016/j.elecom.2015.01.016
77 Roth E P, Orendorff C J. How electrolytes influence battery safety. Interface, 2012, 21: 45–50
https://doi.org/10.1149/2.F04122if
78 Friedl J, Markovits E II, Herpich M, Feng G, Kornyshev A A, Stimming U. Interface between an Au(111) surface and an ionic liquid: the influence of water on the double-layer capacitance. ChemElectroChem, 2016, 71: 311–315
https://doi.org/10.1002/celc.201600557
79 O’Mahony A M, Silvester D S, Aldous L, Hardacre C, Compton R G. Effect of water on the electrochemical window and potential limits of room-temperature ionic liquids. Journal of Chemical & Engineering Data, 2008, 53(12): 2884–2891
https://doi.org/10.1021/je800678e
80 Anderson T M, Iii H D P. Ionic liquid flow batteries. 2015–6,
81 Pratt H D III, Leonard J C, Steele L A M, Staiger C L, Anderson T M. Copper ionic liquids: examining the role of the anion in determining physical and electrochemical properties. Inorganica Chimica Acta, 2013, 396: 78–83
https://doi.org/10.1016/j.ica.2012.10.005
82 Prifti H, Parasuraman A, Winardi S, Lim T M, Skyllas-Kazacos M. Membranes for redox flow battery applications. Membranes (Basel), 2012, 2(2): 275–306
https://doi.org/10.3390/membranes2020275 pmid: 24958177
83 Maurya S, Shin S H, Kim Y, Moon S H. A review on recent developments of anion exchange membranes for fuel cells and redox flow batteries. RSC Advances, 2015, 5(47): 37206–37230
https://doi.org/10.1039/C5RA04741B
84 Tang Z. Characterization techniques and electrolyte separator performance investigation for all vanadium redox flow battery. Dissertation for the Doctoral Degree. Knoxville: University of Tennessee, 2013
85 Mohammadi T, Kazacos M S. Modification of anion-exchange membranes for vanadium redox flow battery applications. Journal of Power Sources, 1996, 63(2): 179–186
https://doi.org/10.1016/S0378-7753(96)02463-9
86 Mohammadi T, Skyllas-Kazacos M. Characterisation of novel composite membrane for redox flow battery applications. Journal of Membrane Science, 1995, 98(1–2): 77–87
https://doi.org/10.1016/0376-7388(94)00178-2
87 Mohammadi T, Chieng S C, Skyllas Kazacos M. Water transport study across commercial ion exchange membranes in the vanadium redox flow battery. Journal of Membrane Science, 1997, 133(2): 151–159
https://doi.org/10.1016/S0376-7388(97)00092-6
88 Yuan Z, Duan Y, Zhang H, Li X, Zhang H, Vankelecom I. Advanced porous membranes with ultra-high selectivity and stability for vanadium flow battery. Energy & Environmental Science, 2015, 9: 22–24
https://doi.org/10.1039/C5EE02896E
89 Janoschka T, Martin N, Martin U, Friebe C, Morgenstern S, Hiller H, Hager M D, Schubert U S. An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials. Nature, 2015, 527(7576): 78–81
https://doi.org/10.1038/nature15746 pmid: 26503039
90 Cathro K, Cedzynska K, Constable D C, Hoobin P M. Selection of quaternary ammonium bromides for use in zinc/bromine cells. Journal of Power Sources, 1986, 18(4): 349–370
https://doi.org/10.1016/0378-7753(86)80091-X
91 Yang H S, Park J H, Ra H W, Jin C S, Yang J H. Critical rate of electrolyte circulation for preventing zinc dendrite formation in a zinc-bromine redox flow battery. Journal of Power Sources, 2016, 325: 446–452
https://doi.org/10.1016/j.jpowsour.2016.06.038
92 Higashi S, Lee S W, Lee J S, Takechi K, Cui Y. Avoiding short circuits from zinc metal dendrites in anode by backside-plating configuration. Nature Communications, 2016, 7: 11801
https://doi.org/10.1038/ncomms11801 pmid: 27263471
93 Rychcik M, Skyllas-Kazacos M. Characteristics of a new all-vanadium redox flow battery. Journal of Power Sources, 1988, 22(1): 59–67
https://doi.org/10.1016/0378-7753(88)80005-3
94 Ulaganathan M, Aravindan V, Yan Q, Madhavi S, Skyllas-kazacos M, Lim T M. Recent advancements in all-vanadium redox flow batteries. Advanced Materials, 2016, 3: 1500309
https://doi.org/10.1002/admi.201500309
95 Skyllas-Kazacos M. Thermal stability of concentrated V(V) electrolytes in the vanadium redox cell. Journal of the Electrochemical Society, 1996, 143(4): L86
https://doi.org/10.1149/1.1836609
96 Li L, Kim S, Wang W, Vijayakumar M, Nie Z, Chen B, Zhang J, Xia G, Hu J, Graff G, Liu J, Yang Z. A stable vanadium redox-flow battery with high energy density for large-scale energy storage. Advanced Energy Materials, 2011, 1(3): 394–400
https://doi.org/10.1002/aenm.201100008
97 Holland-Cunz M V, Friedl J, Stimming U. Anion effects on the redox kinetics of positive electrolyte of the all-vanadium redox flow battery. Journal of Electroanalytical Chemistry, 2017, in press,
https://doi.org/10.1016/j.jelechem.2017.10.061
98 Roe S, Menictas C, Skyllas-Kazacos M. A high energy density vanadium redox flow battery with 3 M vanadium electrolyte. Journal of the Electrochemical Society, 2016, 163(1): A5023–A5028
https://doi.org/10.1149/2.0041601jes
99 Skyllas-Kazacos M, Kazacos M. Stabilised electrolyte solutions, methods of preparation thereof and redox cells and batteries containing stabilised electrolyte solutions. European Patent EP0729648, 1995
100 Lei Y, Liu S Q, Gao C, Liang X X, He Z X, Deng Y H, He Z. Effect of amino acid additives on the positive electrolyte of vanadium redox flow batteries. Journal of the Electrochemical Society, 2013, 160(4): A722–A727
https://doi.org/10.1149/2.006306jes
101 Chang F, Hu C, Liu X, Liu L, Zhang J. Coulter dispersant as positive electrolyte additive for the vanadium redox flow battery. Electrochimica Acta, 2012, 60: 334–338
https://doi.org/10.1016/j.electacta.2011.11.065
102 Zhang J, Li L, Nie Z, Chen B, Vijayakumar M, Kim S, Wang W, Schwenzer B, Liu J, Yang Z. Effects of additives on the stability of electrolytes for all-vanadium redox flow batteries. Journal of Applied Electrochemistry, 2011, 41(10): 1215–1221
https://doi.org/10.1007/s10800-011-0312-1
103 Li S, Huang K, Liu S, Fang D, Wu X, Lu D, Wu T. Effect of organic additives on positive electrolyte for vanadium redox battery. Electrochimica Acta, 2011, 56(16): 5483–5487
https://doi.org/10.1016/j.electacta.2011.03.048
104 Nguyen T D, Whitehead A, Scherer G G, Wai N, Oo M O, Bhattarai A, Chandra G P, Xu Z J. The oxidation of organic additives in the positive vanadium electrolyte and its effect on the performance of vanadium redox flow battery. Journal of Power Sources, 2016, 334: 94–103
https://doi.org/10.1016/j.jpowsour.2016.10.017
105 Shinkle A A, Sleightholme A E S, Thompson L T, Monroe C W. Electrode kinetics in non-aqueous vanadium acetylacetonate redox flow batteries. Journal of Applied Electrochemistry, 2011, 41(10): 1191–1199
https://doi.org/10.1007/s10800-011-0314-z
106 Shinkle A A, Sleightholme A E S, Griffith L D, Thompson L T, Monroe C W. Degradation mechanisms in the non-aqueous vanadium acetylacetonate redox flow battery. Journal of Power Sources, 2012, 206: 490–496
https://doi.org/10.1016/j.jpowsour.2010.12.096
107 Shinkle A A, Pomaville T J, Sleightholme A E S, Thompson L T, Monroe C W. Solvents and supporting electrolytes for vanadium acetylacetonate flow batteries. Journal of Power Sources, 2014, 248: 1299–1305
https://doi.org/10.1016/j.jpowsour.2013.10.034
108 Saraidaridis J D, Bartlett B M, Monroe C W. Spectroelectrochemistry of vanadium acetylacetonate and chromium acetylacetonate for symmetric nonaqueous flow batteries. Journal of the Electrochemical Society, 2016, 163(7): A1239–A1246
https://doi.org/10.1149/2.0441607jes
109 Liu Q, Shinkle A A, Li Y, Monroe C W, Thompson L T, Sleightholme A E S. Non-aqueous chromium acetylacetonate electrolyte for redox flow batteries. Electrochemistry Communications, 2010, 12(11): 1634–1637
https://doi.org/10.1016/j.elecom.2010.09.013
110 Goulet M, Kjeang E. Co-laminar flow cells for electrochemical energy conversion. Journal of Power Sources, 2014, 260: 186–196
https://doi.org/10.1016/j.jpowsour.2014.03.009
111 Goulet M A, Ibrahim O A, Kim W H J J, Kjeang E. Maximizing the power density of aqueous electrochemical flow cells with in operando deposition. Journal of Power Sources, 2017, 339: 80–85
https://doi.org/10.1016/j.jpowsour.2016.11.053
112 Ressel S, Laube A, Fischer S, Chica A, Flower T, Struckmann T. Performance of a vanadium redox flow battery with tubular cell design. Journal of Power Sources, 2017, 355: 199–205
https://doi.org/10.1016/j.jpowsour.2017.04.066
113 Skyllas-Kazacos M. Novel vanadium chloride/polyhalide redox flow battery. Journal of Power Sources, 2003, 124(1): 299–302
https://doi.org/10.1016/S0378-7753(03)00621-9
114 Walsh F C C. Electrochemical technology for environmental treatment and clean energy conversion. Pure and Applied Chemistry, 2001, 73(12): 1819–1837
https://doi.org/10.1351/pac200173121819
115 Review of Electrical Energy Storage Technologies and Systems and of their Potential for the UK, 2004.
116 Li B, Nie Z, Vijayakumar M, Li G, Liu J, Sprenkle V, Wang W. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery. Nature Communications, 2015, 6(1): 6303
https://doi.org/10.1038/ncomms7303 pmid: 25709083
117 Janoschka T, Martin N, Hager M D, Schubert U S. An aqueous redox-flow battery with high capacity and power: the TEMPTMA/MV system. Angewandte Chemie International Edition, 2016, 55(46): 14427–14430
https://doi.org/10.1002/anie.201606472 pmid: 27754587
118 Winsberg J, Hagemann T, Muench S, Friebe C, Häupler B, Janoschka T, Morgenstern S, Hager M D, Schubert U S. Poly(boron-dipyrromethene)-A redox-active polymer class for polymer redox-flow batteries. Chemistry of Materials, 2016, 28(10): 3401–3405
https://doi.org/10.1021/acs.chemmater.6b00640
119 Pratt H D III, Hudak N S, Fang X, Anderson T M. A polyoxometalate flow battery. Journal of Power Sources, 2013, 236: 259–264
https://doi.org/10.1016/j.jpowsour.2013.02.056
120 Pratt H D III, Pratt W R, Fang X, Hudak N S, Anderson T M. Mixed-metal, structural, and substitution effects of polyoxometalates on electrochemical behavior in a redox flow battery. Electrochimica Acta, 2014, 138: 210–214
https://doi.org/10.1016/j.electacta.2014.06.110
121 Friedl J, Al-Oweini R, Herpich M, Keita B, Kortz U, Stimming U. Electrochemical studies of tri-manganese substituted keggin polyoxoanions. Electrochimica Acta, 2014, 141: 357–366
https://doi.org/10.1016/j.electacta.2014.07.051
122 Kremleva A, Aparicio P A, Genest A, Rösch N. Quantum chemical modeling of tri-Mn-substituted W-based Keggin polyoxoanions. Electrochimica Acta, 2017, 231: 659–669
https://doi.org/10.1016/j.electacta.2017.02.046
123 Keita B, Nadjo L. New oxometalate-based materials for catalysis and electrocatalysis. Materials Chemistry and Physics, 1989, 22(1–2): 77–103
https://doi.org/10.1016/0254-0584(89)90032-1
124 Christian J B, Smith S P E, Whittingham M S, Abruña H D. Tungsten based electrocatalyst for fuel cell applications. Electrochemistry Communications, 2007, 9(8): 2128–2132
https://doi.org/10.1016/j.elecom.2007.06.001
125 Friedl J, Bauer C, Al-Oweini R, Yu D, Kortz U, Hoster H E, Stimming U. Investigation on polyoxometalates for the application in redox flow batteries. In: 222th ECS Meet., Honolulu, HI, 2012,
126 Liu Y, Lu S, Wang H, Yang C, Su X, Xiang Y. An aqueous redox flow battery with a Tungsten–Cobalt heteropolyacid as the electrolyte for both the anode and cathode. Advanced Energy Materials, 2017, 7: 2–7
https://doi.org/10.1002/aenm.201601224
127 Pope M, Varga G M Jr. Heteropoly blues. I. Reduction stoichiometries and reduction potentials of some 12-tungstates. Inorganic Chemistry, 1966, 5(7): 1249–1254
https://doi.org/10.1021/ic50041a038
128 Huskinson B, Marshak M P, Suh C, Er S, Gerhardt M R, Galvin C J, Chen X, Aspuru-Guzik A, Gordon R G, Aziz M J. A metal-free organic-inorganic aqueous flow battery. Nature, 2014, 505(7482): 195–198
https://doi.org/10.1038/nature12909 pmid: 24402280
129 Chen Q, Gerhardt M R, Hartle L, Aziz M J. A quinone-bromide flow battery with 1 W/cm2 power density. Journal of the Electrochemical Society, 2015, 163(1): A5010–A5013
https://doi.org/10.1149/2.0021601jes
130 Chen Q, Gerhardt M R, Aziz M J. Dissection of the voltage losses of an acidic quinone redox flow battery. Journal of the Electrochemical Society, 2017, 164(6): A1126–A1132
https://doi.org/10.1149/2.0721706jes
131 Chen Q, Eisenach L, Aziz M J. Cycling analysis of a quinone-bromide redox flow battery. Journal of the Electrochemical Society, 2016, 163(1): A5057–A5063
https://doi.org/10.1149/2.0081601jes
132 Carney T J, Collins S J, Moore J S, Brushett F R. Concentration-dependent dimerization of anthraquinone disulfonic acid and its impact on charge storage. Chemistry of Materials, 2017, 29(11): 4801–4810
https://doi.org/10.1021/acs.chemmater.7b00616
133 Lin K, Chen Q, Gerhardt M R, Tong L, Kim S B, Eisenach L, Valle A W, Hardee D, Gordon R G, Aziz M J, Marshak M P. Alkaline quinone flow battery. Science, 2015, 349(6225): 1529–1532
https://doi.org/10.1126/science.aab3033
134 Lin K, Gómez-Bombarelli R, Beh E S, Tong L, Chen Q, Valle A, Aspuru-Guzik A, Aziz M J, Gordon R G. A redox-flow battery with an alloxazine-based organic electrolyte. Nature Energy, 2016, 1(9): 16102
https://doi.org/10.1038/nenergy.2016.102
135 Rabiul Islam F M, Al Mamun K, Amanullah M T O. Smart Energy Grid Design for Island Countries. Cham: Springer, 2017
https://doi.org/10.1007/978-3-319-50197-0
136 Johnson D A, Reid M A. Chemical and electrochemical behavior of the Cr(lll)/Cr(ll) half-cell in the iron-chromium redox energy system. Journal of the Electrochemical Society, 1985, 132(5): 1058–1062
https://doi.org/10.1149/1.2114015
137 Nice A W. NASA redox system development project status. In: 4th Battery and Electrochemical Contractors Conference, Washington, 1981
138 Zhang H. Development and application of high performance VRB technology. In: IFBF 2017 International Flow Battery Forum, Manchester, UK, 2017
139 Scamman D P, Reade G W, Roberts E P L. Numerical modelling of a bromide-polysulphide redox flow battery. Part 1: Modelling approach and validation for a pilot-scale system. Journal of Power Sources, 2009, 189(2): 1220–1230
https://doi.org/10.1016/j.jpowsour.2009.01.071
140 Morrissey P. Regenesys: a new energy storage technology. International Journal of Ambient Energy, 2000, 21(4): 213–220
https://doi.org/10.1080/01430750.2000.9675376
141 Leung P K, Ponce de León C, Walsh F C. An undivided zinc–cerium redox flow battery operating at room temperature (295 K). Electrochemistry Communications, 2011, 13(8): 770–773
https://doi.org/10.1016/j.elecom.2011.04.011
142 Dong Y R, Kaku H, Hanafusa K, Moriuchi K, Shigematsu T. A novel titanium/manganese redox flow battery. ECS Transactions, 2015, 69(18): 59–67
https://doi.org/10.1149/06918.0059ecst
143 Zeng Y K, Zhao T S, Zhou X L, Wei L, Jiang H R. A low-cost iron-cadmium redox flow battery for large-scale energy storage. Journal of Power Sources, 2016, 330: 55–60
https://doi.org/10.1016/j.jpowsour.2016.08.107
144 Cheng J, Zhang L, Yang Y S, Wen Y H, Cao G P, Wang X D. Preliminary study of single flow zinc-nickel battery. Electroche-mistry Communications, 2007, 9(11): 2639–2642
https://doi.org/10.1016/j.elecom.2007.08.016
145 Morita M, Tanaka Y, Tanaka K, Matsuda Y T, Matsumura-Inoue T. Matsumura-inoue, electrochemical oxidation of ruthenium and iron complexes at rotating disk electrode in acetonitrile solution. Bulletin of the Chemical Society of Japan, 1988, 61(8): 2711–2714
https://doi.org/10.1246/bcsj.61.2711
146 Chakrabarti M H, Roberts E P L, Bae C, Saleem M. Ruthenium based redox flow battery for solar energy storage. Energy Conversion and Management, 2011, 52(7): 2501–2508
https://doi.org/10.1016/j.enconman.2011.01.012
147 Cappillino P J, Pratt H D, Hudak N S, Tomson N C, Anderson T M, Anstey M R. Application of redox non-innocent ligands to non-aqueous flow battery electrolytes. Advanced Energy Materials, 2014, 4: 2–6
https://doi.org/10.1002/aenm.201300566
148 Hwang B, Park M S, Kim K. Ferrocene and cobaltocene derivatives for non-aqueous redox flow batteries. ChemSusChem, 2015, 8(2): 310–314
https://doi.org/10.1002/cssc.201403021 pmid: 25428116
149 Zhang D, Lan H, Li Y. The application of a non-aqueous bis(acetylacetone)ethylenediamine cobalt electrolyte in redox flow battery. Journal of Power Sources, 2012, 217: 199–203
https://doi.org/10.1016/j.jpowsour.2012.06.038
150 Xu Y, Wen Y, Cheng J, Cao G, Yang Y. Study on a single flow acid Cd-chloranil battery. Electrochemistry Communications, 2009, 11(7): 1422–1424
https://doi.org/10.1016/j.elecom.2009.05.021
151 Yang B, Hoober-Burkhardt L, Wang F, Surya Prakash G K, Narayanan S R. An inexpensive aqueous flow battery for large-scale electrical energy storage based on water-soluble organic redox couples. Journal of the Electrochemical Society, 2014, 161(9): A1371–A1380
https://doi.org/10.1149/2.1001409jes
152 Oh S H, Lee C W, Chun D H, Jeon J D, Shim J, Shin K H, Yang J H. A metal-free and all-organic redox flow battery with polythiophene as the electroactive species. Journal of Materials Chemistry A, 2014, 2(47): 19994–19998
https://doi.org/10.1039/C4TA04730C
153 Weinberg D R, Gagliardi C J, Hull J F, Murphy C F, Kent C A, Westlake B C, Paul A, Ess D H, McCafferty D G, Meyer T J. Proton-coupled electron transfer. Chemical Reviews, 2012, 112(7): 4016–4093
https://doi.org/10.1021/cr200177j pmid: 22702235
154 Dmello R, Milshtein J D, Brushett F R, Smith K C. Cost-driven materials selection criteria for redox flow battery electrolytes. Journal of Power Sources, 2016, 330: 261–272
https://doi.org/10.1016/j.jpowsour.2016.08.129
155 Schwenzer B, Zhang J, Kim S, Li L, Liu J, Yang Z. Membrane development for vanadium redox flow batteries. ChemSusChem, 2011, 4(10): 1388–1406
https://doi.org/10.1002/cssc.201100068 pmid: 22102992
156 Wiedemann E, Heintz A, Lichtenthaler R N. Transport properties of vanadium ions in cation exchange membranes: determination of diffusion coefficients using a dialysis cell. Journal of Membrane Science, 1998, 141(2): 215–221
https://doi.org/10.1016/S0376-7388(97)00308-6
157 Ding C, Zhang H, Li X, Liu T, Xing F. Vanadium flow battery for energy storage: prospects and challenges. Journal of Physical Chemistry Letters, 2013, 4(8): 1281–1294
https://doi.org/10.1021/jz4001032 pmid: 26282141
158 Beh E S, De Porcellinis D, Gracia R L, Xia K T, Gordon R G, Aziz M J. A neutral pH aqueous organic–organometallic redox flow battery with extremely high capacity retention. ACS Energy Letter, 2017, 2(3): 639–644
https://doi.org/10.1021/acsenergylett.7b00019
159 Vijayakumar M, Bhuvaneswari M S, Nachimuthu P, Schwenzer B, Kim S, Yang Z, Liu J, Graff G L, Thevuthasan S, Hu J. Spectroscopic investigations of the fouling process on Nafion membranes in vanadium redox flow batteries. Journal of Membrane Science, 2011, 366(1–2): 325–334
https://doi.org/10.1016/j.memsci.2010.10.018
160 Derr I, Fetyan A, Schutjajew K, Roth C. Electrochemical analysis of the performance loss in all vanadium redox flow batteries using different cut-off voltages. Electrochimica Acta, 2017, 224: 9–16
https://doi.org/10.1016/j.electacta.2016.12.043
161 Darling R, Gallagher K G, Kowalski J A, Ha S, Brushett F R. Pathways to low-cost electrochemical energy storage: a compa-rison of aqueous and nonaqueous flow batteries. Energy & Environmental Science, 2014, 7(11): 3459–3477
https://doi.org/10.1039/C4EE02158D
162 U. S. Department of Energy Headquarters Advanced Research Projects Agency – Energy (ARPA-E). Grid-Scale Rampable Intermittent Dispatchable Storage (GRIDS). 2010,
163 Winsberg J, Hagemann T, Janoschka T, Hager M D, Schubert U S. Redox-flow batteries: from metals to organic redox-active materials. Angewandte Chemie International Edition, 2017, 56(3): 686–711
https://doi.org/10.1002/anie.201604925 pmid: 28070964
164 Zeng Y K, Zhao T S, An L, Zhou X L, Wei L. A comparative study of all-vanadium and iron-chromium redox flow batteries for large-scale energy storage. Journal of Power Sources, 300(2015): 438–443
https://doi.org/10.1016/j.jpowsour.2015.09.100
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed