Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2018, Vol. 12 Issue (2) : 225-232    https://doi.org/10.1007/s11708-018-0556-0
RESEARCH ARTICLE
Electrochemical performance of thermally-grown SiO2 as diffusion barrier layer for integrated lithium-ion batteries
X. D. HUANG1(), X. F. GAN1, Q. A. HUANG1(), J. Z. YANG2
1. Key Laboratory of MEMS of the Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
2. School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
 Download: PDF(384 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Direct integration of lithium-ion battery (LIB) with electronic devices on the same Si substrate can significantly miniaturize autonomous micro systems. For achieving direct integration, a barrier layer is essential to be inserted between LIB and the substrate for blocking Li+ diffusion. In this paper, the feasibility of thermal SiO2 film as the barrier layer is investigated by electrochemical characterization and X-ray photoelectron spectroscopy (XPS). Due to the negligible side reactions of thermal SiO2 with electrolyte, the solid electrolyte interphase (SEI) layer formed on the surface of the barrier layer is thin and the SEI content mainly consists of hydrocarbon together with slight polyethylene oxide (PEO), LixPOyFz, and Li2CO3. Although 8-nm thermal SiO2 effectively prevents the substrate from alloying with Li+, the whole film changes to Li silicate after electrochemical cycling due to the irreversible chemical reactions of SiO2 with electrolyte. This degrades the performance of the barrier layer against the electrolyte penetration, thus leading to the existence of Li+ (in the form of F-Si-Li) and solvent decompositions (with the products of hydrocarbon and PEO) near the barrier layer/substrate interface. Moreover, it is found that the reaction kinetics of thermal SiO2 with electrolyte decrease significantly with increasing the SiO2 thickness and no reactions are found in the bulk of the 30-nm SiO2 film. Therefore, thermal SiO2 with an appropriate thickness is a promising barrier layer for direct integration.

Keywords autonomous micro system      direct integration      barrier layer      thermal SiO2 film      X-ray photoelectron spectroscopy (XPS)     
Corresponding Author(s): X. D. HUANG,Q. A. HUANG   
Just Accepted Date: 19 March 2018   Online First Date: 16 April 2018    Issue Date: 04 June 2018
 Cite this article:   
X. D. HUANG,X. F. GAN,Q. A. HUANG, et al. Electrochemical performance of thermally-grown SiO2 as diffusion barrier layer for integrated lithium-ion batteries[J]. Front. Energy, 2018, 12(2): 225-232.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-018-0556-0
https://academic.hep.com.cn/fie/EN/Y2018/V12/I2/225
Fig.1  Electrochemical characteristics of the samples
Fig.2  XPS Si 2p spectrum for the sample with 8-nm SiO2 before and after galvanostatic cycling
Fig.3  Spectra on the barrier layer surface (no sputtering) and after 0.6-min sputtering for the sample with 8-nm SiO2 after cycling
Fig.4  XPS depth profiling for the sample with 8-nm SiO2 after cycling (The P 2p content decreases to a negligible level upon sputtering and thus is not shown.)
Fig.5  Spectra near the barrier layer/substrate interface for the sample with 8-nm SiO2 after cycling (The inset of Fig. 5(a) is the amplified Si 2p spectrum after 3.6-min sputtering, where a weak peak corresponding to the barrier layer is observed.)
Fig.6  Spectra on the barrier layer surface (no sputtering) and after 3.6-min sputtering for the sample with 30-nm SiO2 after cycling (Note that Figs. 6(a) and 6(b) have the same x- and y-coordinates as Figs. 3(b) and 3(c) respectively for fair comparison.)
Fig.7  Surface morphologies of the samples
1 Wang Y, Liu B, Li Q, Cartmell S, Ferrara S, Deng Z D, Xiao J. Lithium and lithium ion batteries for applications in microelectronic devices: a review. Journal of Power Sources, 2015, 286(14): 330–345
https://doi.org/10.1016/j.jpowsour.2015.03.164
2 Liu J, Banis M N, Li X, Lushington A, Cai M, Li R, Sham T K, Sun X. Atomic layer deposition of lithium tantalate solid-state electrolytes. Journal of Physical Chemistry C, 2013, 117(39): 20260–20267
https://doi.org/10.1021/jp4063302
3 Janski R, Fugger M, Sternad M, Wilkening M. Lithium distribution in monocrystalline silicon-based lithium-ion batteries. ECS Transactions, 2014, 62(1): 247–253
https://doi.org/10.1149/06201.0247ecst
4 Baggetto L, Oudenhoven J F M, Van Dongen T, Klootwijk J H, Mulder M, Niessen R A H, de Croon M H J M, Notten P H L. On the electrochemistry of an anode stack for all-solid-state 3D-integrated batteries. Journal of Power Sources, 2009, 189(1): 402–410
https://doi.org/10.1016/j.jpowsour.2008.07.076
5 Knoops H C M, Baggetto L, Langereis E, van de Sanden M C M, Klootwijk J H, Roozeboom F, Niessen R A H, Notten P H L, Kessels W M M. Deposition of TiN and TaN by remote plasma ALD for Cu and Li diffusion barrier applications. Journal of the Electrochemical Society, 2008, 155(12): G287–G294
https://doi.org/10.1149/1.2988651
6 Baggetto L, Niessen R A H, Roozeboom F, Notten P H L. High energy density all-solid-state batteries: a challenging concept towards 3D integration. Advanced Functional Materials, 2008, 18(7): 1057–1066
https://doi.org/10.1002/adfm.200701245
7 Huang X D, Huang J Q, Qin M, Huang Q A. A fully integrated capacitive pressure sensor with high sensitivity. In: 6th IEEE Conference on SENSORS (IEEE SENSORS 2007), Atlanta, United States, 2007, 1052–1055
8 Chan C K, Peng H, Liu G, McIlwrath K, Zhang X F, Huggins R A, Cui Y. High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnology, 2008, 3(1): 31–35
https://doi.org/10.1038/nnano.2007.411 pmid: 18654447
9 Streetman B G, Banerjee S K. Solid State Electronic Devices, 6th ed.New Jersey: Prentice Hall, 2007
10 Roozeboom F, Elfrink R, Verhoeven J, Van den Meerakher J, Holthuysen F. High-value MOS capacitor arrays in ultradeep trenches in silicon. Microelectronic Engineering, 2000, 53(1–4): 581–584
https://doi.org/10.1016/S0167-9317(00)00383-X
11 Wu H, Chan G, Choi J W, Ryu I, Yao Y, McDowell M T, Lee S W, Jackson A, Yang Y, Hu L, Cui Y. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nature Nanotechnology, 2012, 7(5): 310–315
https://doi.org/10.1038/nnano.2012.35 pmid: 22447161
12 Sim S, Oh P, Park S, Cho J. Critical thickness of SiO2 coating layer on core@shell bulk@nanowire Si anode materials for Li-ion batteries. Advanced Materials, 2013, 25(32): 4498–4503
https://doi.org/10.1002/adma.201301454 pmid: 23784861
13 Chan C K, Peng H, Liu G, McIlwrath K, Zhang X F, Huggins R A, Cui Y. High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnology, 2008, 3(1): 31–35
https://doi.org/10.1038/nnano.2007.411 pmid: 18654447
14 Liu B, Soares P, Checkles C, Zhao Y, Yu G. Three-dimensional hierarchical ternary nanostructures for high-performance Li-ion battery anodes. Nano Letters, 2013, 13(7): 3414–3419
https://doi.org/10.1021/nl401880v pmid: 23786580
15 Luais E, Ghamouss F, Wolfman J, Desplobain S, Gautier G, Tran-Van F, Sakai J. Mesoporous silicon negative electrode for thin film lithium-ion microbatteries. Journal of Power Sources, 2015, 274: 693–700
https://doi.org/10.1016/j.jpowsour.2014.10.084
16 Takezawa H, Iwamoto K, Ito S, Yoshizawa H. Electrochemical behaviors of nonstoichiometric silicon suboxides (SiOx) film prepared by reactive evaporation for lithium rechargeable batteries. Journal of Power Sources, 2013, 244(6): 149–157
https://doi.org/10.1016/j.jpowsour.2013.02.077
17 Tu J, Yuan Y, Zhan P, Jiao H, Wang X, Zhu H, Jiao S. Straightforward approach toward SiO2 nanospheres and their superior lithium storage performance. Journal of Physical Chemistry C, 2014, 118(14): 7357–7362
https://doi.org/10.1021/jp5011023
18 Zhang Y, Li Y, Wang Z, Zhao K. Lithiation of SiO2 in Li-ion batteries: in situ transmission electron microscopy experiments and theoretical studies. Nano Letters, 2014, 14(12): 7161–7170
https://doi.org/10.1021/nl503776u pmid: 25369467
19 Miyachi M, Yamamoto H, Kawai H, Ohta T, Shirakata M. Analysis of SiO anodes for lithium-ion batteries. Journal of the Electrochemical Society, 2005, 152(10): A2089–A2091
https://doi.org/10.1149/1.2013210
20 Chan C K, Ruffo R, Hong S S, Cui Y. Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes. Journal of Power Sources, 2009, 189(2): 1132–1140
https://doi.org/10.1016/j.jpowsour.2009.01.007
21 Arreaga-Salas D E, Sra A K, Roodenko K, Chabal Y J, Hinkle C L. Progression of solid electrolyte interphase formation on hydrogenated amorphous silicon anodes for lithium-ion batteries. Journal of Physical Chemistry C, 2012, 116(16): 9072–9077
https://doi.org/10.1021/jp300787p
22 Ensling D, Stjerndahl M, Nytén A, Gustafsson T, Thomas J O. A comparative XPS surface study of Li2FeSiO4/C cycled with LiTFSI-and LiPF6-based electrolytes. Journal of Materials Chemistry, 2009, 19(1): 82–88
https://doi.org/10.1039/B813099J
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed