Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2019, Vol. 13 Issue (1) : 54-63    https://doi.org/10.1007/s11708-018-0606-7
RESEARCH ARTICLE
Performance analysis of cogeneration systems based on micro gas turbine (MGT), organic Rankine cycle and ejector refrigeration cycle
Zemin BO1, Kai ZHANG1, Peijie SUN2, Xiaojing LV1, Yiwu WENG1()
1. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2. Aerospace System Engineering Shanghai, Shanghai 200240, China
 Download: PDF(1408 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, the operation performance of three novel kinds of cogeneration systems under design and off-design condition was investigated. The systems are MGT (micro gas turbine) + ORC (organic Rankine cycle) for electricity demand, MGT+ ERC (ejector refrigeration cycle) for electricity and cooling demand, and MGT+ ORC+ ERC for electricity and cooling demand. The effect of 5 different working fluids on cogeneration systems was studied. The results show that under the design condition, when using R600 in the bottoming cycle, the MGT+ ORC system has the lowest total output of 117.1 kW with a thermal efficiency of 0.334, and the MGT+ ERC system has the largest total output of 142.6 kW with a thermal efficiency of 0.408. For the MGT+ ORC+ ERC system, the total output is between the other two systems, which is 129.3 kW with a thermal efficiency of 0.370. For the effect of different working fluids, R123 is the most suitable working fluid for MGT+ ORC with the maximum electricity output power and R600 is the most suitable working fluid for MGT+ ERC with the maximum cooling capacity, while both R600 and R123 can make MGT+ ORC+ ERC achieve a good comprehensive performance of refrigeration and electricity. The thermal efficiency of three cogeneration systems can be effectively improved under off-design condition because the bottoming cycle can compensate for the power decrease of MGT. The results obtained in this paper can provide a reference for the design and operation of the cogeneration system for distributed energy systems (DES).

Keywords cogeneration system      different working fluids      micro gas turbine (MGT)      organic Rankine cycle (ORC)      ejector refrigeration cycle (ERC)     
Corresponding Author(s): Yiwu WENG   
Online First Date: 14 January 2019    Issue Date: 20 March 2019
 Cite this article:   
Zemin BO,Kai ZHANG,Peijie SUN, et al. Performance analysis of cogeneration systems based on micro gas turbine (MGT), organic Rankine cycle and ejector refrigeration cycle[J]. Front. Energy, 2019, 13(1): 54-63.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-018-0606-7
https://academic.hep.com.cn/fie/EN/Y2019/V13/I1/54
Fig.1  Schematic diagram of three kinds of cogeneration systems
Fig.2  Schematic diagram of heat exchange process in the evaporator
Parameters Symbol Value
MGT output power WMGT/kW 100
MGT efficiency EffMGT 0.284
Air mass flow rate Ga/(kg?s–1) 0.76
Fuel mass flow rate Gf/(kg?s–1) 0.0076
Exhaust gas temperature T5/°C 300
Organic working fluid / R600
Minimum temperature
difference at Tpinch
dTpinch,min/°C 20
Evaporation temperature Teva/°C 150
Condensation temperature Tcon/°C 40
Refrigeration evaporation
temperature
TReva/°C 10
Super heating temperature dTg/°C 5
Turbine efficiency / 0.8
Tab.1  Design parameters for three cogeneration systems
Node MGT+ ORC MGT+ ERC MGT+ ORC+ ERC
T/°C P/kPa m/(kg?s–1) T/°C P/kPa m/(kg?s–1) T/°C P/kPa m/(kg?s–1)
1 252 450 0.76 (Air) 252 450 0.76 (Air) 252 450 0.76 (Air)
2 548 450 0.76 (Air) 548 450 0.76 (Air) 548 450 0.76 (Air)
3 863 450 0.76 (Air) 863 450 0.76 (Air) 863 450 0.76 (Air)
4 581 450 0.7676 (Gas) 581 450 0.7676 (Gas) 581 450 0.7676 (Gas)
5 300 101 0.7676 (Gas) 300 101 0.7676 (Gas) 300 101 0.7676 (Gas)
6 106 101 0.7676 (Gas) 106 101 0.7676 (Gas) 106 101 0.7676 (Gas)
7 41.6 3674.6 0.29 (Liquid) 41.6 3674.6 0.29 (Liquid) 41.6 3674.6 0.29 (Liquid)
8 155 3674.6 0.29 (Vapor) 155 3674.6 0.29 (Vapor) 155 3674.6 0.29 (Vapor)
9 / / / / / / 122.2 2054.4 0.29 (Vapor)
10 72.3 434.2 0.29 (Vapor) 84.2 434.2 0.40 (Vapor) 84.2 434.2 0.36 (Vapor)
11 40 434.2 0.29 (Liquid) 40 434.2 0.40 (Liquid) 40 434.2 0.36 (Liquid)
12 / / / 10 148.5 0.11 (Liquid) 10 148.5 0.07 (Liquid)
13 / / / 15 148.5 0.11 (Vapor) 15 148.5 0.07 (Vapor)
14 / / / 12 101 1.82 (Water) 12 101 1.16 (Water)
15 / / / 17 101 1.82 (Water) 17 101 1.16 (Water)
16 30 101 6.26 (Water) 30 101 9.15 (Water) 30 101 8.24 (Water)
17 35 101 6.26 (water) 35 101 9.15 (water) 35 101 8.24 (water)
Tab.2  Thermodynamic parameters of typical nodes in three cogeneration systems

(R600 used in the bottoming cycle)

Parameters Symbol MGT+ ORC MGT+ ERC MGT+ ORC+ ERC
Output power
of ORC
WORC/kW 17.1 / 5.2
Efficiency of
ORC
EffORC 0.124 / 0.038
Refrigeration
cooling capacity
Qcooling/kW / 42.6 24.1
Ejector coefficient u / 0.38 0.242
Total output Wtotal/kW 117.1 142.6 129.3
Total thermal
efficiency
Efftotal 0.334 0.408 0.370
Tab.3  Performance parameters of three cogeneration systems under design condition
Systems Parameters R600 R123 R245fa R601a R600a
ORC Teva/°C 150 180 150 185 130
mwf/(kg?s–1) 0.29 0.60 0.56 0.25 0.34
WORC/kW 17.1 20.9 17.2 20.0 14.7
EffORC 0.124 0.152 0.125 0.145 0.107
MGT+ ORC Wtotal/kW 117.1 120.9 117.2 120.0 114.7
Efftotal 0.334 0.345 0.335 0.343 0.328
Tab.4  Performance parameters of MGT+ ORC for different working fluids

(WMGT = 100 kW EffMGT = 0.284)

Systems Parameter R600 R123 R245fa R601a R600a
ERC Teva/°C 150 180 150 185 130
mwf/(kg?s–1) 0.29 0.60 0.56 0.25 0.34
mej/(kg?s–1) 0.11 0.20 0.16 0.10 0.11
Qcooling/kW 42.6 38.7 32.1 38.4 39.4
u 0.38 0.34 0.28 0.40 0.33
MGT+ ERC Wtotal/kW 142.6 138.7 132.1 138.4 139.4
Efftotal 0.408 0.396 0.378 0.395 0.398
Tab.5  Performance parameters of MGT+ ERC for different working fluids

(WMGT = 100 kW EffMGT = 0.284)

Systems Parameter R600 R123 R245fa R601a R600a
ORC Teva/°C 150 180 150 185 130
mwf/(kg?s–1) 0.29 0.60 0.56 0.25 0.34
WORC/kW 5.2 6.4 5.3 5.2 5.3
ERC mej/(kg?s–1) 0.070 0.151 0.097 0.073 0.064
Qcooling/kW 24.1 23.3 17.0 23.6 19.3
u 0.242 0.252 0.173 0.291 0.187
MGT+ ORC+ ERC Wtotal/kW 129.3 129.7 122.3 128.8 124.6
Efftotal 0.370 0.371 0.349 0.368 0.356
Tab.6  Performance parameters of MGT+ ORC+ ERC for different working fluids

(WMGT = 100 kW EffMGT = 0.284)

Cogeneration systems Parameters R600 R123 R245fa R601a R600a
MGT+ ORC Wtotal/kW 117.1 120.9 117.2 120.0 114.7
Efftotal 0.334 0.345 0.335 0.343 0.328
MGT+ ERC Wtotal/kW 142.6 138.7 132.1 138.4 139.4
Efftotal 0.408 0.396 0.378 0.395 0.398
MGT+ ORC+ ERC Wtotal/kW 129.3 129.7 122.3 128.8 124.6
Efftotal 0.370 0.371 0.349 0.368 0.356
Tab.7  Performance comparison of the three cogeneration systems
Fig.3  Variation of ORC output power, fuel gas mass flow rate and exhaust gas temperature of MGT
Fig.4  Variation of total output power, thermal efficiency and ORC efficiency contribution of MGT+ ORC cogeneration system
Fig.5  Variation of ERC cooling capacity, fuel gas mass flow rate and exhaust gas temperature of MGT
Fig.6  Variation of total output, thermal efficiency and ERC efficiency contribution of MGT+ ERC cogeneration system
Fig.7  Variation of ORC+ ERC total output, fuel gas mass flow rate and exhaust gas temperature of MGT
Fig.8  Variation of total output, thermal efficiency and ORC+ ERC efficiency contribution of MGT+ ORC+ ERC cogeneration system
1 JHan, L Ouyang, YXu, RZeng, S Kang, GZhang. Current status of distributed energy system in China. Renewable & Sustainable Energy Reviews, 2016, 55: 288–297
https://doi.org/10.1016/j.rser.2015.10.147
2 OOlumayegun, M Wang, GKelsall. Closed-cycle gas turbine for power generation: a state-of-the-art review. Fuel, 2016, 180: 694–717
https://doi.org/10.1016/j.fuel.2016.04.074
3 J HWee. Molten carbonate fuel cell and gas turbine hybrid systems as distributed energy resources. Applied Energy, 2011, 88(12): 4252–4263
https://doi.org/10.1016/j.apenergy.2011.05.043
4 CInvernizzi, P Iora, PSilva. Bottoming micro-Rankine cycles for micro-gas turbines. Applied Thermal Engineering, 2007, 27(1): 100–110
https://doi.org/10.1016/j.applthermaleng.2006.05.003
5 J HLee, T S Kim. Analysis of design and part load performance of micro gas turbine/organic Rankine cycle combined systems. Journal of Mechanical Science and Technology, 2006, 20(9): 1502–1513
https://doi.org/10.1007/BF02915973
6 S MCamporeale, A MPantaleo, P DCiliberti, BFortunato. Cycle configuration analysis and techno-economic sensitivity of biomass externally fired gas turbine with bottoming ORC. Energy Conversion and Management, 2015, 105: 1239–1250
https://doi.org/10.1016/j.enconman.2015.08.069
7 JChen, H Havtun, BPalm. Screening of working fluids for the ejector refrigeration system. International Journal of Refrigeration, 2014, 47: 1–14
https://doi.org/10.1016/j.ijrefrig.2014.07.016
8 P JMago, R Luck. Energetic and exergetic analysis of waste heat recovery from a microturbine using organic Rankine cycles. International Journal of Energy Research, 2013, 37(8): 888–898
https://doi.org/10.1002/er.2891
9 K KSrinivasan, P JMago, S RKrishnan. Analysis of exhaust waste heat recovery from a dual fuel low temperature combustion engine using an organic Rankine cycle. Energy, 2010, 35(6): 2387–2399
https://doi.org/10.1016/j.energy.2010.02.018
10 LGuillaume, A Legros, ADesideri, VLemort. Performance of a radial-inflow turbine integrated in an ORC system and designed for a WHR on truck application: an experimental comparison between R245fa and R1233zd. Applied Energy, 2017, 186: 408–422
https://doi.org/10.1016/j.apenergy.2016.03.012
11 PMondal, K Mondal, SGhosh. Bio-gasification based distributed power generation system employing indirectly heated GT and supercritical ORC: energetic and exergetic performance assessment. International Journal of Renewable Energy Research, 2015, 5(3): 773–781
12 TSung, S Kim, K CKim. Thermoeconomic analysis of a biogas-fueled micro-gas turbine with a bottoming organic Rankine cycle for a sewage sludge and food waste treatment plant in the Republic of Korea. Applied Thermal Engineering, 2017, 127: 963–974
https://doi.org/10.1016/j.applthermaleng.2017.08.106
13 MYari. Thermodynamic analysis of a combined micro turbine with a micro ORC. In: Proceedings of the ASME Turbo Expo, Berlin, Germany, 2008: 797–805
14 ABenato, A Stoppato, AMirandola, MDel Medico. Design and Off-design analysis of an ORC coupled with a micro-gas turbine. Energy Procedia, 2017, 129: 551–558
https://doi.org/10.1016/j.egypro.2017.09.192
15 RAmirante, P O Palma, E Distaso, A MPantaleo, PTamburrano. Thermodynamic analysis of a small scale combined cycle for energy generation from carbon neutral biomass. Energy Procedia, 2017, 129: 891–898
https://doi.org/10.1016/j.egypro.2017.09.213
16 SClemente, D Micheli, MReini, RTaccani. Bottoming organic Rankine cycle for a small scale gas turbine: a comparison of different solutions. Applied Energy, 2013, 106: 355–364
https://doi.org/10.1016/j.apenergy.2013.02.004
17 MJradi, S Riffat. Modelling and testing of a hybrid solar-biomass ORC-based micro-CHP system. International Journal of Energy Research, 2014, 38(8): 1039–1052
https://doi.org/10.1002/er.3145
18 MEbrahimi, S Majidi. Exergy-energy-environ evaluation of combined cooling heating and power system based on a double stage compression regenerative gas turbine in large scales. Energy Conversion and Management, 2017, 150: 122–133
https://doi.org/10.1016/j.enconman.2017.08.004
19 LBoumaraf, P Haberschill, ALallemand. Investigation of a novel ejector expansion refrigeration system using the working fluid R134a and its potential substitute R1234yf. International Journal of Refrigeration, 2014, 45: 148–159
https://doi.org/10.1016/j.ijrefrig.2014.05.021
20 MEbrahimi, K Ahookhosh. Integrated energy-exergy optimization of a novel micro-CCHP cycle based on MGT-ORC and steam ejector refrigerator. Applied Thermal Engineering, 2016, 102: 1206–1218
https://doi.org/10.1016/j.applthermaleng.2016.04.015
21 BZheng, Y W Weng. A combined power and ejector refrigeration cycle for low temperature heat sources. Solar Energy, 2010, 84(5): 784–791
https://doi.org/10.1016/j.solener.2010.02.001
22 QZhang, Z M Bo, Z K Sang, Y W Weng. Analysis on operating characteristics of biogas-fired micro gas turbine. Journal of Engineering for Thermal Energy and Power, 2016, 31(3): 44–49 (in Chinese)
23 Y PWang, X Liu, X YDing, Y WWeng. Experimental investigation on the performance of ORC power system using zeotropic mixture R601a/R600a. International Journal of Energy Research, 2017, 41(5): 673–688
https://doi.org/10.1002/er.3664
24 YDu, Y P Dai. Off-design performance analysis of a power-cooling cogeneration system combining a Kalina cycle with an ejector refrigeration cycle. Energy, 2018, 161: 233–250
https://doi.org/10.1016/j.energy.2018.07.106
25 FCaresana, G Comodi, LPelagalli. Micro combined plant with gas turbine and organic cycle. In: Proceedings of the ASME Turbo Expo, Berlin, Germany, 2008: 787–795
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed