Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2022, Vol. 16 Issue (2) : 292-306    https://doi.org/10.1007/s11708-020-0658-3
RESEARCH ARTICLE
Nanostructure and reactivity of soot from biofuel 2,5-dimethylfuran pyrolysis with CO2 additions
Lijie ZHANG, Kaixuan YANG, Rui ZHAO, Mingfei CHEN, Yaoyao YING, Dong LIU()
MIIT Key Laboratory of Thermal Control of Electronic Equipment, Advanced Combustion Laboratory, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
 Download: PDF(3153 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper investigated the nanostructure and oxidation reactivity of soot generated from biofuel 2,5-dimethylfuran pyrolysis with different CO2 additions and different temperatures in a quartz tube flow reactor. The morphology and nanostructure of soot samples were characterized by a low and a high resolution transmission electron spectroscopy (TEM and HRTEM) and an X-ray diffraction (XRD). The oxidation reactivity of these samples was explored by a thermogravimetric analyzer (TGA). Different soot samples were collected in the tail of the tube. With the increase of temperature, the soot showed a smaller mean particle diameter, a longer fringe length, and a lower fringe tortuosity, as well as a higher degree of graphization. However, the variation of soot nanostructures resulting from different CO2 additions was not linear. Compared with 0%, 50%, and 100% CO2 additions at one fixed temperature, the soot collected from the 10% CO2 addition has the highest degree of graphization and crystallization. At three temperatures of 1173 K, 1223 K, and 1273 K, the mean values of fringe length distribution displayed a ranking of 10% CO2>100% CO2>50% CO2 while the mean particle diameters showed the same order. Furthermore, the oxidation reactivity of different soot samples decreased in the ranking of 50% CO2 addition>100% CO2 addition>10% CO2 addition, which was equal to the ranking of mean values of fringe tortuosity distribution. The result further confirmed the close relationship between soot nanostructure and oxidation reactivity.

Keywords 2      5-dimethylfuran pyrolysis      soot      CO2 addition      nanostructure      reactivity     
Corresponding Author(s): Dong LIU   
Online First Date: 15 January 2020    Issue Date: 25 May 2022
 Cite this article:   
Lijie ZHANG,Kaixuan YANG,Rui ZHAO, et al. Nanostructure and reactivity of soot from biofuel 2,5-dimethylfuran pyrolysis with CO2 additions[J]. Front. Energy, 2022, 16(2): 292-306.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-020-0658-3
https://academic.hep.com.cn/fie/EN/Y2022/V16/I2/292
Substances Purity/% Boiling point/°C Molecular mass
DMF(liquid fuel) 99.99 93.5 96.1
Ar 99.999 -185.7 39.95
CO2 99.99 -56.55 44
Tab.1  Physical properties of reactant substances
Pyrolysis conditions CO2 addition/% Flow rate/(mL·min–1)
DMF (l) Reactant Ar Reactant CO2 Carrier Ar
A 0 0.0964 960 0 20
B 10 0.0964 864 96 20
C 50 0.0964 480 480 20
D 100 0.0964 0 960 20
Tab.2  Experimental conditions in the pyrolysis experiments
Fig.1  Schematic diagram of experimental system.
Fig.2  Temperature profiles in the centerline of the quartz tube at different set temperatures in the flow reactor.
Fig.3  Representative TEM images of soot particles collected under different pyrolysis conditions.
Fig.4  Average sizes of the primary particles, obtained from their TEM images at 200 nm resolution.
Fig.5  Representative HRTEM images of soot particles collected under different pyrolysis conditions.
Fig.6  Skeletonized images of HRTEM images in Fig. 4.
Fig.7  Fringe length distribution of soot particles collected under different pyrolysis conditions.
Fig.8  Fringe tortuosity distribution of soot particles collected under different pyrolysis conditions.
Mean fringe length with standard deviations of soot/nm
1173 K 1223 K 1273 K
0% CO2 1.0717±0.0031 1.2019±0.0124 1.2547±0.0026
10% CO2 1.1457±0.0033 1.2382±0.0021 1.2622±0.0021
50% CO2 1.1305±0.0029 1.2113±0.0025 1.2302±0.0027
100% CO2 1.1362±0.0017 1.2275±0.0038 1.2555±0.0028
Tab.3  Mean fringe length with standard deviations of soot collected under different pyrolysis conditions
Mean fringe tortuosity with standard deviations of soot/nm
1173 K 1223 K 1273 K
0% CO2 1.2980±0.0029 1.1699±0.0057 1.1599±0.0027
10% CO2 1.2129±0.0019 1.1569±0.0046 1.1420±0.0023
50% CO2 1.2416±0.0026 1.1661±0.0027 1.1620±0.0028
100% CO2 1.2351±0.0031 1.1601±0.0030 1.1544±0.0039
Tab.4  Mean fringe tortuosity with standard deviations of soot collected under different pyrolysis conditions
Fig.9  XRD spectra of soot particles under different pyrolysis conditions.
Pyrolysis condition q002/(° )
10% CO2 addition at 1173 K 24.415
50% CO2 addition at 1173 K 23.732
100% CO2 addition at 1173 K 24.281
0% CO2 addition at 1223 K 23.944
10% CO2 addition at 1223 K 24.661
50% CO2 addition at 1223 K 24.192
100% CO2 addition at 1223 K 24.589
0% CO2 addition at 1273 K 24.752
10% CO2 addition at 1273 K 24.855
50% CO2 addition at 1273 K 24.723
100% CO2 addition at 1273 K 24.791
Tab.5  Peak diffraction angles of soot particles under different pyrolysis conditions
Fig.10  TGA results of soot samples under different pyrolysis conditions.
1 B K Bose. Global warming: energy, environmental pollution, and the impact of power electronics. IEEE Industrial Electronics Magazine, 2010, 4(1): 6–17
https://doi.org/10.1109/MIE.2010.935860
2 M Steinberg. Fossil fuel decarbonization technology for mitigating global warming. International Journal of Hydrogen Energy, 1999, 24(8): 771–777
https://doi.org/10.1016/S0360-3199(98)00128-1
3 F Santos, M P Fraser, J A Bird. Atmospheric black carbon deposition and characterization of biomass burning tracers in a northern temperate forest. Atmospheric Environment, 2014, 95: 383–390
https://doi.org/10.1016/j.atmosenv.2014.06.038
4 I C Jaramillo, C K Gaddam, R L Vander Wal, C H Huang, J D Levinthal, J A S Lighty. Soot oxidation kinetics under pressurized conditions. Combustion and Flame, 2014, 161(11): 2951–2965
https://doi.org/10.1016/j.combustflame.2014.04.016
5 R Stanger, T Wall, R Spörl, M Paneru, S Grathwohl, M Weidmann, G Scheffknecht, D McDonald, K Myöhänen, J Ritvanen, S Rahiala, T Hyppänen, J Mletzko, A Kather, S Santos. Oxyfuel combustion for CO2, capture in power plants. International Journal of Greenhouse Gas Control, 2015, 40: 55–125
https://doi.org/10.1016/j.ijggc.2015.06.010
6 B J P Buhre, L K Elliott, C D Sheng, R P Gupta, T F Wall. Oxy-fuel combustion technology for coal-fired power generation. Progress in Energy and Combustion Science, 2005, 31(4): 283–307
https://doi.org/10.1016/j.pecs.2005.07.001
7 M Abián, A Millera, R Bilbao, M U Alzueta. Experimental study on the effect of different CO2, concentrations on soot and gas products from ethylene thermal decomposition. Fuel, 2012, 91(1): 307–312
https://doi.org/10.1016/j.fuel.2011.06.064
8 M Abián, A D Jensen, P Glarborg, M U Alzueta. Soot reactivity in conventional combustion and oxy-fuel combustion environments. Energy & Fuels, 2012, 26(8): 5337–5344
https://doi.org/10.1021/ef300670q
9 Y Ying, D Liu. Nanostructure evolution and reactivity of nascent soot from inverse diffusion flames in CO2, N2, and He atmospheres. Carbon, 2018, 139: 172–180
https://doi.org/10.1016/j.carbon.2018.06.047
10 D Liu. Chemical effects of carbon dioxide addition on dimethyl ether and ethanol flames: a comparative study. Energy & Fuels, 2015, 29(5): 3385–3393
https://doi.org/10.1021/ef501945w
11 Y Zhang, L Wang, P Liu, B Guan, H Ni, Z Huang, H Lin. Experimental and kinetic study of the effects of CO2, and H2O addition on PAH formation in laminar premixed C2H4/O2/Ar flames. Combustion and Flame, 2018, 192: 439–451
https://doi.org/10.1016/j.combustflame.2018.01.050
12 Y Zhou, X Jin, Q Jin. Numerical investigation on separate physicochemical effects of carbon dioxide on coal char combustion in O2/CO2 environments. Combustion and Flame, 2016, 167: 52–59
https://doi.org/10.1016/j.combustflame.2016.02.028
13 C Wen, Y Wu, X Chen, G Jiang, D Liu. The pyrolysis and gasification performances of waste textile under carbon dioxide atmosphere. Journal of Thermal Analysis and Calorimetry, 2017, 128(1): 581–591
https://doi.org/10.1007/s10973-016-5887-7
14 T Hartmann, P Paviet-Hartmann, J B Rubin, M R Fitzsimmons, K E Sickafus. The effect of supercritical carbon dioxide treatment on the leachability and structure of cemented radioactive waste-forms. Waste Management (New York, N.Y.), 1999, 19(5): 355–361
https://doi.org/10.1016/S0956-053X(99)00138-5
15 Y Qian, L Zhu, Y Wang, X Lu. Recent progress in the development of biofuel 2,5-dimethylfuran. Renewable & Sustainable Energy Reviews, 2015, 41: 633–646
https://doi.org/10.1016/j.rser.2014.08.085
16 M Chidambaram, A T Bell. A two-step approach for the catalytic conversion of glucose to 2,5-dimethylfuran in ionic liquids. Green Chemistry, 2010, 12(7): 1253–1262
https://doi.org/10.1039/c004343e
17 B Jiang, P Wang, Y Ying, M Luo, D Liu. Nanoscale characteristics and reactivity of nascent soot from n-heptane/2,5-dimethylfuran inverse diffusion flames with/without magnetic fields. Energies, 2018, 11(7): 1698
https://doi.org/10.3390/en11071698
18 P Jia, Y Ying, M Luo, B Jiang, D Liu. Effects of swirling combustion on soot characteristics in 2,5-dimethylfuran/ n-heptane diffusion flames. Applied Thermal Engineering, 2018, 139: 11–24
https://doi.org/10.1016/j.applthermaleng.2018.04.049
19 B Gogoi, A Raj, M M Alrefaai, S Stephen, T Anjana, V Pillai, S Bojanampati. Effects of 2,5-dimethylfuran addition to diesel on soot nanostructures and reactivity. Fuel, 2015, 159: 766–775
https://doi.org/10.1016/j.fuel.2015.07.038
20 Q Zhang, G Chen, Z Zheng, H Liu, J Xu, M Yao. Combustion and emissions of 2,5-dimethylfuran addition on a diesel engine with low temperature combustion. Fuel, 2013, 103: 730–735
https://doi.org/10.1016/j.fuel.2012.08.045
21 Q Zhang, M Yao, Z Zheng. Study on combustion and emission characteristics fueled with diesel, diesel-butanol and diesel-DMF blends. Chinese Internal Combustion Engine Engineering, 2014, 4: 45–50
22 Z Ma, H Shen, C Xu. Experiment of combustion characteristics and emissions of gasoline-DMF blends. Journal of Zhejiang University, 2013, 47: 1965–1969
23 Z Cheng, L Xing, M Zeng, W Dong, F Zhang, F Qi, Y Li. Experimental and kinetic modeling study of 2,5-dimethylfuran pyrolysis at various pressures. Combustion and Flame, 2014, 161(10): 2496–2511
https://doi.org/10.1016/j.combustflame.2014.03.022
24 K Alexandrino, P Salvo, Á Millera, R Bilbao, M U. AlzuetaInfluence of the temperature and 2,5-dimethylfuran concentration on its sooting tendency. Combustion Science and Technology, 2016, 188(4-5): 651–666
https://doi.org/10.1080/00102202.2016.1138828
25 K P Somers, J M Simmie, F Gillespie, C Conroy, G Black, W K Metcalfe, F Battin-Leclerc, P Dirrenberger, O Herbinet, P A Glaude, P Dagaut, C Togbé, K Yasunaga, R X Fernandes, C Lee, R Tripathi, H J Curran. A comprehensive experimental and detailed chemical kinetic modelling study of 2,5-dimethylfuran pyrolysis and oxidation. Combustion and Flame, 2013, 160(11): 2291–2318
https://doi.org/10.1016/j.combustflame.2013.06.007
26 D Liu, W Wang, Y Ying, M Luo. Nanostructure and reactivity of carbon particles from co-pyrolysis of biodiesel surrogate methyl octanoate blended with n-butanol. Fullerenes, Nanotubes, and Carbon Nanostructures, 2018, 26(5): 278–290
https://doi.org/10.1080/1536383X.2018.1436052
27 Y Ying, D Liu. Effects of butanol isomers additions on soot nanostructure and reactivity in normal and inverse ethylene diffusion flames. Fuel, 2017, 205: 109–129
https://doi.org/10.1016/j.fuel.2017.05.064
28 Y Ying, D Liu. Effects of flame configuration and soot aging on soot nanostructure and reactivity in n-butanol-doped ethylene diffusion flames. Energy & Fuels, 2017, 32: 1–84
29 C Paladpokkrong, D Liu, Y Ying, W Wang, R Zhang. Soot reduction by addition of dimethyl carbonate in normal and inverse ethylene diffusion flames: nanostructural evidence. Journal of Environmental Sciences (China), 2018, 72: 107–117
https://doi.org/10.1016/j.jes.2017.12.016
30 M Luo, Y Ying, D Liu. Soot in flame-wall interactions: views from nanostructure and reactivity. Fuel, 2018, 212: 117–131
https://doi.org/10.1016/j.fuel.2017.10.008
31 K Yehliu, R L Vander Wal, O Armas, A L Boehman. Impact of fuel formulation on the nanostructure and reactivity of diesel soot. Combustion and Flame, 2012, 159(12): 3597–3606
https://doi.org/10.1016/j.combustflame.2012.07.004
32 C Esarte, M Abián, Á Millera, R Bilbao, M U Alzueta. Gas and soot products formed in the pyrolysis of acetylene mixed with methanol, ethanol, isopropanol or n-butanol. Energy, 2012, 43(1): 37–46
https://doi.org/10.1016/j.energy.2011.11.027
33 N E Sánchez, Á Millera, R Bilbao, M U Alzueta. Polycyclic aromatic hydrocarbons (PAH), soot and light gases formed in the pyrolysis of acetylene at different temperatures: effect of fuel concentration. Journal of Analytical and Applied Pyrolysis, 2013, 103: 126–133
https://doi.org/10.1016/j.jaap.2012.10.027
34 M P Ruiz, A Callejas, A Millera, M U Alzueta, R Bilbao. Soot formation from C2H2, and C2H4, pyrolysis at different temperatures. Journal of Analytical and Applied Pyrolysis, 2007, 79(1-2): 244–251
https://doi.org/10.1016/j.jaap.2006.10.012
35 M P Ruiz, R G de Villoria, A Millera, M U Alzueta, R Bilbao. Influence of the temperature on the properties of the soot formed from C2H2 pyrolysis. Chemical Engineering Journal, 2007, 127(1-3): 1–9
https://doi.org/10.1016/j.cej.2006.09.006
36 K Yehliu, R L Vander Wal, A L Boehman. Development of an HRTEM image analysis method to quantify carbon nanostructure. Combustion and Flame, 2011, 158(9): 1837–1851
https://doi.org/10.1016/j.combustflame.2011.01.009
37 K Yehliu, R L Vander Wal, A L Boehman. A comparison of soot nanostructure obtained using two high resolution transmission electron microscopy image analysis algorithms. Carbon, 2011, 49(13): 4256–4268
https://doi.org/10.1016/j.carbon.2011.06.003
38 W Wang, D Liu, Y Ying, G Liu, Y Wu. On the response of nascent soot nanostructure and oxidative reactivity to photoflash exposure. Energies, 2017, 10(7): 961
https://doi.org/10.3390/en10070961
39 M Velásquez, F Mondragón, A Santamaría. Chemical characterization of soot precursors and soot particles produced in hexane and diesel surrogates using an inverse diffusion flame burner. Fuel, 2013, 104: 681–690
https://doi.org/10.1016/j.fuel.2012.04.033
40 L G Blevins, R A Fletcher, B A Benner Jr, E B Steel, G W. MulhollandThe existence of young soot in the exhaust of inverse diffusion flames. Proceedings of the Combustion Institute, 2002, 29(2): 2325–2333
https://doi.org/10.1016/S1540-7489(02)80283-8
41 M Bogarra, J M Herreros, A Tsolakis, A P E York, P J Millington, F J Martos. Impact of exhaust gas fuel reforming and exhaust gas recirculation on particulate matter morphology in gasoline direct injection engine. Journal of Aerosol Science, 2017, 103: 1–14
https://doi.org/10.1016/j.jaerosci.2016.10.001
42 A M Brasil, T L Farias, M G Carvalho. A recipe for image characterization of fractal-like aggregates. Journal of Aerosol Science, 1999, 30(10): 1379–1389
https://doi.org/10.1016/S0021-8502(99)00026-9
43 Y Y Ying, D Liu. Effects of water addition on soot properties in ethylene inverse diffusion flames. Fuel, 2019, 247: 187–197
https://doi.org/10.1016/j.fuel.2019.03.034
44 H Xiao, B Hou, P Zeng, A Jiang, X Hou, J Liu. Combustion and emission characteristics of diesel engine fueled with 2,5-dimethylfuran and diesel blends. Fuel, 2017, 192: 53–59
https://doi.org/10.1016/j.fuel.2016.12.007
[1] FEP-19041-OF-ZLJ_suppl_1 Download
[1] Lei ZHU, Zhan GAO, Xiaogang CHENG, Fei REN, Zhen HUANG. An assessment of surrogate fuel using Bayesian multiple kernel learning model in sight of sooting tendency[J]. Front. Energy, 2022, 16(2): 277-291.
[2] Xingchao WANG, Chunjian PAN, Carlos E. ROMERO, Zongliang QIAO, Arindam BANERJEE, Carlos RUBIO-MAYA, Lehua PAN. Thermo-economic analysis of a direct supercritical CO2 electric power generation system using geothermal heat[J]. Front. Energy, 2022, 16(2): 246-262.
[3] Chenglong WANG, Ran ZHANG, Kailun GUO, Dalin ZHANG, Wenxi TIAN, Suizheng QIU, Guanghui SU. Dynamic simulation of a space gas-cooled reactor power system with a closed Brayton cycle[J]. Front. Energy, 2021, 15(4): 916-929.
[4] Sanjeev GUPTA, Martin FREITAG, Gerhard POSS. THAI experimental research on hydrogen risk and source term related safety systems[J]. Front. Energy, 2021, 15(4): 887-915.
[5] Hongyi YANG, Xiaoyan YANG, Jun YANG, Quanbin ZHAO, Xiaokun WANG, Daotong CHONG, Chanjuan TANG, Chengyuan JIANG. Preliminary design of an SCO2 conversion system applied to the sodium cooled fast reactor[J]. Front. Energy, 2021, 15(4): 832-841.
[6] Andreas SCHAFFRATH, Andreas WIELENBERG, Robert KILGER, Armin SEUBERT. SMRs – overview, international developments, safety features and the GRS simulation chain[J]. Front. Energy, 2021, 15(4): 793-809.
[7] Hongmei WU, Feng LI, Yanqi YUAN, Jing LIU, Liping ZHAO, Peng ZHANG, Lian GAO. Enhancing the photoelectrochemical performance of p-silicon through TiO2 coating decorated with mesoporous MoS2[J]. Front. Energy, 2021, 15(3): 772-780.
[8] Ziwei ZHAO, Kaiyi CHEN, Jingwei HUANG, Lei WANG, Houde SHE, Qizhao WANG. Enhanced performance of NiF2/BiVO4 photoanode for photoelectrochemical water splitting[J]. Front. Energy, 2021, 15(3): 760-771.
[9] Wei CHEN, Xiang LIU, Shaojie WEI, Qianqian HENG, Binfen WANG, Shilong LIU, Li GAO, Liqun MAO. In situ growth of a-few-layered MoS2 on CdS nanorod for high efficient photocatalytic H2 production[J]. Front. Energy, 2021, 15(3): 752-759.
[10] Jing BAI, Bo ZHANG, Jinhua LI, Baoxue ZHOU. Photoelectrocatalytic generation of H2 and S from toxic H2S by using a novel BiOI/WO3 nanoflake array photoanode[J]. Front. Energy, 2021, 15(3): 744-751.
[11] Sabina Ait ABDELKADER, Zhenpeng CUI, Abdelghani LAACHACHI, Christophe COLBEAU-JUSTIN, Mohamed Nawfal GHAZZAL. Interfacial charge transfer and photocatalytic activity in a reverse designed Bi2O3/TiO2 core-shell[J]. Front. Energy, 2021, 15(3): 732-743.
[12] Dong LIU, Zhuqing YAN, Peng ZENG, Haoran LIU, Tianyou PENG, Renjie LI. In situ grown TiN/N-TiO2 composite for enhanced photocatalytic H2 evolution activity[J]. Front. Energy, 2021, 15(3): 721-731.
[13] Yanyan GAO, Ming HOU, Manman QI, Liang HE, Haiping CHEN, Wenzhe LUO, Zhigang SHAO. New insight into effect of potential on degradation of Fe-N-C catalyst for ORR[J]. Front. Energy, 2021, 15(2): 421-430.
[14] Huijuan JIANG, Yong GENG, Xu TIAN, Xi ZHANG, Wei CHEN, Ziyan GAO. Uncovering CO2 emission drivers under regional industrial transfer in China’s Yangtze River Economic Belt: a multi-layer LMDI decomposition analysis[J]. Front. Energy, 2021, 15(2): 292-307.
[15] Jinzhi CAI, Dan LI, Denggao CHEN, Zhenshan LI. NOx and H2S formation in the reductive zone of air-staged combustion of pulverized blended coals[J]. Front. Energy, 2021, 15(1): 4-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed