Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2020, Vol. 14 Issue (4) : 801-816    https://doi.org/10.1007/s11708-020-0687-y
RESEARCH ARTICLE
An operating state estimation model for integrated energy systems based on distributed solution
Dengji ZHOU, Shixi MA, Dawen HUANG, Huisheng ZHANG(), Shilie WENG
Key Laboratory of Power Machinery and Engineering of the Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
 Download: PDF(1688 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In view of the disadvantages of the traditional energy supply systems, such as separate planning, separate design, independent operating mode, and the increasingly prominent nonlinear coupling between various sub-systems, the production, transmission, storage and consumption of multiple energy sources are coordinated and optimized by the integrated energy system, which improves energy and infrastructure utilization, promotes renewable energy consumption, and ensures reliability of energy supply. In this paper, the mathematical model of the electricity-gas interconnected integrated energy system and its state estimation method are studied. First, considering the nonlinearity between measurement equations and state variables, a performance simulation model is proposed. Then, the state consistency equations and constraints of the coupling nodes for multiple energy sub-systems are established, and constraints are relaxed into the objective function to decouple the integrated energy system. Finally, a distributed state estimation framework is formed by combining the synchronous alternating direction multiplier method to achieve an efficient estimation of the state of the integrated energy system. A simulation model of an electricity-gas interconnected integrated energy system verifies the efficiency and accuracy of the state estimation method proposed in this paper. The results show that the average relative errors of voltage amplitude and node pressure estimated by the proposed distributed state estimation method are only 0.0132% and 0.0864%, much lower than the estimation error by using the Lagrangian relaxation method. Besides, compared with the centralized estimation method, the proposed distributed method saves 5.42 s of computation time. The proposed method is more accurate and efficient in energy allocation and utilization.

Keywords integrated energy system      state estimation      electricity-gas coupling energy system      nonlinear coupling      distributed solution     
Corresponding Author(s): Huisheng ZHANG   
Online First Date: 07 September 2020    Issue Date: 21 December 2020
 Cite this article:   
Dengji ZHOU,Shixi MA,Dawen HUANG, et al. An operating state estimation model for integrated energy systems based on distributed solution[J]. Front. Energy, 2020, 14(4): 801-816.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-020-0687-y
https://academic.hep.com.cn/fie/EN/Y2020/V14/I4/801
Fig.1  Electricity-gas integrated energy system and coupling components.
Fig.2  Flowchart of parallel ADMM distributed state estimation.
Fig.3  An object of the analysis of integrated energy system state estimation.
Gas-fired power plants Power grid nodes Natural gas network nodes
1 36 3
2 35 4
3 38 5
4 33 7
5 37 6
6 34 8
7 30 9
8 32 11
9 39 10
10 31 12
Tab.1  Connection nodes of gas-fired power plants
Compressor units Power grid nodes Natural gas network nodes
1 22 5–6
2 26 7–8
3 9–10
4 11–12
Tab.2  Connection nodes of motor-driven compressor units
Node Source flow/(kg·s–1) Demand/(kg·s–1) For electricity/(kg·s–1) Pressure/kPa ?Pipe Ci j Gas flow/(kg·s–1)
1 36.8100 0 0 8273.8 ?1 0.00878 36.8118
2 47.1900 0 0 8951.5 ?2 0.00880 47.1947
3 0 0 4.9436 7132.0 ?3 0.01046 7.4922
4 0 0 1.2861 7167.8 ?4 0.00882 39.4075
5 0 0 7.4072 5559.3 ?5 0.00847 38.3457
6 0 0 5.2893 10006.4 ?6 0.00822 26.7240
7 0 0 6.8061 5557.9 ?7 0.00517 30.2046
8 0 0 1.3309 10560.1 ?8 0.00533 10.5008
9 0 0 15.8916 9463.1 ?9 0.00505 1.2743
10 0 0 0.3410 9463.1 ?10 0.00403 3.7756
11 0 0 5.1177 8795.0 ?11 0.00578 5.4156
12 0 0 23.8411 9234.2 ?12 0.00530 3.4334
13 0 1.3156 0 9255.6
14 0 1.6164 0 9230.8
15 0 8.8532 0 9208.0
Tab.3  Main parameters of natural gas networks
Sub-systems Measurement parameters Number of measurement points
(Specific description)
Power system Voltage amplitude 1
(V39)
Voltage phase 1
(θ39)
Active power injection 15
(P25 P26 P27 P28 P29 P30 P31 P32 P33 P34 P35 P36 P37 P38 P39)
Reactive power injection 15
(Q25 Q26 Q27 Q28 Q29 Q30 Q31 Q32 Q33 Q34 Q35 Q36 Q37 Q38 Q39)
Branch active power 32
(P1,39 P2,25 P2,30 P4,5 P4,14 P5,6 P6,31 P7,8 P8,9 P9,39 P10,11 P10,13 P10,32 P12,11 P16,17P16,19 P16,21 P16,24 P17,18 P17,27 P19,20 P19,33 P20,34 P22,23 P22,35 P23,36 P25,26 P25,37 P26,28 P28,29 P29,38, P29,39)
Branch reactive power 32
(Q1,39 Q2,25 Q2,30 Q4,5 Q4,14 Q5,6 Q6,31 Q7,8 Q8,9 Q9,39 Q10,11 Q10,13 Q10,32 Q12,11 Q16,17Q16,19 Q16,21 Q16,24 Q17,18 Q17,27 Q19,20 Q19,33 Q20,34 Q22,23 Q22,35 Q23,36 Q25,26 Q25,37 Q26,28 Q28,29 Q29,38, Q29,39)
Natural gas system Pipeline flow rate 7
(q1,3 q2,4 q3,5 q4,7 q6,9 q8,11 q10,13)
Node flow rate 13
(q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15)
Node pressure 13
(p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15)
Pipeline friction 12
(C1,3 C2,4 C3,4 C3,5 C4,7 C6,9 C8,11 C10,13 C12,14 C13,14 C13,15 C14,15)
Tab.4  Measurement parameters and number of measurement points in integrated energy system
State estimation methods Error types Power grid Natural gas network
Voltage amplitude Vi/% Voltage phase θij/% Node pressure Pi/% Pipeline flow rate qij/%
Method A Maximum error 1.51×102 1.75×102 1.53×101 3.98×102
Average error 1.32×102 5.45×104 8.64×102 2.88×102
Method B Maximum error 1.76×102 2.96×102 1.82×101 1.03×101
Average error 1.44×102 7.83×103 1.19×101 5.45×102
Method C Maximum error 4.52×102 2.98×102 2.87×101 8.9×102
Average error 3.43×102 1.68×102 1.51×101 6.22×102
Tab.5  Maximum and average errors of state variables obtained by different state estimation methods
State estimation methods Error types Power grid Natural gas network
Active power flow Pij/% Reactive power flow Qij/% Active power Pi/% Reactive power Qi/% Pipeline friction resistance Cij/% Node flow rate qi/%
Method A Maximum error 7.83×102 5.88×102 6.0×102 5.75×102 3.16×103 7.09×101
Average error 2.64×102 1.88×102 2.10×102 2.19×102 2.16×103 7.08×101
Method B Maximum error 9.35×102 9.32×102 6.33×102 7.88×102 4.07×103 1.47
Average error 2.88×102 2.48×102 2.86×102 2.57×102 2.15×103 1.77×101
Method C Maximum error 2.32×101 1..91×101 1.83×101 1.98×102 3.4×103 7.43×102
Average error 7.06×102 5.25×102 5.90×102 7.93×102 9.32×104 3.65×102
Tab.6  Maximum and average errors of measurement variables obtained by different state estimation methods
Fig.4  Relative error of power grid node voltage amplitude state estimation.
Fig.5  Relative error of power grid node voltage phase state estimation.
Fig.6  Relative error of gas network node pressure state estimation.
Fig.7  Relative error of gas network pipeline flow rate state estimation.
Fig.8  Relative error of gas network node flow rate state estimation.
Fig.9  Relative error of power grid node active power state estimation.
State estimation methods Computing time/s
Method A 1.44
Method B 4.77
Method C 0.35
Tab.7  Time taken by different state estimation methods
Fig.10  Comparison of convergence of different methods.
x* Optimal estimated value
z Actual measured value
zt True value vector of parameters
r Measured error vector
qi Pipeline flow of node i
h(x) System simulation model
Wack Measurement covariance matrices of power grid
W gasm Measurement covariance matrices of gas networks
J(x) Deviations between the measured and estimated
xack Power gird state variable
xgasm Gas network state variable
Pi j Active power flow of branch ij
Qi j Reactive power flow of branch ij
ε Convergence threshold
pi Pressure of node i
v Polytropic coefficient
Pi Active power of node i
Qi Reactive power of node i
Vack, i Voltage of node i
θack, ij Phase of node i
Ci Pipeline friction resistance
Gi Node flow
η Power generation efficiency
Hu pp,i Natural gas calorific value
λ Lagrangian multiplier
ρ Penalty coefficient
v Average value of state variables
S¯M Measurement error
o Number of iterations
t Sampling time
N Number of samples
s Total number of measurement point
ac Alternating current power grid
k kth alternating current power grid sub-system
gc Natural gas compressor
i,j Number of nodes
gas Natural gas network
m mth gas network sub-systems
pp Power plant
cp Coupling point
  
1 H Lund, E Münster. Integrated energy systems and local energy markets. Energy Policy, 2006, 34(10): 1152–1160
https://doi.org/10.1016/j.enpol.2004.10.004
2 P C Loh, L Zhang, F Gao. Compact integrated energy systems for distributed generation. IEEE Transactions on Industrial Electronics, 2013, 60(4): 1492–1502
https://doi.org/10.1109/TIE.2012.2208429
3 C Shao, Y Ding, J Wang, Y Song. Modeling and integration of flexible demand in heat and electricity integrated energy system. IEEE Transactions on Sustainable Energy, 2018, 9(1): 361–370
https://doi.org/10.1109/TSTE.2017.2731786
4 A Martinez-Mares, C R Fuerte-Esquivel. A robust optimization approach for the interdependency analysis of integrated energy systems considering wind power uncertainty. IEEE Transactions on Power Systems, 2013, 28(4): 3964–3976
https://doi.org/10.1109/TPWRS.2013.2263256
5 S Collins, J P Deane, K Poncelet, E Panos, R C Pietzcker, E Delarue, B P Ó Gallachóir. Integrating short term variations of the power system into integrated energy system models: a methodological review. Renewable & Sustainable Energy Reviews, 2017, 76: 839–856
https://doi.org/10.1016/j.rser.2017.03.090
6 J Farfan, C Breyer. Structural changes of global power generation capacity towards sustainability and the risk of stranded investments supported by a sustainability indicator. Journal of Cleaner Production, 2017, 141: 370–384
https://doi.org/10.1016/j.jclepro.2016.09.068
7 M Bilgili, A Ozbek, B Sahin, A Kahraman. An overview of renewable electric power capacity and progress in new technologies in the world. Renewable & Sustainable Energy Reviews, 2015, 49: 323–334
https://doi.org/10.1016/j.rser.2015.04.148
8 Y Qu. Gas generator assembly capacity in China has increased significantly since 2000. 2018–12–18, available at the website of mp.weixin.qq.com (in Chinese)
9 B Zhao, A J Conejo, R Sioshansi. Coordinated expansion planning of natural gas and electric power systems. IEEE Transactions on Power Systems, 2018, 33(3): 3064–3075
https://doi.org/10.1109/TPWRS.2017.2759198
10 C Shao, M Shahidehpour, X Wang, X Wang, B Wang. Integrated planning of electricity and natural gas transportation systems for enhancing the power grid resilience. IEEE Transactions on Power Systems, 2017, 32(6): 4418–4429
https://doi.org/10.1109/TPWRS.2017.2672728
11 Z Ling, X Yang, Z Li. Optimal dispatch of multi-energy system using power-to-gas technology considering flexible load on user side. Frontiers in Energy, 2018, 12(4): 569–581
https://doi.org/10.1007/s11708-018-0595-6
12 G Li, R Zhang, T Jiang, H Chen, L Bai, X Li. Security-constrained bi-level economic dispatch model for integrated natural gas and electricity systems considering wind power and power-to-gas process. Applied Energy, 2017, 194: 696–704
https://doi.org/10.1016/j.apenergy.2016.07.077
13 S Clegg, P Mancarella. Integrated electrical and gas network flexibility assessment in low-carbon multi-energy systems. IEEE Transactions on Sustainable Energy, 2016, 7(2): 718–731
https://doi.org/10.1109/TSTE.2015.2497329
14 J Fang, Q Zeng, X Ai, Z Chen, J Wen. Dynamic optimal energy flow in the integrated natural gas and electrical power systems. IEEE Transactions on Sustainable Energy, 2018, 9(1): 188–198
https://doi.org/10.1109/TSTE.2017.2717600
15 F S Cattivelli, C G Lopes, A H Sayed. Diffusion recursive least-squares for distributed estimation over adaptive networks. IEEE Transactions on Signal Processing, 2008, 56(5): 1865–1877
https://doi.org/10.1109/TSP.2007.913164
16 Z Li, Q Guo, H Sun, J Wang. Coordinated economic dispatch of coupled transmission and distribution systems using heterogeneous decomposition. IEEE Transactions on Power Systems, 2016, 31(6): 4817–4830
https://doi.org/10.1109/TPWRS.2016.2515578
17 A Monticelli, F Wu. Observability analysis for orthogonal transformation-based state estimation. IEEE Transactions on Power Systems, 1986, 1(1): 201–206
https://doi.org/10.1109/TPWRS.1986.4334870
18 X Ni, B Zhang. A state estimation method for bad data detection and identification based on equivalent current measurement transformation. Power System Technology, 2002, 26(8): 12–15
19 J Jalving, V M Zavala. An optimization-based state estimation framework for large-scale natural gas networks. Industrial & Engineering Chemistry Research, 2018, 57(17): 5966–5979
https://doi.org/10.1021/acs.iecr.7b04124
20 H Ahmadian Behrooz, R B Boozarjomehry. Modeling and state estimation for gas transmission networks. Journal of Natural Gas Science and Engineering, 2015, 22: 551–570
https://doi.org/10.1016/j.jngse.2015.01.002
21 S Ma, S Sun, H Wu, D Zhou, H Zhang, S Weng. Decoupling optimization of integrated energy system based on energy quality character. Frontiers in Energy, 2018, 12(4): 540–549
https://doi.org/10.1007/s11708-018-0597-4
22 S Ge, X Liu, L Ge, H Liu, J Li. State estimation of regional interconnected electricity and gas networks. Energy Procedia, 2017, 142: 1920–1932
https://doi.org/10.1016/j.egypro.2017.12.392
23 J Dong, H Sun, Q Guo. State estimation for combined electricity and heat networks. Power System Technology, 2016, 40(6): 1635–1641
24 H Zhang, C Zhang, F Wen, Y Xu. A comprehensive energy solution for households employing a micro combined cooling, heating and power generation system. Frontiers in Energy, 2018, 12(4): 582–590
https://doi.org/10.1007/s11708-018-0592-9
25 J Zhong, Y Li, Y Cao, J Zhong, Y Li, Y Cao, D Sidorov, D Panasetsky. A uniform fault identification and positioning method of integrated energy system. Energy Systems Research, 2018, 1(3): 14–24
26 L Xie, D H Choi, S Kar, H V Poor. Fully distributed state estimation for wide-area monitoring systems. IEEE Transactions on Smart Grid, 2012, 3(3): 1154–1169
https://doi.org/10.1109/TSG.2012.2197764
27 G Battistelli, L Chisci. Stability of consensus extended Kalman filter for distributed state estimation. Automatica, 2016, 68: 169–178
https://doi.org/10.1016/j.automatica.2016.01.071
28 A Primadianto, C N Lu. A review on distribution system state estimation. IEEE Transactions on Power Systems, 2017, 32(5): 3875–3883
https://doi.org/10.1109/TPWRS.2016.2632156
29 D Wang, X Guan, T Liu, Y Gu, C Shen, Z Xu. Extended distributed state estimation: a detection method against tolerable false data injection attacks in smart grids. Energies, 2014, 7(3): 1517–1538
https://doi.org/10.3390/en7031517
30 T Zhang, Z Li, Q H Wu, X Zhou. Decentralized state estimation of combined heat and power systems using the asynchronous alternating direction method of multipliers. Applied Energy, 2019, 248: 600–613
https://doi.org/10.1016/j.apenergy.2019.04.071
31 I Ahmadian, O Abedinia, N Ghadimi. Fuzzy stochastic long-term model with consideration of uncertainties for deployment of distributed energy resources using interactive honey bee mating optimization. Frontiers in Energy, 2014, 8(4): 412–425
https://doi.org/10.1007/s11708-014-0315-9
32 X S Jiang, Z X Jing, Y Z Li, Q H Wu, W H Tang. Modelling and operation optimization of an integrated energy based direct district water-heating system. Energy, 2014, 64: 375–388
https://doi.org/10.1016/j.energy.2013.10.067
33 F C Schweppe, J Wildes. Power system static-state estimation, part I: exact model. IEEE Transactions on Power Apparatus and Systems, 1970, PAS-89(1): 120–125
https://doi.org/10.1109/TPAS.1970.292678
34 F C Schweppe, D B Rom. Power system static-state estimation, part II: approximate model. IEEE Transactions on Power Apparatus and Systems, 1970, PAS-89(1): 125–130
https://doi.org/10.1109/TPAS.1970.292679
35 F C Schweppe. Power system static-state estimation, part III: implementation. IEEE Transactions on Power Apparatus and Systems, 1970, PAS-89(1): 130–135
https://doi.org/10.1109/TPAS.1970.292680
36 V Basetti, A K Chandel, K Subramanyam. Power system static state estimation using JADE-adaptive differential evolution technique. Soft Computing, 2018, 22(21): 7157–7176
https://doi.org/10.1007/s00500-017-2715-3
37 X Qing, H R Karimi, Y Niu, X Wang. Decentralized unscented Kalman filter based on a consensus algorithm for multi-area dynamic state estimation in power systems. International Journal of Electrical Power & Energy Systems, 2015, 65: 26–33
https://doi.org/10.1016/j.ijepes.2014.09.024
38 D E Marelli, M Fu. Distributed weighted least-squares estimation with fast convergence for large-scale systems. Automatica, 2015, 51: 27–39
https://doi.org/10.1016/j.automatica.2014.10.077
39 A D Woldeyohannes, M A A Majid. Simulation model for natural gas transmission pipeline network system. Simulation Modelling Practice and Theory, 2011, 19(1): 196–212
https://doi.org/10.1016/j.simpat.2010.06.006
40 W Deng, W Yin. On the global and linear convergence of the generalized alternating direction method of multipliers. Journal of Scientific Computing, 2016, 66(3): 889–916
https://doi.org/10.1007/s10915-015-0048-x
41 A Martinez-Mares, C R Fuerte-Esquivel. A unified gas and power flow analysis in natural gas and electricity coupled networks. IEEE Transactions on Power Systems, 2012, 27(4): 2156–2166
https://doi.org/10.1109/TPWRS.2012.2191984
[1] Shixi MA, Shengnan SUN, Hang WU, Dengji ZHOU, Huisheng ZHANG, Shilie WENG. Decoupling optimization of integrated energy system based on energy quality character[J]. Front. Energy, 2018, 12(4): 540-549.
[2] L. RAMESH, N. CHAKRABORTY, S. P. CHOWDHURY. Intelligent algorithm for optimal meter placement and bus voltage estimation in ring main distribution system[J]. Front Energ, 2012, 6(1): 47-56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed