Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2021, Vol. 15 Issue (3) : 656-666    https://doi.org/10.1007/s11708-021-0765-9
REVIEW ARTICLE
Research progress of defect-engineered UiO-66(Zr) MOFs for photocatalytic hydrogen production
Yating WANG1, Chaosheng PENG1, Tao JIANG1(), Xingang LI2()
1. School of Chemical Engineering and Material Science, Tianjin University of Science and Technology, Tianjin 300457, China
2. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
 Download: PDF(1985 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In recent years, defect-engineered Zr-based UiO-66 metal-organic frameworks (UiO-66(Zr) metal-organic frameworks (MOFs)) have shown huge advantages in catalytic, functional materials, adsorption, and other fields due to their large surface areas, well-ordered porous structures, and flexible tailorability. It is extremely challenging to introduce defect sites in the synthesis of MOFs to regulate the physicochemical properties of materials such as (energy band structure, pore structure, etc.) to obtain an excellent performance. This paper reviews the recent research results of synthesis methods, characterization technologies, and application fields of defect-engineered UiO-66(Zr) MOFs materials in order to provide new insights to synthesize high-performance UiO-66(Zr) MOFs materials and promote the development of UiO-66(Zr) in various fields.

Keywords defect engineering      metal-organic frameworks      UiO-66      photocatalysis     
Corresponding Author(s): Tao JIANG,Xingang LI   
Online First Date: 04 August 2021    Issue Date: 09 October 2021
 Cite this article:   
Yating WANG,Chaosheng PENG,Tao JIANG, et al. Research progress of defect-engineered UiO-66(Zr) MOFs for photocatalytic hydrogen production[J]. Front. Energy, 2021, 15(3): 656-666.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-021-0765-9
https://academic.hep.com.cn/fie/EN/Y2021/V15/I3/656
Fig.1  Basic process of the photocatalytic reaction of MOFs materials.
Fig.2  Synthesis process of UiO-66(Zr/Ti)-NH2 with bimetallic clusters and mixed ligands (adapted with permission from Ref. [20]).
Fig.3  Synthesis process, structure and photocatalytic performance of Pt/UiO-66-NH2 and Pt@UiO-66-NH2 (adapted with permission from Ref. [29]).
Fig.4  Synthesis process, structure and photocatalytic performance of UiO-66/g-C3N4 composite (adapted with permission from Ref. [32]).
MOFs Photocatalytic hydrogen production activity /(μmol·h−1) Ref.
MoS2/UiO-66-NH2/RGO 25.03 [44]
MoS2/UiO-66/CdS 650 [45]
UiO-66/CdS/RGO 13.8 [46]
WP/UiO-66/CdS 79 [47]
ErB/UiO-66/NiS2 18.4 [48]
RhB/Pt@UiO-66 116 [49]
Calix[4]arene/Pt@UiO-66-NH2 1.53 [50]
CD@NH2-UiO-66/g-C3N4 2.93 [51]
GOWPt@UiO-666-NH2 18.15 [52]
Ni12P5@UiO-66-NH2 293.2 [53]
Cd0.2Zn0.8S@UiO-66-NH2 5846.5 [54]
Pt(PTA)@UiO-66-NH2 6.22 [55]
TiO2/UiO-66-NH2/GO 0.27 [56]
Pd/UiO-66 9.43 [57]
UiO-66-NH2 2.12 × 104 [58]
PW12@UiO-NH2 7.27 × 104 [59]
Tab.1  Application of UiO-66 in the field of photocatalytic hydrogen production
1 C Xu, P Ravi Anusuyadevi, C Aymonier, et al.. Nanostructured materials for photocatalysis. Chemical Society Reviews, 2019, 48(14): 3868–3902
https://doi.org/10.1039/C9CS00102F
2 P Zhang, T Wang, X Chang, et al.. Effective charge carrier utilization in photocatalytic conversions. Accounts of Chemical Research, 2016, 49(5): 911–921
https://doi.org/10.1021/acs.accounts.6b00036
3 J D Xiao, H L Jiang. Metal-organic frameworks for photocatalysis and photothermal catalysis. Accounts of Chemical Research, 2019, 52(2): 356–366
https://doi.org/10.1021/acs.accounts.8b00521
4 T Wang, X Li, W Dai, et al.. Enhanced adsorption of dibenzothiophene with zinc/copper-based metal-organic frameworks. Journal of Materials Chemistry, 2015, 3(42): 21044–21050
https://doi.org/10.1039/C5TA05204A
5 K Behrens, S S Mondal, R Noske, et al.. Microwave-assisted synthesis of defects metal-imidazolate-amide-imidate frameworks and improved CO2 capture. Inorganic Chemistry, 2015, 54(20): 10073–10080
https://doi.org/10.1021/acs.inorgchem.5b01952
6 Y Bai, Y Dou, L Xie, et al.. Zr-based metal-organic frameworks: design, synthesis, structure, and applications. Chemical Society Reviews, 2016, 45(8): 2327–2367
https://doi.org/10.1039/C5CS00837A
7 C Wu, M Zhao. Incorporation of molecular catalysts in metal-organic frameworks for highly efficient heterogeneous catalysis. Advanced Materials, 2017, 29(14): 1605446
https://doi.org/10.1002/adma.201605446
8 W P Lustig, S Mukherjee, N D Rudd, et al.. Metal-organic frameworks: functional luminescent and photonic materials for sensing applications. Chemical Society Reviews, 2017, 46(11): 3242–3285
https://doi.org/10.1039/C6CS00930A
9 S N Zhao, X Z Song, M Zhu, et al.. Encapsulation of LnIII ions/dyes within a microporous anionic MOF by post-synthetic ionic exchange serving as a LnIII ion probe and two-color luminescent sensors. Chemistry (Weinheim an der Bergstrasse, Germany), 2015, 21(27): 9748–9752
https://doi.org/10.1002/chem.201500562
10 K Sethi, S Sharma, I Roy. Nanoscale iron carboxylate metal organic frameworks as drug carriers for magnetically aided intracellular delivery. RSC Advances, 2016, 6(80): 76861–76866
https://doi.org/10.1039/C6RA18480D
11 I Abánades Lázaro, C J R Wells, R S Forgan. Multivariate modulation of the Zr MOF UiO-66 for defect-controlled combination anticancer drug delivery. Angewandte Chemie International Edition, 2020, 59(13): 5211–5217
https://doi.org/10.1002/anie.201915848
12 J H Cavka, S Jakobsen, U Olsbye, et al.. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. Journal of the American Chemical Society, 2008, 130(42): 13850–13851
https://doi.org/10.1021/ja8057953
13 C Gomes Silva, I Luz, F X Llabrés i Xamena, et al.. Water stable Zr-benzenedicarboxylate metal-organic frameworks as photocatalysts for hydrogen generation. Chemistry (Weinheim an der Bergstrasse, Germany), 2010, 16(36): 11133–11138
https://doi.org/10.1002/chem.200903526
14 J Qiu, X Zhang, Y Feng, et al.. Modified metal-organic frameworks as photocatalysts. Applied Catalysis B: Environmental, 2018, 231: 317–342
https://doi.org/10.1016/j.apcatb.2018.03.039
15 J Feng, H Huang, T Fang, et al.. Defect engineering in semiconductors: manipulating nonstoichiometric defects and understanding their impact in oxynitrides for solar energy conversion. Advanced Functional Materials, 2019, 29(11): 1808389
https://doi.org/10.1002/adfm.201808389
16 L Hao, L Kang, H Huang, et al.. Surface-halogenation-induced atomic-site activation and local charge separation for superb CO2 photoreduction. Advanced Materials, 2019, 31(25): 1900546
https://doi.org/10.1002/adma.201900546
17 C M Wolff, P D Frischmann, M Schulze, et al.. All-in-one visible-light-driven water splitting by combining nanoparticulate and molecular co-catalysts on CdS nanorods. Nature Energy, 2018, 3(10): 862–869
https://doi.org/10.1038/s41560-018-0229-6
18 A De Vos, K Hendrickx, P van der Voort, et al.. Missing linkers: an alternative pathway to UiO-66 electronic structure engineering. Chemistry of Materials, 2017, 29(7): 3006–3019
https://doi.org/10.1021/acs.chemmater.6b05444
19 Z Zhao, H Zhou, L Zheng, et al.. Molecules interface engineering derived external electric field for effective charge separation in photoelectrocatalysis. Nano Energy, 2017, 42: 90–97
https://doi.org/10.1016/j.nanoen.2017.10.047
20 Y Lee, S Kim, J K Kang, et al.. Photocatalytic CO2 reduction by a mixed metal (Zr/Ti), mixed ligand metal-organic framework under visible light irradiation. Chemical Communications, 2015, 51(26): 5735–5738
https://doi.org/10.1039/C5CC00686D
21 G Cai, H Jiang. A modulator-induced defect-formation strategy to hierarchically porous metal-organic frameworks with high stability. Angewandte Chemie International Edition, 2017, 56(2): 563–567
https://doi.org/10.1002/anie.201610914
22 M R DeStefano, T Islamoglu, S J Garibay, et al.. Room-temperature synthesis of UiO-66 and thermal modulation of densities of defect sites. Chemistry of Materials, 2017, 29(3): 1357–1361
https://doi.org/10.1021/acs.chemmater.6b05115
23 X Ma, L Wang, Q Zhang, et al.. Switching on the photocatalysis of metal-organic frameworks by engineering structural defects. Angewandte Chemie International Edition, 2019, 58(35): 12175–12179
https://doi.org/10.1002/anie.201907074
24 F Vermoortele, B Bueken, G Le Bars, et al.. Synthesis modulation as a tool to increase the catalytic activity of metal-organic frameworks: the unique case of UiO-66(Zr). Journal of the American Chemical Society, 2013, 135(31): 11465–11468
https://doi.org/10.1021/ja405078u
25 J Yang, R Ying, C Han, et al.. Adsorptive removal of organic dyes from aqueous solution by a Zr-based metal–organic framework: effects of Ce(III) doping. Dalton Transactions (Cambridge, England), 2018, 47(11): 3913–3920
https://doi.org/10.1039/C8DT00217G
26 Z Niu, Q Guan, Y Shi, et al.. A lithium-modified zirconium-based metal organic framework (UiO-66) for efficient CO2 adsorption. New Journal of Chemistry, 2018, 42(24): 19764–19770
https://doi.org/10.1039/C8NJ04945A
27 G C Shearer, S Chavan, J Ethiraj, et al.. Tuned to perfection: ironing out the defects in metal-organic framework UiO-66. Chemistry of Materials, 2014, 26(14): 4068–4071
https://doi.org/10.1021/cm501859p
28 L Yuan, M Tian, J Lan, et al.. Defect engineering in metal-organic frameworks: a new strategy to develop applicable actinide sorbents. Chemical Communications, 2018, 54(4): 370–373
https://doi.org/10.1039/C7CC07527H
29 J Xiao, Q Shang, Y Xiong, et al.. Boosting photocatalytic hydrogen production of a metal-organic framework decorated with platinum nanoparticles: the platinum location matters. Angewandte Chemie International Edition, 2016, 55(32): 9389–9393
https://doi.org/10.1002/anie.201603990
30 Z Gu, L Chen, B Duan, et al.. Synthesis of Au@UiO-66(NH2) structures by small molecule-assisted nucleation for plasmon-enhanced photocatalytic activity. Chemical Communications, 2016, 52(1): 116–119
https://doi.org/10.1039/C5CC07042B
31 W Zhao, T Ding, Y Wang, et al.. Decorating Ag/AgCl on UiO-66-NH2: synergy between Ag plasmons and heterostructure for the realization of efficient visible light photocatalysis. Chinese Journal of Catalysis, 2019, 40(8): 1187–1197
https://doi.org/10.1016/S1872-2067(19)63377-2
32 R Wang, L Gu, J Zhou, et al.. Quasi-polymeric metal-organic framework UiO-66/g-C3N4 heterojunctions for enhanced photocatalytic hydrogen evolution under visible light irradiation. Advanced Materials Interfaces, 2015, 2(10): 1500037
https://doi.org/10.1002/admi.201500037
33 A Crake, K C Christoforidis, A Kafizas, et al.. CO2 capture and photocatalytic reduction using bifunctional TiO2/MOF nanocomposites under UV-vis irradiation. Applied Catalysis B: Environmental, 2017, 210: 131–140
https://doi.org/10.1016/j.apcatb.2017.03.039
34 Y Yuan, L Yin, S Cao, et al.. Improving photocatalytic hydrogen production of metal-organic framework UiO-66 octahedrons by dye-sensitization. Applied Catalysis B: Environmental, 2015, 168–169: 572–576
https://doi.org/10.1016/j.apcatb.2014.11.007
35 F Zhou, N Lu, B Fan, et al.. Zirconium-containing UiO-66 as an efficient and reusable catalyst for transesterification of triglyceride with methanol. Journal of Energy Chemistry, 2016, 25(5): 874–879
https://doi.org/10.1016/j.jechem.2016.06.003
36 C A Trickett, K J Gagnon, S Lee, et al.. Definitive molecular level characterization of defects in UiO-66 crystals. Angewandte Chemie International Edition, 2015, 127(38): 11314–11319
https://doi.org/10.1002/ange.201505461
37 S Øien, D S Wragg, H Reinsch, et al.. Detailed structure analysis of atomic positions and defects in zirconium metal-organic frameworks. Crystal Growth & Design, 2014, 14(11): 5370–5372
https://doi.org/10.1021/cg501386j
38 M Taddei, R J Wakeham, A Koutsianos, et al.. Post-synthetic ligand exchange in zirconium-based metal-organic frameworks: beware of the defects. Angewandte Chemie International Edition, 2018, 57(36): 11706–11710
https://doi.org/10.1002/anie.201806910
39 A Nandy, A C Forse, V J Witherspoon, et al.. NMR spectroscopy reveals adsorbate binding sites in the metal-organic framework UiO-66(Zr). Journal of Physical Chemistry C, 2018, 122(15): 8295–8305
https://doi.org/10.1021/acs.jpcc.7b12628
40 D M Driscoll, D Troya, P M Usov, et al.. Characterization of undercoordinated Zr defect sites in UiO-66 with vibrational spectroscopy of adsorbed CO. Journal of Physical Chemistry C, 2018, 122(26): 14582–14589
https://doi.org/10.1021/acs.jpcc.8b03283
41 H Wu, Y S Chua, V Krungleviciute, et al.. Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption. Journal of the American Chemical Society, 2013, 135(28): 10525–10532
https://doi.org/10.1021/ja404514r
42 L Liu, Z Chen, J Wang, et al.. Imaging defects and their evolution in a metal-organic framework at sub-unit-cell resolution. Nature Chemistry, 2019, 11(7): 622–628
https://doi.org/10.1038/s41557-019-0263-4
43 X Peng, L Ye, Y Ding, et al.. Nanohybrid photocatalysts with ZnIn2S4 nanosheets encapsulated UiO-66 octahedral nanoparticles for visible-light-driven hydrogen generation. Applied Catalysis B: Environmental, 2020, 260: 118152
https://doi.org/10.1016/j.apcatb.2019.118152
44 X Hao, Z Jin, H Yang, et al.. Peculiar synergetic effect of MoS2 quantum dots and graphene on metal-organic frameworks for photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2017, 210: 45–56
https://doi.org/10.1016/j.apcatb.2017.03.057
45 L Shen, M Luo, Y Liu, et al.. Noble-metal-free MoS2 co-catalyst decorated UiO-66/CdS hybrids for efficient photocatalytic H2 production. Applied Catalysis B: Environmental, 2015, 166–167: 445–453
https://doi.org/10.1016/j.apcatb.2014.11.056
46 R Lin, L Shen, Z Ren, et al.. Enhanced photocatalytic hydrogen production activity via dual modification of MOF and reduced graphene oxide on CdS. Chemical Communications, 2014, 50(62): 8533–8535
https://doi.org/10.1039/C4CC01776E
47 Y Zhang, Z Jin. Effective electron-hole separation over a controllably constructed WP/UiO-66/CdS heterojunction to achieve efficiently improved visible-light-driven photocatalytic hydrogen evolution. Physical Chemistry Chemical Physics, 2019, 21(16): 8326–8341
https://doi.org/10.1039/C9CP01180C
48 G Xu, X Lin, Y Tong, et al.. UiO-66 MOFs as electron transport channel to short circuit dye photosensitizer and NiS2 co-catalyst for increased hydrogen generation. Materials Letters, 2019, 255: 126593
https://doi.org/10.1016/j.matlet.2019.126593
49 J He, J Wang, Y Chen, et al.. A dye-sensitized Pt@UiO-66(Zr) metal-organic framework for visible-light photocatalytic hydrogen production. Chemical Communications, 2014, 50(53): 7063–7066
https://doi.org/10.1039/C4CC01086H
50 Y Chen, L Tan, J Liu, et al.. Calix[4]arene based dye-sensitized Pt@UiO-66-NH2 metal-organic framework for efficient visible-light photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2017, 206: 426–433
https://doi.org/10.1016/j.apcatb.2017.01.040
51 X Zhang, H Dong, X Sun, et al.. Step-by-step improving photocatalytic hydrogen evolution activity of NH2-UiO-66 by constructing heterojunction and encapsulating carbon nanodots. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 11563–11569
https://doi.org/10.1021/acssuschemeng.8b01740
52 Y Wang, L Ling, W Zhang, et al.. A strategy to boost H2 generation ability of metal-organic frameworks: inside-outside decoration for the separation of electrons and holes. ChemSusChem, 2018, 11(4): 666–671
https://doi.org/10.1002/cssc.201702316
53 K Sun, M Liu, J Pei, et al.. Incorporating transition-metal phosphides into metal-organic frameworks for enhanced photocatalysis. Angewandte Chemie International Edition, 2020, 59(50): 22749–22755
https://doi.org/10.1002/anie.202011614
54 Y Su, Z Zhang, H Liu, et al.. Cd0.2Zn0.8S@UiO-66-NH2 nanocomposites as efficient and stable visible-light-driven photocatalyst for H2 evolution and CO2 reduction. Applied Catalysis B: Environmental, 2017, 200: 448–457
https://doi.org/10.1016/j.apcatb.2016.07.032
55 Z Lionet, T H Kim, Y Horiuchi, et al.. Facile post-synthetic modification of amine-functionalized metal-organic frameworks to integrate visible-light responsive Pt complexes for hydrogen evolution reaction. ChemNanoMat: Chemistry of Nanomaterials for Energy, Biology and More, 2019, 5(12): 1467–1470
https://doi.org/10.1002/cnma.201900432
56 L Ling, Y Wang, W Zhang, et al.. Preparation of a novel ternary composite of TIO2/UiO-66-NH2/graphene oxide with enhanced photocatalytic activities. Catalysis Letters, 2018, 148(7): 1978–1984
https://doi.org/10.1007/s10562-018-2353-0
57 Z Jin, H Yang. Exploration of Zr-metal-organic framework as efficient photocatalyst for hydrogen production. Nanoscale Research Letters, 2017, 12(1): 539
https://doi.org/10.1186/s11671-017-2311-6
58 Y Wang, Y Yu, R Li, et al.. Hydrogen production with ultrahigh efficiency under visible light by graphene well-wrapped UiO-66-NH2 octahedrons. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2017, 5(38): 20136–20140
https://doi.org/10.1039/C7TA06341E
59 P Tian, X He, W Li, et al.. Zr-MOFs based on Keggin-type polyoxometalates for photocatalytic hydrogen production. Journal of Materials Science, 2018, 53(17): 12016–12029
https://doi.org/10.1007/s10853-018-2476-0
60 L Shi, T Wang, H Zhang, et al.. Electrostatic self-assembly of nanosized carbon nitride nanosheet onto a zirconium metal-organic framework for enhanced photocatalytic CO2 reduction. Advanced Functional Materials, 2015, 25(33): 5360–5367
https://doi.org/10.1002/adfm.201502253
61 X Xu, R Liu, Y Cui, et al.. PANI/FeUiO-66 nanohybrids with enhanced visible-light promoted photocatalytic activity for the selectively aerobic oxidation of aromatic alcohols. Applied Catalysis B: Environmental, 2017, 210: 484–494
https://doi.org/10.1016/j.apcatb.2017.04.021
62 X Chen, Y Cai, R Liang, et al.. NH2-UiO-66(Zr) with fast electron transfer routes for breaking down nitric oxide via photocatalysis. Applied Catalysis B: Environmental, 2020, 267: 118687
https://doi.org/10.1016/j.apcatb.2020.118687
63 X Zhang, Y Yang, L Song, et al.. Enhanced adsorption performance of gaseous toluene on defective UiO-66 metal organic framework: equilibrium and kinetic studies. Journal of Hazardous Materials, 2019, 365: 597–605
https://doi.org/10.1016/j.jhazmat.2018.11.049
64 G W Peterson, J J Mahle, J B Decoste, et al.. Extraordinary NO2 removal by the metal-organic framework UiO-66-NH2. Angewandte Chemie International Edition, 2016, 55(21): 6235–6238
https://doi.org/10.1002/anie.201601782
65 Y Zhang, X Feng, H Li, et al.. Photoinduced postsynthetic polymerization of a metal-organic framework toward a flexible stand-alone membrane. Angewandte Chemie International Edition, 2015, 54(14): 4259–4263
https://doi.org/10.1002/anie.201500207
66 W J Phang, H Jo, W R Lee, et al.. Superprotonic conductivity of a UiO-66 framework functionalized with sulfonic acid groups by facile postsynthetic oxidation. Angewandte Chemie International Edition, 2015, 54(17): 5142–5146
https://doi.org/10.1002/anie.201411703
67 Y Pu, W Wu, J Liu, et al.. A defective MOF architecture threaded by interlaced carbon nanotubes for high-cycling lithium-sulfur batteries. RSC Advances, 2018, 8(33): 18604–18612
https://doi.org/10.1039/C8RA02254B
[1] Zhi JIANG, Zhen YE, Wenfeng SHANGGUAN. Recent advances of hydrogen production through particulate semiconductor photocatalytic overall water splitting[J]. Front. Energy, 2022, 16(1): 49-63.
[2] Sabina Ait ABDELKADER, Zhenpeng CUI, Abdelghani LAACHACHI, Christophe COLBEAU-JUSTIN, Mohamed Nawfal GHAZZAL. Interfacial charge transfer and photocatalytic activity in a reverse designed Bi2O3/TiO2 core-shell[J]. Front. Energy, 2021, 15(3): 732-743.
[3] Bing LUO, Yuxin ZHAO, Dengwei JING. State-of-the-art progress in overall water splitting of carbon nitride based photocatalysts[J]. Front. Energy, 2021, 15(3): 600-620.
[4] Zehong XU, Qiaohong ZHU, Xinguo XI, Mingyang XING, Jinlong ZHANG. Z-scheme CdS/WO3 on a carbon cloth enabling effective hydrogen evolution[J]. Front. Energy, 2021, 15(3): 678-686.
[5] Saket MATHUR, Benjamin ROGERS, Wei WEI. Organic conjugated polymers and polymer dots as photocatalysts for hydrogen production[J]. Front. Energy, 2021, 15(3): 667-677.
[6] Taya (Ko) SAOTHAYANUN, Thipwipa (Tip) SIRINAKORN, Makoto OGAWA. Layered alkali titanates (A2TinO2n+1): possible uses for energy/environment issues[J]. Front. Energy, 2021, 15(3): 631-655.
[7] Lei ZHANG, Junqing ZHANG. Metal-organic frameworks for CO2 photoreduction[J]. Front. Energy, 2019, 13(2): 221-250.
[8] Xi CHEN, Fangming JIN. Photocatalytic reduction of carbon dioxide by titanium oxide-based semiconductors to produce fuels[J]. Front. Energy, 2019, 13(2): 207-220.
[9] Xiaoping CHEN, Wenfeng SHANGGUAN. Hydrogen production from water splitting on CdS-based photocatalysts using solar light[J]. Front Energ, 2013, 7(1): 111-118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed