Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2022, Vol. 16 Issue (4) : 581-594    https://doi.org/10.1007/s11708-022-0831-y
RESEARCH ARTICLE
High performance solid-state thermoelectric energy conversion via inorganic metal halide perovskites under tailored mechanical deformation
Lifu YAN1, Lingling ZHAO1(), Guiting YANG2, Shichao LIU2, Yang LIU2, Shangchao LIN3()
1. National Engineering Research Center of Turbo-Generator Vibration, School of Energy and Environment, Southeast University, Nanjing 210096, China
2. State Key Laboratory of Space Power-Sources Technology, Shanghai Institute of Space Power-Sources, Shanghai 200245, China
3. Key Laboratory for Power Machinery and Engineering of the Ministry of Education, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
 Download: PDF(5639 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Solid-state thermoelectric energy conversion devices attract broad research interests because of their great promises in waste heat recycling, space power generation, deep water power generation, and temperature control, but the search for essential thermoelectric materials with high performance still remains a great challenge. As an emerging low cost, solution-processed thermoelectric material, inorganic metal halide perovskites CsPb(I1–xBrx)3 under mechanical deformation is systematically investigated using the first-principle calculations and the Boltzmann transport theory. It is demonstrated that halogen mixing and mechanical deformation are efficient methods to tailor electronic structures and charge transport properties in CsPb(I1–xBrx)3 synergistically. Halogen mixing leads to band splitting and anisotropic charge transport due to symmetry-breaking-induced intrinsic strains. Such band splitting reconstructs the band edge and can decrease the charge carrier effective mass, leading to excellent charge transport properties. Mechanical deformation can further push the orbital energies apart from each other in a more controllable manner, surpassing the impact from intrinsic strains. Both anisotropic charge transport properties andZT values are sensitive to the direction and magnitude of strain, showing a wide range of variation from 20% to 400% (with a ZT value of up to 1.85) compared with unstrained cases. The power generation efficiency of the thermoelectric device can reach as high as approximately 12% using mixed halide perovskites under tailored mechanical deformation when the heat-source is at 500 K and the cold side is maintained at 300 K, surpassing the performance of many existing bulk thermoelectric materials.

Keywords inorganic metal halide perovskites      mechanical deformation      thermoelectrics      first-principle calculations      Boltzmann transport theory     
Corresponding Author(s): Lingling ZHAO,Shangchao LIN   
Online First Date: 19 July 2022    Issue Date: 21 October 2022
 Cite this article:   
Lifu YAN,Lingling ZHAO,Guiting YANG, et al. High performance solid-state thermoelectric energy conversion via inorganic metal halide perovskites under tailored mechanical deformation[J]. Front. Energy, 2022, 16(4): 581-594.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-022-0831-y
https://academic.hep.com.cn/fie/EN/Y2022/V16/I4/581
Fig.1  Schematic diagram of perovskite-based thermoelectric materials, devices, and their potential applications.
Fig.2  Tailored electronic structures and electron densities of CsPbI3 under mechanical deformations.
Fig.3  Tailored electronic properties of CsPbIBr2 under mechanical deformations.
Fig.4  Surface contours of the mechanical properties of CsPbI3 and CsPbIBr2.
Fig.5  Mechanical deformation-tunable band edges, band gaps, and carrier effective masses in CsPbI3.
Fig.6  Mechanical deformation-tunable band edges, band gaps, and carrier effective masses in CsPbIBr2.
Fig.7  Transport properties of CsPbI3 at 300 K under mechanical deformations.
Fig.8  Anisotropic ZT values of CsPbIBr2 at 300 K under mechanical deformations.
Fig.9  Thermoelectric energy conversion efficiency of inorganic halide perovskites compared with other thermoelectric materials. (Efficiency of CsPbI3 without strain, and CsPbIBr2 under 1% extensive strain as a function of the hot-side temperature, compared with other experimental reports of other promising thermoelectric materials, including BiCuSeO (ZT = ~0.45 at 300 K) [71], α-Cu2+xSe (average ZT = ~0.6 between 300 and 400 K) [72], SnSe (ZT = 0.8 at 300 K) [73], TaFeSb (average ZT = 0.93 between 300 and 973 K) [74], Pb0.98Na0.02Te-8%SrTe (average ZT = 1.2 between 300 and 800 K) [75], Fe-doped Bi0.4Sb1.6Te3 (ZT = ~1.4 at 300 K) [67], and Bi0.5Sb1.5Te3 (ZT = 1.72 at 300 K) [68]).
1 H Wang, J He. China’s pre-2020 CO2 emission reduction potential and its influence. Frontiers in Energy, 2019, 13( 3): 571– 578
https://doi.org/10.1007/s11708-019-0640-0
2 G Semieniuk, L Taylor, A Rezai. et al.. Plausible energy demand patterns in a growing global economy with climate policy. Nature Climate Change, 2021, 11( 4): 313– 318
https://doi.org/10.1038/s41558-020-00975-7
3 L Pathak, K Shah. Renewable energy resources, policies and gaps in BRICS countries and the global impact. Frontiers in Energy, 2019, 13( 3): 506– 521
https://doi.org/10.1007/s11708-018-0601-z
4 X Zhang, Y Geng, Y W Tong. et al.. Trends and driving forces of low-carbon energy technology innovation in China’s industrial sectors from 1998 to 2017: from a regional perspective. Frontiers in Energy, 2021, 15( 2): 473– 486
https://doi.org/10.1007/s11708-021-0738-z
5 E Garofalo, M Bevione, L Cecchini. et al.. Waste heat to power: technologies, current applications, and future potential. Energy Technology (Weinheim), 2020, 8( 11): 2000413
https://doi.org/10.1002/ente.202000413
6 C Zhao, Z Zhang, X Zhang. Special issue: nanotechnology in energy. Frontiers in Energy, 2018, 12( 1): 1– 4
https://doi.org/10.1007/s11708-018-0544-4
7 J Liu, Z Guo. Unconventional energy: seeking the ways to innovate energy science and technology. Frontiers in Energy, 2018, 12( 2): 195– 197
https://doi.org/10.1007/s11708-018-0568-9
8 Z Liu, S Yuan, Y Yuan. et al.. A thermoelectric generator and water-cooling assisted high conversion efficiency polycrystalline silicon photovoltaic system. Frontiers in Energy, 2021, 15( 2): 358– 366
https://doi.org/10.1007/s11708-020-0712-1
9 S Twaha, J Zhu, Y Yan. et al.. A comprehensive review of thermoelectric technology: materials, applications, modelling and performance improvement. Renewable & Sustainable Energy Reviews, 2016, 65 : 698– 726
https://doi.org/10.1016/j.rser.2016.07.034
10 D Jia, J Liu. Human power-based energy harvesting strategies for mobile electronic devices. Frontiers of Energy and Power Engineering in China, 2009, 3( 1): 27– 46
https://doi.org/10.1007/s11708-009-0002-4
11 S Lin, C Chen, L Zhao. et al.. Molecular insights into water vapor adsorption and interfacial moisture stability of hybrid perovskites for robust optoelectronics. International Journal of Heat and Mass Transfer, 2021, 175 : 121334
https://doi.org/10.1016/j.ijheatmasstransfer.2021.121334
12 Y He, G Galli. Perovskites for solar thermoelectric applications: a first principle study of CH3NH3AI3 (A = Pb and Sn). Chemistry of Materials, 2014, 26( 18): 5394– 5400
https://doi.org/10.1021/cm5026766
13 G Tang, P Ghosez, J Hong. Band-edge orbital engineering of perovskite semiconductors for optoelectronic applications. Journal of Physical Chemistry Letters, 2021, 12( 17): 4227– 4239
https://doi.org/10.1021/acs.jpclett.0c03816
14 S Hu, Z Ren, A B Djurišić. et al.. Metal halide perovskites as emerging thermoelectric materials. ACS Energy Letters, 2021, 6( 11): 3882– 3905
https://doi.org/10.1021/acsenergylett.1c02015
15 G E Eperon, G M Paternò, R J Sutton. et al.. Inorganic caesium lead iodide perovskite solar cells. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3( 39): 19688– 19695
https://doi.org/10.1039/C5TA06398A
16 M Kulbak, S Gupta, N Kedem. et al.. Cesium enhances long-term stability of lead bromide perovskite-based solar cells. Journal of Physical Chemistry Letters, 2016, 7( 1): 167– 172
https://doi.org/10.1021/acs.jpclett.5b02597
17 Z Wang, Z Shi, T Li. et al.. Stability of perovskite solar cells: a prospective on the substitution of the A cation and X anion. Angewandte Chemie International Edition, 2017, 56( 5): 1190– 1212
https://doi.org/10.1002/anie.201603694
18 X Wang, Y Ling, X Lian. et al.. Suppressed phase separation of mixed-halide perovskites confined in endotaxial matrices. Nature Communications, 2019, 10( 1): 695
https://doi.org/10.1038/s41467-019-08610-6
19 H Yu, Q Sun, T Zhang. et al.. Is the strain responsible to instability of inorganic perovskites and their photovoltaic devices? Materials Today. Energy, 2021, 19 : 100601
https://doi.org/10.1016/j.mtener.2020.100601
20 E G Moloney, V Yeddu, M I Saidaminov. Strain engineering in halide perovskites. ACS Materials Letters, 2020, 2( 11): 1495– 1508
https://doi.org/10.1021/acsmaterialslett.0c00308
21 Z Li, Y Qin, L Dong. et al.. Elastic and electronic origins of strain stabilized photovoltaic gamma-CsPbI3. Physical Chemistry Chemical Physics, 2020, 22( 22): 12706– 12712
https://doi.org/10.1039/D0CP01649G
22 S Yalameha, P Saeidi, Z Nourbakhsh. et al.. Insight into the topological phase and elastic properties of halide perovskites CsSnX3 (X  = l, Br, Cl) under hydrostatic pressures. Journal of Applied Physics, 2020, 127( 8): 085102
https://doi.org/10.1063/1.5125920
23 H Zitouni N Tahiri O El Bounagui, et al.. How the strain effects decreases the band gap energy in the CsPb X3 perovskite compounds ? Phase Transitions, 2020, 93( 5): 455– 469
24 M A Rahman, A Giri. Uniquely anisotropic mechanical and thermal responses of hybrid organic-inorganic perovskites under uniaxial strain. Journal of Chemical Physics, 2021, 155( 12): 124703
https://doi.org/10.1063/5.0065207
25 G Ding, G Y Gao, L Yu. et al.. Thermoelectric properties of half-Heusler topological insulators MPtBi (M = Sc, Y, La) induced by strain. Journal of Applied Physics, 2016, 119( 2): 025105
https://doi.org/10.1063/1.4939887
26 X Luo, M B Sullivan, S Y Quek. First-principles investigations of the atomic, electronic, and thermoelectric properties of equilibrium and strained Bi2Se3 and Bi2Te3 including van der Waals interactions. Physical Review B: Condensed Matter and Materials Physics, 2012, 86( 18): 184111
https://doi.org/10.1103/PhysRevB.86.184111
27 K Pal, S Anand, U V Waghmare. Thermoelectric properties of materials with nontrivial electronic topology. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2015, 3( 46): 12130– 12139
https://doi.org/10.1039/C5TC02344K
28 C Zou, C Lei, D Zou. et al.. Uniaxial tensile strain induced the enhancement of thermoelectric properties in n-type BiCuOCh (Ch = Se, S): a first principles study. Materials (Basel), 2020, 13( 7): 1755
https://doi.org/10.3390/ma13071755
29 L K Bhaskar, G Kumar, N Srinivasan. et al.. Design and development of a miniaturized multiaxial test setup for in situ X-ray diffraction experiments. Review of Scientific Instruments, 2021, 92( 1): 015116
https://doi.org/10.1063/5.0031805
30 X Kleber, P Roux, M Morin. Sensitivity of the thermoelectric power of metallic materials to an elastic uniaxial strain. Philosophical Magazine Letters, 2009, 89( 9): 565– 572
https://doi.org/10.1080/09500830903170567
31 M A Haque, S Kee, D R Villalva. et al.. Halide perovskites: thermal transport and prospects for thermoelectricity. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2020, 7( 10): 1903389
https://doi.org/10.1002/advs.201903389
32 P K Nayak, M Sendner, B Wenger. et al.. Impact of Bi3+ heterovalent doping in organic-inorganic metal halide perovskite crystals. Journal of the American Chemical Society, 2018, 140( 2): 574– 577
https://doi.org/10.1021/jacs.7b11125
33 L Yan, M Wang, C Zhai. et al.. Symmetry-breaking induced anisotropic carrier transport and remarkable thermoelectric performance in mixed halide perovskites CsPb(I1–xBrx)3. ACS Applied Materials & Interfaces, 2020, 12( 36): 40453– 40464
https://doi.org/10.1021/acsami.0c07501
34 J P Perdew, K Burke, M Ernzerhof. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77( 18): 3865– 3868
https://doi.org/10.1103/PhysRevLett.77.3865
35 M Torrent, F Jollet, F Bottin. et al.. Implementation of the projector augmented-wave method in the ABINIT code: application to the study of iron under pressure. Computational Materials Science, 2008, 42( 2): 337– 351
https://doi.org/10.1016/j.commatsci.2007.07.020
36 G Kresse, J Furthmüller. Efficient iterative schemes for Ab initio total-energy calculations using a plane-wave basis set. Physical Review B: Condensed Matter, 1996, 54( 16): 11169– 11186
https://doi.org/10.1103/PhysRevB.54.11169
37 P Pulay. Convergence acceleration of iterative sequences: the case of SCF iteration. Chemical Physics Letters, 1980, 73( 2): 393– 398
https://doi.org/10.1016/0009-2614(80)80396-4
38 V V Fiorentini, A Baldereschi. Dielectric scaling of the self-energy scissor operator in semiconductors and insulators. Physical Review B: Condensed Matter, 1995, 51( 23): 17196– 17198
https://doi.org/10.1103/PhysRevB.51.17196
39 W J Yin, Y Yan, S H Wei. Anomalous alloy properties in mixed halide perovskites. Journal of Physical Chemistry Letters, 2014, 5( 21): 3625– 3631
https://doi.org/10.1021/jz501896w
40 C C Stoumpos, C D Malliakas, J A Peters. et al.. Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection. Crystal Growth & Design, 2013, 13( 7): 2722– 2727
https://doi.org/10.1021/cg400645t
41 G K H Madsen, D J Singh. BoltzTraP. A code for calculating band-structure dependent quantities. Computer Physics Communications, 2006, 175( 1): 67– 71
https://doi.org/10.1016/j.cpc.2006.03.007
42 J Xi, M Long, L Tang. et al.. First-principles prediction of charge mobility in carbon and organic nanomaterials. Nanoscale, 2012, 4( 15): 4348– 4369
https://doi.org/10.1039/c2nr30585b
43 L Tang, M Long, D Wang. et al.. The role of acoustic phonon scattering in charge transport in organic semiconductors: a first-principles deformation-potential study. Science in China. Series B, Chemistry, 2009, 52( 10): 1646– 1652
https://doi.org/10.1007/s11426-009-0244-3
44 D Wang, W Shi, J Chen. et al.. Modeling thermoelectric transport in organic materials. Physical Chemistry Chemical Physics, 2012, 14( 48): 16505– 16520
https://doi.org/10.1039/c2cp42710a
45 D Wang, L Tang, M Long. et al.. First-principles investigation of organic semiconductors for thermoelectric applications. Journal of Chemical Physics, 2009, 131( 22): 224704
https://doi.org/10.1063/1.3270161
46 Y B Lu, X Kong, X Chen. et al.. Piezoelectric scattering limited mobility of hybrid organic-inorganic perovskites CH3NH3PbI3. Scientific Reports, 2017, 7( 1): 41860
https://doi.org/10.1038/srep41860
47 H Fröhlich. Electrons in lattice fields. Advances in Physics, 1954, 3( 11): 325– 361
https://doi.org/10.1080/00018735400101213
48 D Chattopadhyay, H J Queisser. Electron scattering by ionized impurities in semiconductors. Reviews of Modern Physics, 1981, 53( 4): 745– 768
https://doi.org/10.1103/RevModPhys.53.745
49 J Yu, M Wang, S Lin. Probing the soft and nanoductile mechanical nature of single and polycrystalline organic–inorganic hybrid perovskites for flexible functional devices. ACS Nano, 2016, 10( 12): 11044– 11057
https://doi.org/10.1021/acsnano.6b05913
50 P G Klemens. Thermal resistance due to point defects at high temperatures. Physical Review, 1960, 119( 2): 507– 509
https://doi.org/10.1103/PhysRev.119.507
51 H Wang, J Wang, X Cao. et al.. Thermoelectric alloys between PbSe and PbS with effective thermal conductivity reduction and high figure of merit. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2( 9): 3169– 3174
https://doi.org/10.1039/c3ta14929c
52 M Jonson, G D Mahan. Mott’s formula for the thermopower and the Wiedemann-Franz law. Physical Review B: Condensed Matter, 1980, 21( 10): 4223– 4229
https://doi.org/10.1103/PhysRevB.21.4223
53 J Yang, G P Meisner, L Chen. Strain field fluctuation effects on lattice thermal conductivity of ZrNiSn-based thermoelectric compounds. Applied Physics Letters, 2004, 85( 7): 1140– 1142
https://doi.org/10.1063/1.1783022
54 F Ma, H B Zheng, Y J Sun. et al.. Strain effect on lattice vibration, heat capacity, and thermal conductivity of graphene. Applied Physics Letters, 2012, 101( 11): 111904
https://doi.org/10.1063/1.4752010
55 B Ding, X Li, W Zhou. et al.. Anomalous strain effect on the thermal conductivity of low-buckled two-dimensional silicene. National Science Review, 2021, 8( 9): nwaa220
https://doi.org/10.1093/nsr/nwaa220
56 M Hu, X Zhang, D Poulikakos. Anomalous thermal response of silicene to uniaxial stretching. Physical Review B: Condensed Matter and Materials Physics, 2013, 87( 19): 195417
https://doi.org/10.1103/PhysRevB.87.195417
57 H Li, G Cheng, Y Liu. et al.. Anomalous thermal response of graphene kirigami induced by tailored shape to uniaxial tensile strain: a molecular dynamics study. Nanomaterials (Basel, Switzerland), 2020, 10( 1): 126
https://doi.org/10.3390/nano10010126
58 B Mortazavi, M Q Le, T Rabczuk. et al.. Anomalous strain effect on the thermal conductivity of borophene: a reactive molecular dynamics study. Physica E, Low-Dimensional Systems and Nanostructures, 2017, 93 : 202– 207
https://doi.org/10.1016/j.physe.2017.06.012
59 A Tabarraei, X Wang. Anomalous thermal conductivity of monolayer boron nitride. Applied Physics Letters, 2016, 108( 18): 181904
https://doi.org/10.1063/1.4948650
60 J Qian, B Xu, W Tian. A comprehensive theoretical study of halide perovskites ABX3. Organic Electronics, 2016, 37 : 61– 73
https://doi.org/10.1016/j.orgel.2016.05.046
61 Y Yuan, R Xu, H T Xu. et al.. Nature of the band gap of halide perovskites ABX3 (A = CH3NH3, Cs; B = Sn, Pb; X = Cl, Br, I): first-principles calculations. Chinese Physics B, 2015, 24( 11): 116302
https://doi.org/10.1088/1674-1056/24/11/116302
62 L Leppert, S E Reyes-Lillo, J B Neaton. Electric field- and strain-induced rashba effect in hybrid halide perovskites. Journal of Physical Chemistry Letters, 2016, 7( 18): 3683– 3689
https://doi.org/10.1021/acs.jpclett.6b01794
63 M Liao, Y Liu, P Cui. et al.. Modeling of alloying effect on elastic properties in BCC Nb-Ti-V-Zr solid solution: from unary to quaternary. Computational Materials Science, 2020, 172 : 109289
https://doi.org/10.1016/j.commatsci.2019.109289
64 J Kang, L W Wang. High defect tolerance in lead halide perovskite CsPbBr3. Journal of Physical Chemistry Letters, 2017, 8( 2): 489– 493
https://doi.org/10.1021/acs.jpclett.6b02800
65 Q Zhang, Q Song, X Wang. et al.. Deep defect level engineering: a strategy of optimizing the carrier concentration for high thermoelectric performance. Energy & Environmental Science, 2018, 11( 4): 933– 940
https://doi.org/10.1039/C8EE00112J
66 W Ren, Q Song, H Zhu. et al.. Intermediate-level doping strategy to simultaneously optimize power factor and phonon thermal conductivity for improving thermoelectric figure of merit. Materials Today Physics, 2020, 15 : 100250
https://doi.org/10.1016/j.mtphys.2020.100250
67 W H Shin, J W Roh, B Ryu. et al.. Enhancing thermoelectric performances of bismuth antimony telluride via synergistic combination of multiscale structuring and band alignment by FeTe2 incorporation. ACS Applied Materials & Interfaces, 2018, 10( 4): 3689– 3698
https://doi.org/10.1021/acsami.7b18451
68 S I Kim, K H Lee, H A Mun. et al.. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science, 2015, 348( 6230): 109– 114
https://doi.org/10.1126/science.aaa4166
69 L Zheng, T Zhu, Y Li. et al.. Enhanced thermoelectric performance of F4-TCNQ doped FASnI3 thin films. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8( 47): 25431– 25442
https://doi.org/10.1039/D0TA09329G
70 J Wei, L Yang, Z Ma. et al.. Review of current high-ZT thermoelectric materials. Journal of Materials Science, 2020, 55( 27): 12642– 12704
https://doi.org/10.1007/s10853-020-04949-0
71 J L Lan, Y C Liu, B Zhan. et al.. Enhanced thermoelectric properties of Pb-doped BiCuSeO ceramics. Advanced Materials, 2013, 25( 36): 5086– 5090
https://doi.org/10.1002/adma.201301675
72 H Liu, X Yuan, P Lu. et al.. Ultrahigh thermoelectric performance by electron and phonon critical scattering in Cu2Se1–xIx. Advanced Materials, 2013, 25( 45): 6607– 6612
https://doi.org/10.1002/adma.201302660
73 B Qin, D Wang, W He. et al.. Realizing high thermoelectric performance in p-type SnSe through crystal structure modification. Journal of the American Chemical Society, 2019, 141( 2): 1141– 1149
https://doi.org/10.1021/jacs.8b12450
74 H Zhu, J Mao, Y Li. et al.. Discovery of TaFeSb-based half-Heuslers with high thermoelectric performance. Nature Communications, 2019, 10( 1): 270
https://doi.org/10.1038/s41467-018-08223-5
75 T Xing, Q Song, P Qiu. et al.. Superior performance and high service stability for GeTe-based thermoelectric compounds. National Science Review, 2019, 6( 5): 944– 954
https://doi.org/10.1093/nsr/nwz052
[1] FEP-22019-OF-YLF_suppl_1 Download
[1] Dongchao XU, Quan WANG, Xuewang WU, Jie ZHU, Hongbo ZHAO, Bo XIAO, Xiaojia WANG, Xiaoliang WANG, Qing HAO. Largely reduced cross-plane thermal conductivity of nanoporous In0.1Ga0.9N thin films directly grown by metal organic chemical vapor deposition[J]. Front. Energy, 2018, 12(1): 127-136.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed