Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2022, Vol. 16 Issue (5) : 706-733    https://doi.org/10.1007/s11708-022-0833-9
REVIEW ARTICLE
Ion conduction path in composite solid electrolytes for lithium metal batteries: from polymer rich to ceramic rich
Zhouyu ZHANG1, Hao CHEN2, Zhenglin HU1(), Shoubin ZHOU4, Lan ZHANG5, Jiayan LUO3()
1. Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
2. Shanghai Key Laboratory of Advanced High-Temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
3. Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Shanghai Key Laboratory of Advanced High-Temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
4. Huafu High Technology Energy Storage Co., Ltd., Yangzhou 225600, China
5. CAS Key Laboratory of Green Process and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
 Download: PDF(22536 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Solid-state electrolytes (SSEs) can address the safety issue of organic electrolyte in rechargeable lithium batteries. Unfortunately, neither polymer nor ceramic SSEs used alone can meet the demand although great progress has been made in the past few years. Composite solid electrolytes (CSEs) composed of flexible polymers and brittle but more conducting ceramics can take advantage of the individual system for solid-state lithium metal batteries (SSLMBs). CSEs can be largely divided into two categories by the mass fraction of the components: “polymer rich” (PR) and “ceramic rich” (CR) systems with different internal structures and electrochemical properties. This review provides a comprehensive and in-depth understanding of recent advances and limitations of both PR and CR electrolytes, with a special focus on the ion conduction path based on polymer-ceramic interaction mechanisms and structural designs of ceramic fillers/frameworks. In addition, it highlights the PR and CR which bring the leverage between the electrochemical property and the mechanical property. Moreover, it further prospects the possible route for future development of CSEs according to their rational design, which is expected to accelerate the practical application of SSLMBs.

Keywords composite solid electrolytes      active filler/framework      ion conduction path      interphase compatibility      multilayer design     
Corresponding Author(s): Zhenglin HU,Jiayan LUO   
Online First Date: 27 July 2022    Issue Date: 28 November 2022
 Cite this article:   
Zhouyu ZHANG,Hao CHEN,Zhenglin HU, et al. Ion conduction path in composite solid electrolytes for lithium metal batteries: from polymer rich to ceramic rich[J]. Front. Energy, 2022, 16(5): 706-733.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-022-0833-9
https://academic.hep.com.cn/fie/EN/Y2022/V16/I5/706
Fig.1  Schematic of the categories, structural designs of ceramic fillers in PR electrolytes, and fabrication methods of frameworks in CR electrolytes.
Fig.2  Interaction mechanisms between garnet-type fillers and polymers in CSEs.
Fig.3  Ion conduction mechanisms and preparation methods of CSEs with NASICON-type fillers.
Fig.4  Effect mechanism and DFT calculation results of CSEs with perovskite-type fillers.
Fig.5  Ion conduction mechanisms and preparation methods of CSEs with sulfide fillers.
Fig.6  Performance enhancement and preparation methods of CSEs with hydride fillers.
Fig.7  Lithium-ion pathways in the PR electrolytes.
Fig.8  Ion conduction mechanisms and DFT calculation of CSEs with nanofibers.
Fig.9  Preparation methods and ion conduction mechanisms of CSEs with nanosheets.
Fig.10  Ion conduction enhancement and protection mechanism of frameworks in CSEs.
Fig.11  Preparation methods and operation mechanism of frameworks in CSEs.
Structure CPEs Ionic conductivity Electrochemical window (vs Li/Li+) Li+ transference number Activation energy Ref.
Particle 40 wt.% LLZTO-PEO 1.12 × 10?5 S/cm at 25°C 5.5 V 0.58 0.83 eV [29]
10 wt.% LLZTO-PVDF 5 × 10?4 S/cm at 25°C 0.2 eV [30]
7.5 wt.% LLZNO-PVDF 9.2 × 10?5 S/cm at 25°C 4.6 V 0.48 eV [31]
10 wt.% LATP-PVDF-HFP 2.3 × 10?4 S/cm at 25°C [33]
10 wt.% LATP-PEO 1.7 × 10?4 S/cm at 20°C [34]
10 wt.% LATP-PIL 7.78 × 10?5 S/cm at 30°C 4.55 V 0.21 0.5 eV [35]
15 wt.% LLTO@ PDA-PVDF 1.1 × 10?4 S/cm at 30°C 0.29 eV [36]
20 wt.% LSTZ-PEO 5.4 × 10?4 S/cm at 25°C 5.25 V 0.43 [37]
10 wt.% LSTHF-PVDF 5.3 × 10?4 S/cm at 25°C 4.8 V 0.5 0.126 eV [38]
10 wt.% LPS-PVDF-HFP 1.1 × 10?4 S/cm at 25°C 0.41 eV [44]
20 wt.% LGPS-PVDF-HFP 1.8 × 10?4 S/cm at 25°C 4.83 V 0.68 [45]
3 wt.% LGPS-PEO-PEG 9.83 × 10?4 S/cm at 25°C 5.1 V 0.68 0.26 eV [46]
PEO10-Li4(BH4)3I 4.09 × 10?4 S/cm at 70°C 3.6 V 0.45 [50]
1 wt.% LBH-PVDF 1.43 × 10?4 S/cm at 25°C 4.0 V 0.34 [51]
Nanofiber 10 wt.% LLZTO-PEO 2.13 × 10?4 S/cm at 25°C 4.9 V 0.57 0.45 eV [53]
15 wt.% LLTO-PVDF 5.3 × 10?4 S/cm at 25°C 5.1 V [55]
30 wt.% N-LLTO-PVDF-HFP 3.8 × 10?4 S/cm at 25°C 4.9 V 0.42 0.29 eV [65]
3 wt.% aligned LLTO-PAN 6.05 × 10?5 S/cm at 30°C 0.42 0.77 eV [56]
15 wt.% LLTO-PEO 2.4 × 10?4 S/cm at 25°C 5.0 V 0.4 eV [66]
Nanosheet 15 wt.% LLZNO-PEO 3.6 × 10?4 S/cm at 25°C 0.33 eV [57]
20 wt.% LLZAO-PEO 4.3 × 10?5 S/cm at 25°C 5.3 V [58]
Framework 44 wt.% LLTO-PEO 8.8 × 10?5 S/cm at 25°C 4.5 V 0.64 eV [59]
Vertical aligned LAGP-PEO 1.67 × 10?4 S/cm at 25°C 0.56 0.45 eV [61]
Vertical aligned LATP-PEO 5.2 × 10?5 S/cm at 25°C [67]
F-LLTO-PEO 5 × 10?4 S/cm at 25°C 6 V 0.5 [60]
LLZO-PEO 9.2 × 10?5 S/cm at 25°C 5.1 V [62]
Tab.1  Summary of recently reported PR electrolytes
Fig.12  Li-ion pathways in CSEs with different ceramic content.
Fig.13  Ion conduction mechanism and preparation methods of garnet-type frameworks in CSEs.
Fig.14  Performance enhancement of CSEs with NASICON-type frameworks.
Fig.15  Preparation methods of CSEs with perovskite-type and sulfide-type frameworks.
Fig.16  Electrospinning and solution dispersion methods of frameworks in CSEs.
Fig.17  Vacuum filtration and sol-gel synthesis methods of frameworks in CSEs.
CPEs Ionic conductivity Electrochemical window (vs Li/Li+) Li+ transference number Activation energy Ref.
85 wt.% LLZTO-PEO 6.24 × 10?5 S/cm at 25°C 5 V [21]
94.3 wt.% LLZTO@PAN 1.1 × 10?4 S/cm at 60°C 4.35 V at 60°C 0.66 at 60°C 0.36 eV [68]
99.5 wt.% LLZTO-PTFE 5.2 × 10?4 S/cm at 25°C [70]
80 wt.% PDA@LLZTO-PEO 1.1 × 10?4 S/cm at 30°C 4.8 V [69]
70 wt.% LLZTO-PVDF 2 × 10?4 S/cm at 25°C 5 V 0.66 13.45 kJ mol?1 [81]
80 wt.% LLZTO-PVDF 1.08 × 10?4 S/cm at 60°C 4.7 V 0.39 eV [82]
80.4 wt.% LLZTO-PTFE-SN 1.2 × 10?4 S/cm at 25°C 4.8 V 0.53 [83]
80 wt.% LLZO-PCL-PTMC 1.31 × 10?4 S/cm at 60°C 5.4 V 0.84 0.22 eV [84]
52.5 wt.% LLZTO-ACN-DMC 3.1 × 10?3 S/cm at 25°C 4.7 V 0.67 [85]
90 wt.% LLZTO-PVDF 3.7 × 10?4 S/cm at 25°C 5 V 0.39 [86]
75 wt.% LAGP-PCL 1.7 × 10?4 S/cm at 30°C 5 V 0.3 21 kJ mol?1 [87]
50 wt.% LATP-PVDF-HFP 1.02 × 10?4 S/cm at 25°C 4.5 V [73]
90 wt.% LiSn2(PO4)3-PEO 3.73 × 10?5 S/cm at 25°C 0.378 eV [71]
70 wt.% LiSn2(PO4)3-PEO 3.48 × 10?5 S/cm at 27°C ~0.39 ~0.34 eV [72]
70 wt.% LATP-PEO 4 × 10?5 S/cm at 25°C 0.77 eV [88]
73.9 wt.% LLTO-PVP-BBP 2.0 × 10?5 S/cm at 25°C [74]
99.5 wt.% LPSCl-PTFE 1.7 × 10–-3 S/cm at 25°C [70]
99 wt.% LGPS-PTFE 3.6 × 10?4 S/cm at 25°C [24]
80 wt.% Li10SnP2S12-PEO 4 × 10?5 S/cm at 25°C 0.9 eV [89]
LATP-MEEP 1.9 × 10?3 S/cm at 60°C 5.4 V 0.94 [75]
70 wt.% s@LLAZO-PEGDA 4.9 × 10?4 S/cm at 25°C 0.29 eV [77]
91.3 wt.% LLZO-PEO 1.04 × 10?4 S/cm at 25°C 0.36 eV [78]
62 wt.% LLZO-PEO 8.5 × 10?5 S/cm at 25°C 5 V [79]
56 wt.% LLZAO-PEO 2.51 × 10?4 S/cm at 25°C 5.58 V 0.53 0.36 eV [80]
Tab.2  Summary of recently reported CR electrolytes
Fig.18  Schematic of the influence brought by polymers on mechanical performance, thermodynamic stability, and ion transfer kinetics in the CR electrolytes.
Fig.19  Preparation methods of bilayer structured CSEs.
Fig.20  Advantages and preparation methods of multilayer structured CSEs.
Layer number CPEs Ionic conductivity Electrochemical window (vs Li/Li+) Li+ transference number Activation energy Ref.
Bilayer CR-PR bilayer LLZO-PVDF-HFP 1.1 × 10?4 S/cm at 25°C 4.5 V 0.55 0.146 eV [90]
Soft-tough asymmetric LLZAO-in situ polymerized TPGDA 8.43 × 10?4 S/cm at 25°C 5 V 0.42 [91]
80 vol.% LATP-PEO|PEO@ PVDF-HFP 5.03 × 10?4 S/cm at 45°C 4.9 V [94]
Multilayer 20 vol.% 200 nm LLZTO-PEO| 80 vol.% 5 μm LLZTO-PEO|20 vol.% 200 nm LLZTO-PEO 2.3 × 10?5 S/cm at 30°C 5.03 V [92]
15 vol.% LLTO-PEO|80 vol.% LLTO-PVDF|15 vol.% LLTO-PAN 2.82 × 10?4 S/cm at 25°C 4.9 V 0.271 eV [93]
PEO|LLTO-PEO|PEO 1.6 × 10?4 S/cm at 24°C 4.7 V 0.48 [95]
15 vol.% LLTO-PVDF|75 vol.% LLTO-PVDF|15 vol.% LLTO-PVDF 4.7 × 10?4 S/cm at 25°C 5 V 0.301 eV [96]
Tab.3  Summary of recently reported CSEs with layered structure
1 J W Choi, D Aurbach. Promise and reality of post-lithium-ion batteries with high energy densities. Nature Reviews. Materials, 2016, 1( 4): 16013
https://doi.org/10.1038/natrevmats.2016.13
2 D Lin, Y Liu, Y Cui. Reviving the lithium metal anode for high-energy batteries. Nature Nanotechnology, 2017, 12( 3): 194– 206
https://doi.org/10.1038/nnano.2017.16
3 P Albertus, S Babinec, S Litzelman. et al.. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nature Energy, 2018, 3( 1): 16– 21
https://doi.org/10.1038/s41560-017-0047-2
4 X B Cheng, R Zhang, C Z Zhao. et al.. Toward safe lithium metal anode in rechargeable batteries: a review. Chemical Reviews, 2017, 117( 15): 10403– 10473
https://doi.org/10.1021/acs.chemrev.7b00115
5 E C Evarts. Lithium batteries: to the limits of lithium. Nature, 2015, 526( 7575): S93– S95
https://doi.org/10.1038/526S93a
6 C Yang, K Fu, Y Zhang. et al.. Protected lithium-metal anodes in batteries: from liquid to solid. Advanced Materials, 2017, 29( 36): 1701169
https://doi.org/10.1002/adma.201701169
7 S H Wang, J Yue, W Dong. et al.. Tuning wettability of molten lithium via a chemical strategy for lithium metal anodes. Nature Communications, 2019, 10( 1): 4930
https://doi.org/10.1038/s41467-019-12938-4
8 Z Wang, Y Wang, Z Zhang. et al.. Building artificial solid-electrolyte interphase with uniform intermolecular ionic bonds toward dendrite-free lithium metal anodes. Advanced Functional Materials, 2020, 30( 30): 2002414
https://doi.org/10.1002/adfm.202002414
9 D A Dornbusch, R Hilton, S D Lohman. et al.. Experimental validation of the elimination of dendrite short-circuit failure in secondary lithium-metal convection cell batteries. Journal of the Electrochemical Society, 2015, 162( 3): A262– A268
https://doi.org/10.1149/2.0021503jes
10 Palacín M R, De Guibert A. Why do batteries fail? Science, 2016, 351(6273): 1253292
11 P Fan, H Liu, V Marosz. et al.. High performance composite polymer electrolytes for lithium-ion batteries. Advanced Functional Materials, 2021, 31( 23): 2101380
https://doi.org/10.1002/adfm.202101380
12 A J Samson, K Hofstetter, S Bag. et al.. A bird’s-eye view of Li-stuffed garnet-type Li7La3Zr2O12 ceramic electrolytes for advanced all-solid-state Li batteries. Energy & Environmental Science, 2019, 12( 10): 2957– 2975
https://doi.org/10.1039/C9EE01548E
13 H Xu, G Cao, Y Shen. et al.. Enabling argyrodite sulfides as superb solid-state electrolyte with remarkable interfacial stability against electrodes. Energy & Environmental Materials, 2022, online
https://doi.org/10.1002/eem2.12282doi:10.1002/eem2.12282
14 C Vinod Chandran, S Pristat, E Witt. et al.. Solid-state NMR investigations on the structure and dynamics of the ionic conductor Li1+xAlxTi2−x(PO4)3 (0.0 ≤ x ≤ 1.0). Journal of Physical Chemistry C, 2016, 120( 16): 8436– 8442
https://doi.org/10.1021/acs.jpcc.6b00318
15 J Wang, M Wang, J Xiao. et al.. A microstructure engineered perovskite super anode with Li-storage life of exceeding 10000 cycles. Nano Energy, 2022, 94 : 106972
https://doi.org/10.1016/j.nanoen.2022.106972
16 A Mauger, C M Julien, A Paolella. et al.. Building better batteries in the solid state: a review. Materials (Basel), 2019, 12( 23): 3892
https://doi.org/10.3390/ma12233892
17 L Yue, J Ma, J Zhang. et al.. All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Materials, 2016, 5 : 139– 164
https://doi.org/10.1016/j.ensm.2016.07.003
18 Q Zhang, K Liu, F Ding. et al.. Recent advances in solid polymer electrolytes for lithium batteries. Nano Research, 2017, 10( 12): 4139– 4174
https://doi.org/10.1007/s12274-017-1763-4
19 Yang X, Jiang M, Gao X, et al. Determining the limiting factor of the electrochemical stability window for PEO-based solid polymer electrolytes: main chain or terminal–OH group? Energy & Environmental Science, 2020, 13(5): 1318–1325
20 L Xu, J Li, H Shuai. et al.. Recent advances of composite electrolytes for solid-state Li batteries. Journal of Energy Chemistry, 2022, 67 : 524– 548
https://doi.org/10.1016/j.jechem.2021.10.038
21 L Chen, Y Li, S P Li. et al.. PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy, 2018, 46 : 176– 184
https://doi.org/10.1016/j.nanoen.2017.12.037
22 J Zheng, Y Y Hu. New insights into the compositional dependence of Li-ion transport in polymer-ceramic composite electrolytes. ACS Applied Materials & Interfaces, 2018, 10( 4): 4113– 4120
https://doi.org/10.1021/acsami.7b17301
23 Z Huang, R A Tong, J Zhang. et al.. Blending poly(ethylene oxide) and Li6.4La3Zr1.4Ta0.6O12 by haake rheomixer without any solvent: a low-cost manufacture method for mass production of composite polymer electrolyte. Journal of Power Sources, 2020, 451 : 227797
https://doi.org/10.1016/j.jpowsour.2020.227797
24 T Jiang, P He, Y Liang. et al.. All-dry synthesis of self-supporting thin Li10GeP2S12 membrane and interface engineering for solid state lithium metal batteries. Chemical Engineering Journal, 2021, 421 : 129965
https://doi.org/10.1016/j.cej.2021.129965
25 C Monroe, J Newman. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. Journal of the Electrochemical Society, 2005, 152( 2): A396– A404
https://doi.org/10.1149/1.1850854
26 R Murugan, V Thangadurai, W Weppner. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angewandte Chemie International Edition, 2007, 46( 41): 7778– 7781
https://doi.org/10.1002/anie.200701144
27 D Rettenwander, P Blaha, R Laskowski. et al.. DFT study of the role of Al3+ in the fast ion-conductor Li7–3xAl3+xLa3Zr2O12 garnet. Chemistry of Materials, 2014, 26( 8): 2617– 2623
https://doi.org/10.1021/cm5000999
28 L Buannic, B Orayech, Del Amo J M López. et al.. Dual substitution strategy to enhance Li+ ionic conductivity in Li7La3Zr2O12 solid electrolyte. Chemistry of Materials, 2017, 29( 4): 1769– 1778
https://doi.org/10.1021/acs.chemmater.6b05369
29 C Z Zhao, X Q Zhang, X B Cheng. et al.. An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114( 42): 11069– 11074
https://doi.org/10.1073/pnas.1708489114
30 X Zhang, T Liu, S Zhang. et al.. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. Journal of the American Chemical Society, 2017, 139( 39): 13779– 13785
https://doi.org/10.1021/jacs.7b06364
31 R Li, D Wu, L Yu. et al.. Unitized configuration design of thermally stable composite polymer electrolyte for lithium batteries capable of working over a wide range of temperatures. Advanced Engineering Materials, 2019, 21( 7): 1900055
https://doi.org/10.1002/adem.201900055
32 F Sun, Y Xiang, Q Sun. et al.. Origin of high ionic conductivity of Sc-doped sodium-rich NASICON solid-state electrolytes. Advanced Functional Materials, 2021, 31( 31): 2102129
https://doi.org/10.1002/adfm.202102129
33 Y Li, H Wang. Composite solid electrolytes with NASICON-type LATP and PVdF-HFP for solid-state lithium batteries. Industrial & Engineering Chemistry Research, 2021, 60( 3): 1494– 1500
https://doi.org/10.1021/acs.iecr.0c05075
34 W Wang, E Yi, A J Fici. et al.. Lithium ion conducting poly(ethylene oxide)-based solid electrolytes containing active or passive ceramic nanoparticles. Journal of Physical Chemistry C, 2017, 121( 5): 2563– 2573
https://doi.org/10.1021/acs.jpcc.6b11136
35 F Ma, Z Zhang, W Yan. et al.. Solid polymer electrolyte based on polymerized ionic liquid for high performance all-solid-state lithium-ion batteries. ACS Sustainable Chemistry & Engineering, 2019, 7( 5): 4675– 4683
https://doi.org/10.1021/acssuschemeng.8b04076
36 M Jia, Z Bi, C Shi. et al.. Polydopamine coated lithium lanthanum titanate in bilayer membrane electrolytes for solid lithium batteries. ACS Applied Materials & Interfaces, 2020, 12( 41): 46231– 46238
https://doi.org/10.1021/acsami.0c14211
37 H Xu, P H Chien, J Shi. et al.. High-performance all-solid-state batteries enabled by salt bonding to perovskite in poly(ethylene oxide). Proceedings of the National Academy of Sciences of the United States of America, 2019, 116( 38): 18815– 18821
https://doi.org/10.1073/pnas.1907507116
38 Z Dai, J Yu, J Liu. et al.. Highly conductive and nonflammable composite polymer electrolytes for rechargeable quasi-solid-state Li-metal batteries. Journal of Power Sources, 2020, 464 : 228182
https://doi.org/10.1016/j.jpowsour.2020.228182
39 R Kanno, M Murayama. Lithium ionic conductor thio-LISICON: the Li2S-GeS2–P2S5 system. Journal of the Electrochemical Society, 2001, 148( 7): A742– A746
https://doi.org/10.1149/1.1379028
40 H J Deiseroth, S T Kong, H Eckert. et al.. Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility. Angewandte Chemie International Edition, 2008, 47( 4): 755– 758
https://doi.org/10.1002/anie.200703900
41 N Kamaya, K Homma, Y Yamakawa. et al.. A lithium superionic conductor. Nature Materials, 2011, 10( 9): 682– 686
https://doi.org/10.1038/nmat3066
42 Y Kato, S Hori, T Saito. et al.. High-power all-solid-state batteries using sulfide superionic conductors. Nature Energy, 2016, 1( 4): 16030
https://doi.org/10.1038/nenergy.2016.30
43 Y Nikodimos, C J Huang, B W Taklu. et al.. Chemical stability of sulfide solid-state electrolytes: stability toward humid air and compatibility with solvents and binders. Energy & Environmental Science, 2022, 15( 3): 991– 1033
https://doi.org/10.1039/D1EE03032A
44 Y Li, W Arnold, A Thapa. et al.. Stable and flexible sulfide composite electrolytes for high-performance solid-state lithium batteries. ACS Applied Materials & Interfaces, 2020, 12( 38): 42653– 42659
https://doi.org/10.1021/acsami.0c08261
45 L Cong, Y Li, W Lu. et al.. Unlocking the poly(vinylidene fluoride-co-hexafluoropropylene)/Li10GeP2S12 composite solid-state electrolytes for dendrite-free Li metal batteries assisting with perfluoropolyethers as bifunctional adjuvant. Journal of Power Sources, 2020, 446 : 227365
https://doi.org/10.1016/j.jpowsour.2019.227365
46 K Pan, L Zhang, W Qian. et al.. A flexible ceramic/polymer hybrid solid electrolyte for solid-state lithium metal batteries. Advanced Materials, 2020, 32( 17): 2000399
https://doi.org/10.1002/adma.202000399
47 M Matsuo, Y Nakamori, S I Orimo. et al.. Lithium superionic conduction in lithium borohydride accompanied by structural transition. Applied Physics Letters, 2007, 91( 22): 224103
https://doi.org/10.1063/1.2817934
48 A Manthiram, X Yu, S Wang. Lithium battery chemistries enabled by solid-state electrolytes. Nature Reviews. Materials, 2017, 2( 4): 16103
https://doi.org/10.1038/natrevmats.2016.103
49 J Cuan, Y Zhou, T Zhou. et al.. Borohydride-scaffolded Li/Na/Mg fast ionic conductors for promising solid-state electrolytes. Advanced Materials, 2019, 31( 1): 1803533
https://doi.org/10.1002/adma.201803533
50 X Zhang, T Zhang, Y Shao. et al.. Composite electrolytes based on poly(ethylene oxide) and lithium borohydrides for all-solid-state lithium-sulfur batteries. ACS Sustainable Chemistry & Engineering, 2021, 9( 15): 5396– 5404
https://doi.org/10.1021/acssuschemeng.1c00381
51 K Bao, Y Pang, J Yang. et al.. Modulating composite polymer electrolyte by lithium closo-borohydride achieves highly stable solid-state battery at 25 °C. Science China Materials, 2022, 65( 1): 95– 104
https://doi.org/10.1007/s40843-021-1740-7
52 C Hu, Y Shen, M Shen. et al.. Superionic conductors via bulk interfacial conduction. Journal of the American Chemical Society, 2020, 142( 42): 18035– 18041
https://doi.org/10.1021/jacs.0c07060
53 R Fan, C Liu, K He. et al.. Versatile strategy for realizing flexible room-temperature all-solid-state battery through a synergistic combination of salt affluent PEO and Li6.75La3Zr1.75Ta0.25O12 nanofibers. ACS Applied Materials & Interfaces, 2020, 12( 6): 7222– 7231
https://doi.org/10.1021/acsami.9b20104
54 T Yang, J Zheng, Q Cheng. et al.. Composite polymer electrolytes with Li7La3Zr2O12 garnet-type nanowires as ceramic fillers: mechanism of conductivity enhancement and role of doping and morphology. ACS Applied Materials & Interfaces, 2017, 9( 26): 21773– 21780
https://doi.org/10.1021/acsami.7b03806
55 B Li, Q Su, L Yu. et al.. Li0.35La0.55TiO3 nanofibers enhanced poly(vinylidene fluoride)-based composite polymer electrolytes for all-solid-state batteries. ACS Applied Materials & Interfaces, 2019, 11( 45): 42206– 42213
https://doi.org/10.1021/acsami.9b14824
56 W Liu, S W Lee, D Lin. et al.. Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. Nature Energy, 2017, 2( 5): 17035
https://doi.org/10.1038/nenergy.2017.35
57 S Song, Y Wu, W Tang. et al.. Composite solid polymer electrolyte with garnet nanosheets in poly(ethylene oxide). ACS Sustainable Chemistry & Engineering, 2019, 7( 7): 7163– 7170
https://doi.org/10.1021/acssuschemeng.9b00143
58 J Cheng, G Hou, Q Chen. et al.. Sheet-like garnet structure design for upgrading PEO-based electrolyte. Chemical Engineering Journal, 2022, 429 : 132343
https://doi.org/10.1016/j.cej.2021.132343
59 J Bae, Y Li, J Zhang. et al.. A 3D nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte. Angewandte Chemie International Edition, 2018, 57( 8): 2096– 2100
https://doi.org/10.1002/anie.201710841
60 Z Xu, H Zhang, T Yang. et al.. Physicochemically dendrite-suppressed three-dimensional fluoridation solid-state electrolyte for high-rate lithium metal battery. Cell Reports Physical Science, 2021, 2( 11): 100644
https://doi.org/10.1016/j.xcrp.2021.100644
61 X Wang, H Zhai, B Qie. et al.. Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanoparticle/polymer composite electrolyte. Nano Energy, 2019, 60 : 205– 212
https://doi.org/10.1016/j.nanoen.2019.03.051
62 S Song, X Qin, Y Ruan. et al.. Enhanced performance of solid-state lithium-air batteries with continuous 3D garnet network added composite polymer electrolyte. Journal of Power Sources, 2020, 461 : 228146
https://doi.org/10.1016/j.jpowsour.2020.228146
63 Y Zhang, X He, Z Chen. et al.. Unsupervised discovery of solid-state lithium ion conductors. Nature Communications, 2019, 10( 1): 5260
https://doi.org/10.1038/s41467-019-13214-1
64 S Zekoll, C Marriner-Edwards, A K O Hekselman. et al.. Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries. Energy & Environmental Science, 2018, 11( 1): 185– 201
https://doi.org/10.1039/C7EE02723K
65 H Yang, K Tay, Y Xu. et al.. Nitrogen-doped lithium lanthanum titanate nanofiber-polymer composite electrolytes for all-solid-state lithium batteries. Journal of the Electrochemical Society, 2021, 168( 11): 110507
https://doi.org/10.1149/1945-7111/ac30ad
66 P Zhu, C Yan, M Dirican. et al.. Li0.33La0.557TiO3 ceramic nanofiber-enhanced polyethylene oxide-based composite polymer electrolytes for all-solid-state lithium batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6( 10): 4279– 4285
https://doi.org/10.1039/C7TA10517G
67 H Zhai, P Xu, M Ning. et al.. A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanoparticles for lithium batteries. Nano Letters, 2017, 17( 5): 3182– 3187
https://doi.org/10.1021/acs.nanolett.7b00715
68 W P Chen, H Duan, J L Shi. et al.. Bridging interparticle Li+ conduction in a soft ceramic oxide electrolyte. Journal of the American Chemical Society, 2021, 143( 15): 5717– 5726
https://doi.org/10.1021/jacs.0c12965
69 Z Huang, W Pang, P Liang. et al.. A dopamine modified Li6.4La3Zr1.4Ta0.6O12/PEO solid-state electrolyte: enhanced thermal and electrochemical properties. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2019, 7( 27): 16425– 16436
https://doi.org/10.1039/C9TA03395E
70 C Wang, R Yu, H Duan. et al.. Solvent-free approach for interweaving freestanding and ultrathin inorganic solid electrolyte membranes. ACS Energy Letters, 2022, 7( 1): 410– 416
https://doi.org/10.1021/acsenergylett.1c02261
71 S A Ahmed, T Pareek, S Dwivedi. et al.. Fast Li+ conduction in (PEO+LiClO4) incorporated LiSn2(PO4)3 polymer-in-ceramic solid electrolyte. In: AIP Conference Proceedings, 2020, 2265 : 030596
https://doi.org/10.1063/5.0016766
72 S A Ahmed, T Pareek, S Dwivedi. et al.. LiSn2(PO4)3-based polymer-in-ceramic composite electrolyte with high ionic conductivity for all-solid-state lithium batteries. Journal of Solid State Electrochemistry, 2020, 24( 10): 2407– 2417
https://doi.org/10.1007/s10008-020-04783-z
73 K Zhang, S Mu, W Liu. et al.. A flexible NASICON-type composite electrolyte for lithium-oxygen/air battery. Ionics, 2019, 25( 1): 25– 33
https://doi.org/10.1007/s11581-018-2580-9
74 Z Jiang, S Wang, X Chen. et al.. Tape-casting Li0.34La0.56TiO3 ceramic electrolyte films permit high energy density of lithium-metal batteries. Advanced Materials, 2020, 32( 6): 1906221
https://doi.org/10.1002/adma.201906221
75 S Yu, Q Xu, X Lu. et al.. Single-ion-conducting “polymer-in-ceramic” hybrid electrolyte with an intertwined NASICON-type nanofiber skeleton. ACS Applied Materials & Interfaces, 2021, 13( 51): 61067– 61077
https://doi.org/10.1021/acsami.1c17718
76 R Meziane, J P Bonnet, M Courty. et al.. Single-ion polymer electrolytes based on a delocalized polyanion for lithium batteries. Electrochimica Acta, 2011, 57 : 14– 19
https://doi.org/10.1016/j.electacta.2011.03.074
77 C Yan, P Zhu, H Jia. et al.. Garnet-rich composite solid electrolytes for dendrite-free, high-rate, solid-state lithium-metal batteries. Energy Storage Materials, 2020, 26 : 448– 456
https://doi.org/10.1016/j.ensm.2019.11.018
78 S Guo, W Kou, W Wu. et al.. Thin laminar inorganic solid electrolyte with high ionic conductance towards high-performance all-solid-state lithium battery. Chemical Engineering Journal, 2022, 427 : 131948
https://doi.org/10.1016/j.cej.2021.131948
79 J Bae, Y Li, F Zhao. et al.. Designing 3D nanostructured garnet frameworks for enhancing ionic conductivity and flexibility in composite polymer electrolytes for lithium batteries. Energy Storage Materials, 2018, 15 : 46– 52
https://doi.org/10.1016/j.ensm.2018.03.016
80 D Cai, D Wang, Y Chen. et al.. A highly ion-conductive three-dimensional LLZAO-PEO/LiTFSI solid electrolyte for high-performance solid-state batteries. Chemical Engineering Journal, 2020, 394 : 124993
https://doi.org/10.1016/j.cej.2020.124993
81 S Wang, Q Li, M Bai. et al.. A dendrite-suppressed flexible polymer-in-ceramic electrolyte membrane for advanced lithium batteries. Electrochimica Acta, 2020, 353 : 136604
https://doi.org/10.1016/j.electacta.2020.136604
82 J Wu, X Wu, W Wang. et al.. Dense PVDF-type polymer-in-ceramic electrolytes for solid state lithium batteries. RSC Advances, 2020, 10( 38): 22417– 22421
https://doi.org/10.1039/D0RA03433A
83 T Jiang, P He, G Wang. et al.. Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries. Advanced Energy Materials, 2020, 10( 12): 1903376
https://doi.org/10.1002/aenm.201903376
84 F P Nkosi, M Valvo, J Mindemark. et al.. Garnet-poly(ε-caprolactone-co-trimethylene carbonate) polymer-in-ceramic composite electrolyte for all-solid-state lithium-ion batteries. ACS Applied Energy Materials, 2021, 4( 3): 2531– 2542
https://doi.org/10.1021/acsaem.0c03098
85 Z Wang, P Zhang, Y Jia. et al.. Dimethyl carbonate adsorption enabling enhanced overall electrochemical properties for solid composite electrolyte. Journal of Alloys and Compounds, 2021, 853 : 157340
https://doi.org/10.1016/j.jallcom.2020.157340
86 B Wang, G Wang, P He. et al.. Rational design of ultrathin composite solid-state electrolyte for high-performance lithium metal batteries. Journal of Membrane Science, 2022, 642 : 119952
https://doi.org/10.1016/j.memsci.2021.119952
87 B Zhang, Y Liu, J Liu. et al.. “Polymer-in-ceramic” based poly(ε-caprolactone)/ceramic composite electrolyte for all-solid-state batteries. Journal of Energy Chemistry, 2021, 52 : 318– 325
https://doi.org/10.1016/j.jechem.2020.04.025
88 S Bonizzoni, C Ferrara, V Berbenni. et al.. NASICON-type polymer-in-ceramic composite electrolytes for lithium batteries. Physical Chemistry Chemical Physics, 2019, 21( 11): 6142– 6149
https://doi.org/10.1039/C9CP00405J
89 S Menkin, M Lifshitz, A Haimovich. et al.. Evaluation of ion-transport in composite polymer-in-ceramic electrolytes. Case study of active and inert ceramics. Electrochimica Acta, 2019, 304 : 447– 455
https://doi.org/10.1016/j.electacta.2019.03.006
90 H Jiang, Y Wu, J Ma. et al.. Ultrathin polymer-in-ceramic and ceramic-in-polymer bilayer composite solid electrolyte membrane for high-voltage lithium metal batteries. Journal of Membrane Science, 2021, 640 : 119840
https://doi.org/10.1016/j.memsci.2021.119840
91 N Zhang, G Wang, M Feng. et al.. In situ generation of a soft-tough asymmetric composite electrolyte for dendrite-free lithium metal batteries. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2021, 9( 7): 4018– 4025
https://doi.org/10.1039/D0TA11748J
92 H Huo, Y Chen, J Luo. et al.. Rational design of hierarchical “ceramic-in-polymer” and “polymer-in-ceramic” electrolytes for dendrite-free solid-state batteries. Advanced Energy Materials, 2019, 9( 17): 1804004
https://doi.org/10.1002/aenm.201804004
93 B Li, Q Su, C Liu. et al.. Stable interface of a high-energy solid-state lithium metal battery via a sandwich composite polymer electrolyte. Journal of Power Sources, 2021, 496 : 229835
https://doi.org/10.1016/j.jpowsour.2021.229835
94 H Ling, L Shen, Y Huang. et al.. Integrated structure of cathode and double-layer electrolyte for highly stable and dendrite-free all-solid-state Li-metal batteries. ACS Applied Materials & Interfaces, 2020, 12( 51): 56995– 57002
https://doi.org/10.1021/acsami.0c16390
95 K Liu, R Zhang, J Sun. et al.. Polyoxyethylene (PEO)|PEO-perovskite|PEO composite electrolyte for all-solid-state lithium metal batteries. ACS Applied Materials & Interfaces, 2019, 11( 50): 46930– 46937
https://doi.org/10.1021/acsami.9b16936
96 B Li, Q Su, L Yu. et al.. Ultrathin, flexible, and sandwiched structure composite polymer electrolyte membrane for solid-state lithium batteries. Journal of Membrane Science, 2021, 618 : 118734
https://doi.org/10.1016/j.memsci.2020.118734
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed